Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T01:56:54.208Z Has data issue: false hasContentIssue false

Late Proterozoic glacial carbonates in northeast Spitsbergen: new insights into the carbonate–tillite association

Published online by Cambridge University Press:  01 May 2009

I. J. Fairchild
Affiliation:
School of Earth Sciences, University of Birmingham, P.O. Box 363, Birmingham B15 2TT, U.K.
M. J. Hambrey
Affiliation:
Scott Polar Research Institute, Lensfield Road, Cambridge CB2 1ER, U.K.
B. Spiro
Affiliation:
Isotope Geology Centre, British Geological Survey, 64 Grays Inn Road, London WC1X 8NG, U.K.
T. H. Jefferson
Affiliation:
Deceased

Abstract

Carbonate-rich glacial deposits from two discrete Vendian glacial periods are described. The older is represented by the 24–40 m thick Petrovbreen Member (E2) of the Elbobreen Formation which contains abundant detrital dolomite. Clasts in E2 and their possible source rocks have positive δ13C and negative δ18OPDB values. In contrast the carbonate mud-fraction of E2 sediments has different cathodoluminescence characteristics from clasts, slightly negative δ13C values, and higher Fe and Mn concentrations than clasts. Oxygen isotopes vary from −2.5 to +4.5‰PDB, thought to be related to various seawater–meltwater mixtures in the depositional environment. Preservation of information about glacial sedimentary environments is attributed to early diagenetic recrystallization forced by excess surface free energy (Ostwald's ripening) and coinciding with sulphate reduction.

The younger glaciation is represented by the Wilsonbreen Formation (170 m) which has a distinctive glaciolacustrine Middle Carbonate Member (W2). W2 contains precipitated periglacial carbonates (with high Mn/Fe ratio): both limestone (rhythmitic and stromatolitic) and dolostone (rhythmites, stromatolites and dolomite-rich sandstones) which are compared with carbonates in modern Antarctic lakes. Evaporitic environments for dolomitic sandstones and stromatolitic dolostones are indicated by heavy oxygen isotope values (up to + 10.5‰PDB), high Na concentration and evidence for dissolved evaporites. High Mn concentration in detrital dolostones in W2 is suggestive of syn-sedimentary dolomite recrystallization in freshwater diamictites and haematitic siltstones.

