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Abstract. A Banach space operator has property (8) if and only if it is the quotient
of a decomposable operator, equivalently, if and only if its adjoint has Bishop’s property
(B). Within this class of operators, it is shown that quasisimilarity preserves essential
spectra.

0. Introduction. A continuous linear operator T on a complex Banach space X is
said to be a Fredholm operator provided that the kernel of T is finite dimensional and the
range of T is finitely complemented in X; that is, there is a finite dimensional subspace F
of X so that X is the algebraic direct sum of F and ran(7). This second condition is
equivalent to the requirements that ran(7") be closed and that the quotient X /ran(T) be
finite dimensional, [8, Proposition 36.3). By the essential spectrum of T we mean the set of
A € C such that T — A is not a Fredholm operator.

Two continuous linear operators 7 e £(X) and Y e £(Y) on complex Banach spaces
X and Y are called quasisimilar if there exist A e £(X,Y) and B e £(Y, X), each
injective, and with dense range, so that AT = SA and TB = BS. The invariance of various
spectra under this equivalence relation for certain classes of operators has received
considerable attention. We mention in particular that quasisimilar hyponormal operators
were shown by S. Clary [3] to have equal spectra, and that L. R. Williams [18] showed
that quasisimilar quasinormal operators have equal essential spectra. L. Yang [19]
generalized Williams’s work to the class of subnormal operators.

In 1984, M. Putinar [14] constructed a functional model for hyponormal operators
that showed them to be subscalar and hence to possess a certain property introduced by
E. Bishop [2]: a Banach space operator T € £(X) is said to have property (8) provided
that whenever a sequence of analytic functions f,:U— X is such that (7 — A)f,(A)—>0
uniformly on the compact subsets of an open subset U of C, it follows that f,(A)—0
uniformly on the compact subsets of U. Putinar must be given credit as one of the first to
recognize the importance of (B8) in localizing the analytic functional calculus of an
operator and the corresponding decomposition of its spectrum.

Putinar’s work on hyponormal operators led Yang [20] to show equality of essential
spectra of quasisimilar hyponormal, and more generally, restrictions of decomposable
operators on Hilbert spaces. The class of decomposable operators, defined below,
includes generalized scalar operators and normal operators and shares many of the
spectral decomposition properties of normal operators, in particular those on which
Yang’s proof [19] of the subnormal case were based. Using his sheaf-theoretic model for
Banach space operators with property (8) [13] Putinar showed that quasisimilar tuples of
operators with (B8) have equal spectra and essential spectra [15].

The functional model for hyponormal operators led E. Albrecht and J. Eschmeier [1]
to construct a complete duality theory for operators with Bishop’s property (8). Recall
that an operator T e £(X) is decomposable in the sense of C. Foiag provided that for
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every open cover {U;, U,} of the complex plane C, there exist closed T-invariant subspaces
X; and X, of X so that X = X, + X, and O'(TIX‘_)CUi for i=1,2. See [4] and [17].
Albrecht and Eschmeier show that (B) characterizes restrictions of decomposable
operators to closed invariant subspaces, and that quotients of decomposable operators are
determined by the decomposition property (8): T € £(X) is said to have property (8)
provided that for each open cover {U;, U,} of the complex plane C, there exist T-invariant
linear manifolds X, and X, of X so that X = X, + X, and such that for each x € X, there
is an analytic function f:C\U,— X with (T — A)f(A)=x for all A € C\U,. Albrecht and
Eschmeier further show that the properties (8) and (6) are completely dual: an operator
has one if and only if its adjoint has the other.

It is a consequence of [12, Proposition 2.4] that quasisimilar operators with property
(8) have equal spectra. Since an operator T is Fredholm if and only if T* is also, it is
natural to conjecture that quasisimilar Banach space operators with property (8) have
equal essential spectra. Indeed, in the case of reflexive spaces, the result follows
immediately from Putinar’s result; see [15]. The purpose of this note is to establish this
equality in the setting of arbitrary Banach spaces. In fact, we show somewhat more.

THEOREM. Suppose that T € £(X) and S e £(Y) each have the decomposition
property (8). If Ae L(X,Y) and B e L(Y,X) are each injective, if AT =SA and
TB = BS, then o.(T) = o.(S).

In the first section we present the elements of local spectral theory on which the
proof of the theorem in Section 2 is based.

