Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T08:21:44.193Z Has data issue: false hasContentIssue false

Facies associations in warm-temperate siliciclastic deposits: insights from early Pleistocene eastern Mediterranean (Rhodes, Greece)

Published online by Cambridge University Press:  15 June 2015

PIERRE MOISSETTE*
Affiliation:
UMR 5276 CNRS, Laboratoire de Géologie de Lyon, Université de Lyon 1, 69622 Villeurbanne Cedex, France Department of Historical Geology-Paleontology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
EFTERPI KOSKERIDOU
Affiliation:
Department of Historical Geology-Paleontology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
HARA DRINIA
Affiliation:
Department of Historical Geology-Paleontology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
JEAN-JACQUES CORNÉE
Affiliation:
UMR 5243 CNRS, Géosciences Montpellier, Université de Montpellier 2, 34095 Montpellier Cedex 05, France
*
Author for correspondence: [email protected]

Abstract

Diverse, abundant and usually well-preserved communities of skeletal organisms occur in the lower Pleistocene (Gelasian) siliciclastic deposits of the Greek island of Rhodes. Benthic foraminifers, molluscs and bryozoans have been studied in four measured and sampled sections located in the northern part of the island. Among these bottom-dwelling organisms, numerous extant taxa are good environmental indicators and, combined with field observations and sedimentological data, they provide information on the probable conditions in which they developed. The siliciclastic deposits of the Kritika Formation have been divided into 14 different bio- and lithofacies, which have been further grouped into four facies associations corresponding to four different environmental settings: (1) continental to fluviatile; (2) brackish-water (lagoonal/deltaic); (3) infralittoral (0–20 m); and (4) upper circalittoral (depths of 20–40 m, but also down to c. 50–60 m). Among the marine facies associations, several characteristic biocoenoses have been recognized: soft-bottoms (fine to coarse sands and gravels); seagrass meadows; biogenic calcareous crusts on drowned beachrock slabs; red algal rhodoliths; and bivalve shell beds. In the studied sections, 13 superimposed genetic sequences have been documented. The repetition of similar facies associations within each sequence suggests: (1) a possibly eustasy-controlled, cyclic sedimentation; (2) a general subsidence of Rhodes during the deposition of the studied facies associations; and (3) a mostly constant range of environmental conditions (i.e. sedimentation rates and temperature) throughout the Gelasian.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albani, A. D. & Serandrei Barbero, R. 1990. I foraminiferi della Laguna e del Golfo di Venezia. Memorie di Scienze Geologiche 42, 271341.Google Scholar
Barash, A. & Danin, Z. 1988. Marine mollusca at Rhodes. Israel Journal of Zoology 35, 174.Google Scholar
Barash, A. & Danin, Z. 1992. Fauna Palaestina. Mollusca I. Annotated list of Mediterranean Molluscs of Israel and Sinai. Jerusalem: The Israel Academy of Sciences and Humanities, Keterpress Enterprises, 405 pp.Google Scholar
Bellan-Santini, D., Bellan, G., Bitar, G., Harmelin, J. G. & Pergent, G. 2002. Handbook for Interpreting Types of Marine Habitat for the Selection of Sites to be Included in the National Inventories of Natural Sites of Conservation Interest. Tunis: UNEP, 217 pp.Google Scholar
Benda, L., Meulenkamp, J. E. & van de Weerd, A. 1977. Biostratigraphic correlations in the Eastern Mediterranean Neogene. 3. Correlation between mammal, sporomorph and marine microfossil assemblages from the Upper Cenozoic of Rhodos, Greece. Newsletters on Stratigraphy 6, 117–30.CrossRefGoogle Scholar
Bone, Y. & James, N. P. 1993. Bryozoans as carbonate sediment producers on the cool-water Lacepede Shelf, southern Australia. Sedimentary Geology 86, 247–71.CrossRefGoogle Scholar
Broekman, J. A. 1973. Sedimentary structures and paleoecology of the Pliocene Kritika Formation in a section near Kalithies (Rhodos, Greece). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 76, 423–45.Google Scholar
Broekman, J. A. 1974. Sedimentation and paleoecology of Pliocene lagoonal-shallow marine deposits on the Island of Rhodes (Greece). Utrecht Micropaleontological Bulletins 8, 1142.Google Scholar
Canals, M. & Ballesteros, E. 1997. Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep-Sea Research II 44, 611–29.Google Scholar
Capraro, L., Asioli, A., Backman, J., Bertoldi, R., Channell, J. E. T., Massari, F. & Rio, D. 2005. Climatic patterns revealed by pollen and oxygen isotope records across the Matuyama-Brunhes Boundary in the central Mediterranean (southern Italy). In Early-Middle Pleistocene Transitions: The Land-Ocean Evidence (eds Head, M. J. and Gibbard, P. L.), pp. 159–82. Geological Society, London, Special Publication no. 247.Google Scholar
Caron, V., Bernier, P. & Mahieux, G. 2009. Record of Late Pleistocene (Oxygen Isotopic Stage 5) climate changes during episodes of karst development on the Northern coast of Crete: Sequence stratigraphic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 246–64.CrossRefGoogle Scholar