The carbonate–tillite association ultimately arises from the erosion of underlying carbonates which originated (in this case) under radically different climatic conditions. Glacial depositional waters then became carbonate-saturated as a result of dissolution of detrital carbonate. Massive recrystallization of glacially transported carbonate is proposed as a geologically significant process with considerable potential for palaeoenvironmental analysis. In glacial lakes carbonate precipitated in response to evaporation or photosynthesis. Carbonate precipitation as the result of seawater freezing, or in warm interglacial conditions, is not yet established. Oxygen isotope value are inconsistent (too heavy) with the presence of high-latitude meltwaters, implying that glaciation extended to low latitudes as proposed by Harland.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P. 1988. Oxygen, carbon and U-series isotopes of aragonites from Vestfold Hills, Antarctica: clues to geochemical processes in subglacial environments. Geochimica et Cosmochimica Acta 52, 2321–31.CrossRefGoogle Scholar
Aharon, P., Kolodny, Y. & Sass, E. 1977. Recent hot brine dolomitization in the ‘Solar Lake’, Gulf of Elat, isotopic, chemical, and mineralogical study. Journal of Geology 85, 2748.CrossRefGoogle Scholar
Baker, P. A. & Burns, S. J. 1985. Occurrence and formation of dolomite in organic-rich continental margin sediments. American Association of Petroleum Geologists Bulletin 69, 1917–30.Google Scholar
Baronnet, A. 1982. Ostwald ripening in solution: the case of quartz and mica. Estudios Geologicos 38, 185–98.Google Scholar
Bjørlykke, K., Bue, B. & Elverhøi, A. 1978. Quaternary sediments in the northwestern part of the Barents Sea and their relation to the underlying Mesozoic bedrock. Sedimentology 25, 227–46.CrossRefGoogle Scholar
Burton, R. 1981. Chemistry, physics and evolution of Antarctic saline lakes. Hydrobiologica 82, 339–62.Google Scholar
Carey, S. W. & Ahmad, N. 1961. Glacial marine sedimentation. In Geology of the Arctic, 2 (ed. Raasch, G. O.), pp. 865–94. Toronto: Toronto University Press.CrossRefGoogle Scholar
Chumakov, N. M. 1978. Dokembriyskiiye tillity i tilloidy (Precambrian Tillites and Tilloids). Moscow: Nauka.Google Scholar
Coleman, M. L. 1985. Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philosophical Transactions of the Royal Society of London A 315, 3956.Google Scholar
Deynoux, M. 1985. Terrestrial or waterlain diamictites? Three case studies from the Late Precambrian and Late Ordovician glacial drifts in West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 97141.CrossRefGoogle Scholar
Domack, E. W. 1988. Biogenic facies in the Antarctic glacimarine environment: basis for a polar glacimarine summary. Palaeogeography, Palaeoclimatology, Palaeoecology 63, 357–62.CrossRefGoogle Scholar
Dowdeswell, J. A., Hambrey, M. J. & Wu, R. 1985. A comparison of clast fabric and shape in Late Precambrian and modern glacigenic sediments. Journal of Sedimentary Petrology 55, 691704.Google Scholar
Drewry, D. J. 1986. Glacial Geologic Processes. London: Edward Arnold. 276 pp.Google Scholar
Edwards, M. 1986. Glacial environments. In Sedimentary Environments and Facies (ed. Reading, H. G.), pp. 445–70. Oxford: Blackwells.Google Scholar
Embleton, B. J. J. & Williams, G. E. 1986. Low palaeo-latitude of deposition for late Precambrian periglacial varvites in South Australia: implications for palaeoclimatology. Earth and Planetary Science Letters 79, 419–30.CrossRefGoogle Scholar
Eyles, C. H. & Eyles, N. 1983. Sedimentation in a large lake: a reinterpretation of the late Pleistocene stratigraphy at Scarborough Bluffs, Ontario, Canada. Geology 11, 146–52.2.0.CO;2>CrossRefGoogle Scholar
Fairchild, I. J. 1983 a. Effects of glacial transport and neomorphism on Precambrian dolomite crystal sizes. Nature 304, 714–16.Google Scholar
Fairchild, I. J. 1983 b. Chemical controls of cathodoluminescence of natural dolomites and calcites: new data and review. Sedimentology 30, 579–83.Google Scholar
Fairchild, I. J. 1985. Comment on ‘Glaciomarine model for upper Precambrian diamictites of the Port Askaig Formation’. Geology 13, 8990.Google Scholar
Fairchild, I. J. & Hambrey, M. J. 1984. The Vendian of NE Spitsbergen: petrogenesis of a dolomite-tillite association. Precambrian Research 26, 111–67.CrossRefGoogle Scholar
Fairchild, I. J., Hendry, G. L., Quest, M. & Tucker, M. E. 1988. Chemical analysis of sedimentary rocks. In Techniques in Sedimentology (ed. Tucker, M. E.), pp. 274354. Oxford: Blackwells.Google Scholar