1. Preliminaries. If 7 is a continuous linear operator on a Banach space X, we
denote the spectrum of T € Z(X) by o(T). By the surjectivity spectrum of 7, we mean
0.(T)={A:T — A is not surjective}; let o,(T) and o,(T) denote respectively the point
spectrum and essential spectrum of T. The resolvent set of T is p(T)= C\o(T); let
pe(T) =C\o(T) and p,,(T) = C\oy,(T). If E is a locally convex topological vector space,
we denote the dual of E by E* and call the topology on E* determined by E the weak-*

weak-*

topology; that is, ¢, —— ¢ in E* if ¢,(x)— ¢(x) for each x ¢ E. If T 1s a continuous
linear operator on E, let ker(T) and ran(T) denote respectively the kernel and range of
T. For M a closed subspace of E, let T|, be the restriction of T to M. If T e #(E) and if
M is a T-invariant subspace of E, we consider T|y: M — M.

For a Banach space X and an open subset V of the plane C, let O(V, X) denote the
space of analytic X -valued functions on V. Observe that O(V, X) is a Fréchet space when
endowed with the topology determined by uniform convergence on the compact subsets
of V.

If U is open in the extended plane C. with » € U, let P(U, X) denote the set of
analytic X -valued functions f on U such that f(e)=0. This is also a Fréchet space when
endowed with the topology determined by uniform convergence on the compact subsets
of U If FcC. is closed with ® e F, let P(F, X) be the inductive limit of the collection
{P(U,X):U an open neighborhood of F}. Here, we identify functions that agree in a
neighborhood of F. The space P(F, X) is a complete (LF)-space [7, Proposition 15], and
for V an open subset of C, O(V, X)* is isomorphic to P(C.\V, X*), and P(C.\V, X)* is
isomorphic to O(V,X*) [7, Proposition 13]. (Here P(C.\V,X)* and O(V,X)* are
equipped with their strong dual topologies.)
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If Uis openin C. about <, 0¢ U,let V={1/z:z e U}, K=C\U, and F = C.\V. The
mapping f(z)~f(1/z) is an isomorphism between P(U, X) and {f € O(V, X):f(0) = 0}.
Thus, from the duality result above, P(U, X)* is isomorphic to O(K, X'*), the inductive
limit of {O(W, X*): K = W}, where again functions agreeing on a neighborhood of K are
identified. The space O(K, X'*) is also a complete (LF)-space.

Let F be closed in C. with = ¢ F and U an open neighborhood of F. If T € £(X),
define TY:P(U,X)— P(U,X) by (TYF)(A)=(T — A)f(A) + lim zf(z), A € U, and let

T be the corresponding operator on P(F, X). Similarly, for K compact and V open with
KcVcC, define T, on O(V,X) by (T,,f)(A)=(T = A)f(A), and Tx on O(K, X) by
Tx|av,X)= Tv. Each of these mappings is continuous; also by [5,1.3.4], for U and F as
above, we have

(TY)*=T&y, and (TH)*=TEs
Similarly, if K ¢ V are as above, then
(Ty)*=(TH™Y, and (Tyx)* = (T*

If V is open in the plane and 7, has closed range, we denote the Fréchet space
O(V,X)/ran(T,) by %-(V). For K a compact subset of the plane such that 7k has closed
range, we similarly let % (K) = O(K, X)/ran(Ty), the inductive limit of the spaces %-(W),
where W runs through the open neighborhoods of K.

An operator T is said to have the single-valued extension property (SVEP) provided
that 7y is injective for each open subset V of the plane. Bishop’s property (B8) may be
restated as the condition that for each open subset V of C the operator Ty is injective and
has closed range. If T has property (8) and V is open in the plane, %-(V) is the presheaf
corresponding to Putinar’s sheaf model for an operator with property (8); see [13]. Since
we are concerned only with a single operator, we can avoid using this theory explicitly.

For T e #(X) and H closed in C, we define a T-invariant, but generally not closed,
subspace of X, Xr(H) = {x € X :x e ran(Tgy)}. Clearly, the operator T has property (8)
provided that whenever U and V are open with UU V =C, the space X can be written as
X =X7(U)+ X+(V). Equivalently, by [5,1.3.4], T € £(X) has property (8) if and only
if for each closed F in C.. with = e F, the mapping T is surjective. If T has property (8),
it follows from [10, 34.8.(4)] that T* is an open mapping and therefore by [10, 32.3.(1)],
that its adjoint T} has weak-* closed range. Thus (ker(T7))* = Fr.(U).

2. Proof of the Theorem. For A e C and € >0, let V(A, €) denote the open ball of
radius e centered at A.

LemMma 1. Suppose that T € £(X) is surjective and Fredholm. Then there exists an
€>0 such that T}, has closed range and dimker(T — A)=dimker(T) for all
AeV:=V(0,¢). Let n = dimker(T), and assume that n > 0.

(1) There exist {g}i-1 < O(V,X) and {f}-, = OV,X*) satisfying the following
conditions for each A € V.

(i) The set {g;(A)}] is a basis for Ker(T — A).

(i) [fO):=fA) +ran(T* - A), 1 <j=n, is a basis for X*/ran(T* — A).

(iii) fi(A)(g(A))=1ifi=jand 0 otherwise.
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Moreover, if W is an open subset of V, and f € O(W, X'*), then there exist unique
analytic functions ¢w;:C, 1=<j<n, and some g € O(W, X*) such that

f=2 ow,f+The
j=1

(2) If C e £(X) is injective and such that TC = CT, then for each open set W <V,
the induced mapping

Fr(W) 1L F(W),  [f]=[C*ef],

is a continuous bijection. It follows that for K a compact subset of V such that ran(T}) is
closed, [C*] is a continuous bijection on Fr.(K) as well.

Proof. The first part of the following lemma is well-known; see for example
Proposition 3 and its Corollary in [16]. To see (2), let W be an open subset of V. The
mapping C*e¢ is clearly continuous on O(W, X*), and therefore the quotient mapping
[C*] is continuous on Fr.(W). If fi,...,f, € O(V, X*) are as in (1), then for each i and j,
1<i, j=<n, there exist unique analytic functions ¢;:V —C such that for each j,
[C*I[f) = Z7=1 @yl f] in Fru(V). Since C is injective on X and ker(T —A) is finite
dimensional, C:ker(T —A)—ker(T — A) is a bijection for each A € V. Consequently, the
dual mapping, {C*],: X*/ran(T* — A)— X*/ran(T* — A) is a bijection. It follows that
det(g;(A)) # 0, and therefore that [C*] is a bijection on Fr.(W).

Now, if K is a compact subset of V, then for each open neighborhood W of K, C*o is
continuous on O(W, X*), and therefore C*o is continuous with respect to the inductive
limit topology on O(K, X*). Under the assumption that ran(7%) is closed, the quotient
mapping is continuous as well. Let f € O(K, X*), and choose W open, with KcWcV,
such that f e O(W, X*). Since [C*] is a bijection on F..(W), there is a unique g in
O(W, X*) so that f=C*g + Tyh for some h e O(W, X*); in particular, f +ran(T%) =
C*g +ran(T%) and thus [C*] is surjective. Since [C*f] e ran(T%) implies that [C*f] e
ran(T %) for some W open about K, it follows that [C*] is a bijection on %r.(K).

LemMma 2. Let T and V =V (0,¢€) be as in Lemma 1, and let F =C,\V. Then TF is
surjective on P(F, X'), and consequently, its dual T? has weak-* closed range in O(V , X'*).
Moreover, if C € £(X) is injective and commutes with T, then the mapping f+ Cof is a
continuous bijection on ker(TF).

Proof. Denote the mapping f— Cef by C. For each open set U o F, it’s clear that C
is continuous and injective on P(U, X), and therefore C:P(F,X)— P(F, X) is injective
and continuous. Since T is Fredholm and surjective, T is right-invertible; say L € £(X) is
such that TL = I. By shrinking e if necessary, we may assume that e < ||L|| ™.

For 0< 6 <g, let Uy = C\V(0, 8). Since

P(F,X)= aLJ P(Us, X),
ker(TF) = 6U (P(Us, X) Nker(TF)) = BU ker(TY%),

we need only show that TY and C are surjective for each § < e. Fix such a §; let U = Us
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and K=C\U;. A function f e P(U,X) has a Laurent series f(z)=§:a,,/z" where
1

(@,), =X is such that lim |a,||""<8. For each n, define b,= 3 L*"*'a, and set
k=n

n—o

g(z)=Z=b,/z" It follows routinely that Iim ||b,||"" <8, and thus g e P(U, X) with
l N—>0C

TY =f Because T” is surjective on the (LF)-space P(F,X), it is an open mapping
(10, 34.8.(4)] and therefore by [10, 32.3.(1)] its dual has weak-* closed range.