Fairchild, I. J. & Spiro, B. 1987. Petrological and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitsbergen. Sedimentology 34, 973–89.Google Scholar
Frakes, L. A. 1985. A preliminary model for subaqueous-glacial and post-glacial sedimentation in intra-continental basins. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 347–56.CrossRefGoogle Scholar
Hambrey, M. J. 1982. Late Precambrian diamictites of northeastern Svalbard. Geological Magazine 119, 527–51.CrossRefGoogle Scholar
Hambrey, M. J. 1983. Correlation of Late Proterozoic tillites in the North Atlantic region and Europe. Geological Magazine 120, 209–32.CrossRefGoogle Scholar
Hambrey, M. J. & Harland, W. B. (eds) 1981. Earth's Pre-Pleistocene Glacial Record. Cambridge: Cambridge University Press.Google Scholar
Hambrey, M. J., Harland, W. B. & Waddams, P. in press. Vendian geology of Svalbard. Skrifter Norsk Polar-institutt.Google Scholar
Harland, W. B. 1964 a. Evidence of Late Precambrain glaciation and its significance. In Problems in Palaeoclimatology (ed. Nairn, A. E. M.), pp. 119–49 and 179–84. London: J. Wiley.Google Scholar
Harland, W. B. 1964 b. Critical evidence for a great Infra-Cambrian glaciation. Geologische Rundschau 54, 4561.Google Scholar
Hendy, C. H., Healy, T. R., Rayner, E. M., Shaw, J. & Wilson, A. T. 1979. Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate. Quaternary Research 11, 172–84.Google Scholar
Hillaire-Marcel, C. & Casanova, J. 1987. Isotopic hydrology and paleohydrology of the Magadi (Kenya)–Natron (Tanzania) Basin during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 58, 155–81.Google Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–9.Google Scholar
Land, L. S. 1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In Concepts and Models of Dolomitization (ed. Zenger, D. H., Dunham, J. B., Ethington, R. L.), pp. 87110. Special Publications of the Society of Economic Paleontologists and Mineralogists no. 28.CrossRefGoogle Scholar
Land, L. S. 1985. The origin of massive dolomite. Journal of Geological Education 33, 112–25.Google Scholar
Lawrence, M. J. F. & Hendy, C. H. 1985. Water column and sediment characteristics of Lake Fryxell, Taylor Valley, Antarctica. New Zealand Journal of Geology and Geophysics 28, 543–52.Google Scholar
Lord, B. K., Jones, L. M. & Faure, G. 1988. Evidence for the existence of the Gondwana ice sheet in the 18O depletion of carbonate rocks in the Permian formations of the Transantarctic Mountains. Chemical Geology 72, 163–71.Google Scholar
Lyons, W. B., Long, D. T., Hines, M. E., Gaudette, H. E. & Armstrong, P. B. 1984. Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology 12, 623–6.2.0.CO;2>CrossRefGoogle Scholar
Machel, H. G. & Mountjoy, E. W. 1986. Chemistry and environments of dolomitization: a reappraisal. Earth Science Reviews 23, 175222.CrossRefGoogle Scholar
Mason, R. A. 1987. Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, U.K. Chemical Geology 64, 209–24.CrossRefGoogle Scholar
Matsubaya, O., Sakai, H., Torii, T., Burton, H. & Kerry, K. 1979. Antarctic saline lakes – stable isotope ratios, chemical compositions and evolution. Geochimica et Cosmochimica Acta 43, 725.Google Scholar
Morse, J. W. & Casey, W. H. 1988. Ostwald processes and mineral parageneses in sediments. American Journal of Science 288, 537–60.Google Scholar
Mullins, H. T., Wise, S. W., Land, L. S., Siegel, D. I., Masters, P. M., Hinchey, E. J. & Price, K. R. 1985. Authigenic dolomite in Bahamian peri-platform slope sediment. Geology 13, 292–5.Google Scholar
Murray, R. C. 1953. The petrology of the Cary and Valders Tills of northeastern Wisconsin. American Journal of Science 251, 140–55.CrossRefGoogle Scholar
Nishiyama, T. & Kurasawa, H. 1975. Distribution of secondary minerals from Taylor Valley. Dry Valley Drilling Project Bulletin no. 5, 120–33.Google Scholar
Parker, B. C., Simmons, G. M., Love, F. G., Wharton, R. A. & Seaburg, K. G. 1981. Modern stromatolites in Antarctic Dry Valley lakes. Bioscience 31, 656–61.CrossRefGoogle Scholar
Pentecost, A. & Riding, R. 1986. Calcification in cyanobacteria. In Biomineralization in Lower Plants and Animals (ed. Leadbeter, B. S. C., Riding, R.), pp. 7390. Oxford: Clarendon.Google Scholar
Perrin, M. & Prevot, M. 1988. Uncertainties about the Proterozoic and Paleozoic polar wander path of the West African craton and Gondwana: evidence for successive remagnetization events. Earth and Planetary Science Letters 88, 337–47.Google Scholar