Since TY is similarly an open mapping, T% = (TY)* also has weak-* closed range in
O(K, X*), and so ker(TY)* = #.(K). By Lemma 1, [C*]: #r.(K)— Fr+(K), the dual of
C:ker(TY)— ker(TY), is a bijection. It follows from the closed range theorem for Fréchet
spaces, [9,9.6.3, p. 185], that C(ker(T")) is closed, and therefore a bijection as well.

For V open in the plane, let X(V)= U {X(H):H a closed subset of V}. If Fis
closed in C. with = e F and if V = C./F, it is straightforward to check that 7: P(F, X)—

X, t(f)=—lim zf(z) is a bijection between ker(T*) and X,(V); see [1,p.12]. Since
2=
Ct=1C, we immediately obtain the following result.

CoROLLARY. Assume that T € £(X) is a surjective Fredholm operator. If C is injective
and commutes with T, then for all sufficiently small € >0 we have

CEr(V(0,€))) = X(V(0, €)).

Remark. The spectral subspaces X 7(V(0, €)) = {x e X :lim || T"x}|""" < €} ([12, Prop-

osition 2.1]) can be large. Consider the Hardy space H> = {f e L*0,2x]:f(n)=0if n <0},
where for each integer n, the nth Fourier coefficient of f e L2[0, 2x] is given by f(n) =

1 2 ] )
— | f(e®)e ™°dl. Let T* = M,, multiplication by the identity function z+> z; so that
2n i) P

T=M}=Py:M; Then T* is an isometry with range {f e H*:f"(0)=0}, and with
o (T*)={r:|1A|=1}. If 0< e =1, then the spectral subspace HHV (0, €)) contains {z"};-¢
and is therefore dense in H>

An operator C € $(H*) commutes with T if and only if C = M*, where M, f = ¢f and
¢ is a bounded analytic function on D =V(0,1). By Beurling’s Theorem, such a C is
injective if and only if ¢ is outer; i.e.,

1 27rei8 + z .
¢(z) = exr><2—ﬂf0 et 414G ) dB).

In particular, if ¢ is outer, M, is injective on H% equivalently, C = M} has dense range in
H2
In this context, the corollary asserts that if ¢ is an outer function in H~(D) and if

e H? is such that lim [[(M})"f|| <1, then f = M*g for some g € H>
n—o wg

LemMma 3. Suppose that T and V =V (0, €) are as in Lemma 1, specifically, T € £(X)
is Fredholm and surjective. Assume further that S € £(Y) has property (8), and is such that
there exist injective operators A€ £(X,Y) and B e L(Y,X) satisfying AT =SA and
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BS =TB. Then the mappings [B*]:%r(V)> F.(V) and [A*]:F(V)— Fr(V) are
bijections, and S* is injective.

Proof. Let F=C.,\V. Because A and B are injective and intertwine 7 and S, BA
satisfies the hypotheses of Lemma 2, and therefore BA:ker(TF)—ker(TF) is a
continuous bijection. If f e ker(S¥), then Bf e ker(T*), and thus there is a unique
g € ker(TF) such that Bf = BAg. Since B is injective on ker(SF), it follows that
A:ker(TF)—ker(TF) is surjective and therefore by [10,32.7] the dual map,
[A*]): Fsu(V) — Fro(V) is injective. Since [A*][B*]=[A*B*] is a bijection, it follows that
both [A*] and [B*] are bijective as well.

If y* e ker(S*), then A*y* € ker(T*) = {0}, and therefore [A*][y*]=0. Since [A*] is
a bijection, we must have [y*]=0; say g € O(V, Y*) is such that (§* — A)g(A) = y* for

1
each A € V. However y*=(§* — )\)(—Xy*> for every A #0. Because S$* has property
(B), in particular the single valued extension property, it follows that g(A)=
- %y* on V\{0}. Thus g e O(V, Y*) implies that y* =0.

If T is a Fredholm operator on X, recall that 7" is also Fredholm for each positive
integer n; see [8, Proposition 25.3].

Lemma 4. If T e L(X) is Fredholm and has the single valued extension property, then
there is a neighborhood U of O and a positive integer n such that (T = A)|,ancrn, is injective
for each A e U.

Proof. Under the assumptions on T, [6, Theorem 9] implies that no neighborhood of
0 is contained in o,(T). It now follows from [8, Proposition 51.2] that there is a
neighborhood U of 0 such that o,(T) N U <{0}. If Z is the closed T-invariant subspace
Ma=1 T"X, then T|; is a bijection by [8, Proposition 38.7]. Because ker(T) is finite
dimensional, and ran(7") Nker(T) is decreasing to {0} = Z Nker(T), there is an n such
that ran(7") Nker(T) = {0}. It follows that (T — A)|,an(r) is injective for each A € U.

Lemma S. Suppose that T € L(X) is Fredholm and has property (8). Assume further
that S € Z(Y) is such that there exist injective transformations A € £(X,Y) and B e
L(Y,X) with AT = SA and TB = BS. Then there is a neighborhood U of 0 and a positive
integer n such that [T — X]: X /ker(T")— X [ker(T") is surjective for each A € U, and § is
Fredholm if and only if the quotient mapping [S] on Y [ker(S") is Fredholm. Moreover, the

quotient maps X [ker(T") % Y/ker(S") are each injective and interwine [T] and [S).

Proof. Since A and B are injective and ker(T") is finite dimensional, A and B are
bijections between ker(T") and ker(S"). The last statement follows immediately.

Since T* has (B), Lemma 4 gives U< p,(T) open about 0 and n e N such that
(T* = A)|ran(rey is injective for each A € U. We wish to show that each [T — A] has closed
range. Thus suppose that x e X and (x,), is a sequence in X such that [(T — A)x, — x] -0
as k— in X/ker(T"). Since ran(T - A) is closed, we may, by the open mapping
theorem, assume that the sequence (x,), is bounded in X. Choosing (z;), < ker(T") such
that (T — A, —x+ [l <2 |[(T = A)x, — x]|l, it follows that (z;); is bounded in the
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finite dimensional space ker(7"), and thus we may assume that there is a z € ker(T") such
that z, — z as k — . Therefore, (T — A)x, — (x — z), and x — z e ran(7T — A).

Because ker(S") is finite dimensional, there is a finite dimensional subspace E of Y*
so that Y*=E@TanS*™ . Let P be the corresponding projection of Y* onto
ranS¥ ", Then §*=S*P+ S*(/ — P), where S(/—P) has finite rank. Since the
collection of Fredholm operators on Y* is closed under compact perturbations, S* is
Fredholm if and only if $*P is Fredholm. Since ker(P) is finite dimensional and
ran(S*P) = ran(S*|zrz=), it follows that S* is Fredholm if and only if S*|zze+
is Fredholm.

We now have all of the ingredients to prove the theorem.

THEOREM. Suppose that T € £(X) and S € £(Y) each have the decomposition
property (8). If Ae L(X,Y) and B e $(Y,X) are each injective, if AT =SA and
TB = BS, then o.(T) = g.(S).

Proof. We need only show that § is Fredholm provided that T is Fredholm. Because
the quotient of an operator with property (8) itself has property (8), and because of
Lemma 5, we may assume that there is a neighborhood V of 0 such that T—-A is
surjective and Fredholm for each A e V. We may also assume that dimker(7T — A) =
ind(T — A)=dimker(T) for all A e V. If T is injective then T is invertible and, by [12,
Proposition 2.4], S is also invertible. Otherwise, shrinking V if necessary, there exist, by
Lemma 1, functions f;,...,f, e O(V, X*) such that each [f] e Fr.(V) can be written as
[f1=2 ¢{f] for some analytic functions ¢;:V —C. Lemma 3 now implies that $* is
injective and that {[B*f]}}-1 generates F.(V). ie., for each f e O(V,Y*) there exist
analytic functions ¢:V —C, and g:V—Y* such that f(A)=2Z ¢(A)B*f(A)+
(8* — A)g(A), for each A e V. In particular, =t

Y* = span{B*£,(0)}] © ran(5*).
The theorem is established.

Clearly the previous result applies to quasisimilar operators with property (8). Also,
we immediately obtain the following results; see {11, Theorem 4.1.12].

CoROLLARY. Suppose that T € L(X) and S € £(Y) each have Bishop’s property (B).
If Ae &(X,Y) and B € L(Y,X) each have dense range and satisfy AT = SA, TB = BS,
then o.(S) = a.(T).
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