Piper, J. D. A. 1985. Continental breakup and dispersal in late Precambrian–Early Cambrian times: prelude to Caledonian orogenesis. In The Caledonide Orogen: Scandinavia and Related Areas (ed. byGee, D. G., Sturt, B. A.), pp. 1934. New York: Wiley.Google Scholar
Rao, C. P. & Green, D. C. 1982. Oxygen and carbon isotopes of Early Permian cold-water carbonates, Tasmania, Australia. Journal of Sedimentary Petrology 52, 1111–25.Google Scholar
Rosenbaum, J. & Sheppard, S. M. F. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochmica Acta 50, 1147–50.Google Scholar
Schermerhorn, L. J. G. 1974. Late Precambrian mixtites: glacial and/or non-glacial. American Journal of Science 274, 673824.CrossRefGoogle Scholar
Searl, A. 1988. Pedogenic dolomites from the Oolite Group (lower Carboniferous) South Wales. Geological Journal 23, 157–69.CrossRefGoogle Scholar
Shackleton, N. & Kennett, J. P. 1975. Palaeotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP sites 277, 279 and 281, Initial Reports of the Deep Sea Drilling Project 29, 743–55.Google Scholar
Souchez, R. & Jouzel, J. 1984. On the isotopic composition of δD and δ18O of water and ice during freezing. Journal of Glaciology 30, 369–72.Google Scholar
Souchez, R. A. & Lemmens, M. 1985. Subglacial carbonate deposition: an isotopic study of a present-day case. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 357–64.CrossRefGoogle Scholar
Spencer, A. M. 1971. Late Pre-Cambrian glaciation in Scotland. Memoir of the Geological Society of London no. 6.Google Scholar
Stiller, M., Rounick, J. S. & Shasha, S. 1985. Extreme carbon-isotope enrichments in evaporating brines. Nature 316, 434–35.CrossRefGoogle Scholar
Syvitski, J. P. M., Burrell, D. C. & Skei, J. M. 1987. Fjords. Processes and Products. Berlin: Springer.Google Scholar
Talbot, M. R. & Kelts, K. 1986. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14, 912–16.2.0.CO;2>CrossRefGoogle Scholar
Thompson, M. & Walsh, J. N. 1983. A Handbook of Inductively-Coupled Plasma Spectrometry. London: Blackie.Google Scholar
Torii, T. & Yamagata, N. 1981. Limnological studies of saline lakes in the Dry Valleys. In Dry Valley Drilling Project (ed. McGinnis, L. D.), pp. 141–59. Washington: American Geophysical Union.CrossRefGoogle Scholar
Walter, M. R. & Bauld, J. 1983. The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: examples from the Proterozoic of Australia and the Cainozoic of Antarctica. Precambrian Research 21, 129–48.Google Scholar
Wharton, R. A., Parker, B. C., Simmons, G. M., Seaburg, K. G. & Love, F. G. 1982. Biogenic calcite structures forming in Lake Fryxell, Antarctica. Nature 295, 403–5.Google Scholar
Williams, G. E. 1975. Late Precambrian glacial climate and the Earth's obliquity. Geological Magazine 112, 441–65.Google Scholar
Williams, G. E. 1979. Sedimentology, stable-isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. Journal of the Geological Society of Australia 26, 377–86.Google Scholar
Williams, G. E. 1989. Late Precambrian tidal rhythmites in South Australia and the history of the Earth's rotation. Journal of the Geological Society of London 146, 97111.CrossRefGoogle Scholar
Williams, L. A., Parks, G. A. & Crerar, D. A. 1985. Silica diagenesis, I. Solubility controls. Journal of Sedimentary Petrology 55, 301–11.Google Scholar
Wilson, A. T. 1981. A review of the geochemistry and lake physics of the Antarctic dry areas. In Dry Valley Drilling Project (ed. McGinnis, L. D.), pp. 185–92. Washington: American Geophysical Union.Google Scholar
Wilson, C. B. & Harland, W. B. 1964. The Polarisbreen Series and other evidences of late Pre-Cambrian ice ages. Geological Magazine 101, 198219.CrossRefGoogle Scholar
Wright, S. C. & Burton, H. R. 1981. The biology of Antarctic saline lakes. Hydrobiologica 82, 319–38.Google Scholar
Young, G. M. & Gostin, V. A. 1988. Stratigraphy and sedimentology of Sturtian glacigenic deposits in the western part of the North Flinders Basin, South Australia. Precambrian Research 39, 151–70.Google Scholar
Zempolich, W. G., Wilkinson, B. H. & Lohmann, K. C. 1988. Diagenesis of Late Proterozoic carbonates: the Beck Spring Dolomite of Eastern California. Journal of Sedimentary Petrology 58, 656–72.Google Scholar
Zhao, X. & Fairchild, I. J. 1987. Mixing zone dolo-mitization of Devonian carbonates, Guangxi, South China. In Diagenesis of Sedimentary Sequences (ed. Marshall, J. D.), pp. 157–70. Oxford: Blackwells.Google Scholar