Carthew, R. & Bosence, D. W. J. 1986. Community preservation in Recent shell-gravels, English Channel. Palaeontology 29, 243–68.Google Scholar
Catuneanu, O. 2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier, 375 pp.Google Scholar
Cheetham, A. H. 1967. Paleoclimatic significance of the bryozoan Metrarabdotos . Transactions of the Gulf Coast Association of Geological Societies 17, 400–7.Google Scholar
Cheetham, A. H., Sanner, J. & Jackson, J. B. C. 2007. Metrarabdotos and related genera (Bryozoa: Cheilostomata) in the Late Paleogene and Neogene of tropical America. Journal of Paleontology 81, 196.CrossRefGoogle Scholar
Cimerman, F. & Langer, M. R. 1991. Mediterranean Foraminifera. Ljubliana: Slovenska Akademija Znanosti in Umetnosti, Academia Scientiarum Artium Slovenica, Classis IV, Historia Naturalia, v. 30, 118 pp.Google Scholar
Cook, P. L. & Chimonides, P. J. 1983. A short history of the lunulite Bryozoa. Bulletin of Marine Science 33, 566–81.Google Scholar
Cornée, J. J., Moissette, P., Joannin, S., Suc, J. P., Quillévéré, F., Krijgsman, W., Hilgen, F., Koskeridou, E., Münch, P., Lécuyer, C. & Desvignes, P. 2006 a. Tectonic and climatic controls on coastal sedimentation: the Late Pliocene–Middle Pleistocene of northeastern Rhodes, Greece. Sedimentary Geology 187, 159–81.CrossRefGoogle Scholar
Cornée, J. J., Münch, P., Quillévéré, F., Moissette, P., Vasiliev, I., Krijgsman, W., Verati, C. & Lécuyer, C. 2006 b. Timing of Late Pliocene to Middle Pleistocene tectonic events in Rhodes (Greece) inferred from magneto-biostratigraphy and 40Ar/39Ar dating of a volcaniclastic layer. Earth and Planetary Science Letters 250, 281–91.Google Scholar
Cross, T. A. & Lessenger, M. A. 1998. Sediment volume partitioning: rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation. In Sequence Stratigraphy-Concepts and Applications (eds Gradstein, F.M., Sandvik, K. O. & Milton, N. J.), pp. 171–95. Amsterdam: Elsevier.Google Scholar
Desbruyères, D., Guille, A. & Ramos, J. 1972/1973. Bionomie benthique du plateau continental de la côte catalane espagnole. Vie et Milieu 23, 335–63.Google Scholar
Diaz, R. J. & Rosenberg, R. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology. An Annual Review 33, 245303.Google Scholar
Di Geronimo, I., Di Geronimo, R., La Perna, R., Rosso, A. & Sanfilippo, R. 2000. Cooling evidence from Pleistocene shelf assemblages in SE Sicily. In Climates: Past and Present (ed. Hart, M. B.), pp. 113–20. Geological Society, London, Special Publication no. 181.Google Scholar
Dimitriadis, C. & Koutsoubas, D. 2008. Community properties of benthic molluscs as indicators of environmental stress induced by organic enrichment. Journal of Natural History 42, 559–75.Google Scholar
Dominici, S. 2001. Taphonomy and paleoecology of shallow marine macrofossil assemblages in a collisional setting (late Pliocene–early Pleistocene, western Emilia, Italy). Palaios 16, 336–53.2.0.CO;2>CrossRefGoogle Scholar
Duermeijer, C. E., Nyst, M., Meijer, P. T., Langereis, C. G. & Spakman, W. 2000. Neogene evolution of the Aegean Arc: paleomagnetic and geodetic evidence for a rapid and young rotation phase. Earth and Planetary Science Letters 176, 509–25.Google Scholar
Gautier, Y. V. 1962. Recherches écologiques sur les bryozoaires chilostomes en Méditerranée occidentale. Recueil des Travaux de la Station Marine d’Endoume 24, 1434.Google Scholar
Gibbard, P. L., Head, M. J. & Walker, M. J. C. 2009. Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. Journal of Quaternary Science 25, 96102.CrossRefGoogle Scholar
Hajjaji, M., Bodergat, A. M., Moissette, P., Prieur, A. & Rio, M. 1998. Signification écologique des associations d’ostracodes de la coupe de Kritika (Pliocène supérieur, Rhodes, Grèce). Revue de Micropaléontologie 41, 211–33.Google Scholar
Hanken, N.-M., Bromley, R. G. & Miller, J. 1996. Plio-Pleistocene sedimentation in coastal grabens, north-east Rhodes. Greece.Geological Journal 31, 271–96.Google Scholar
Hansen, K. S. 1999. Development of a prograding carbonate wedge during sea level fall: Lower Pleistocene of Rhodes, Greece. Sedimentology 46, 559–76.Google Scholar
Harmelin, J. G. 1976. Le sous-ordre des Tubuliporina (Bryozoaires Cyclostomes) en Méditerranée. Écologie et systématique. Mémoires de l’Institut Océanographique 10, 1326.Google Scholar
Homewood, P., Guillocheau, F., Eschard, R. & Cross, T. A. 1992. Corrélations haute résolution et stratigraphie génétique: une démarche intégrée. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 16, 357–81.Google Scholar
James, N. P. & Bone, Y. 2007. A late Pliocene-early Pleistocene, inner-shelf, subtropical, seagrass-dominated carbonate: Roe Calcarenite, Great Australian Bight, Western Australia. Palaios 22, 343–59.Google Scholar
James, N. P., Bone, Y., Brown, K. M. & Cheshire, A. 2009. Calcareous epiphyte production in cool-water carbonate seagrass depositional environments - southern Australia. In Perspectives in Carbonate Geology (eds Swart, P. K., Eberli, G. P. & McKenzie, J. A.), pp. 123–48. International Association of Sedimentologists, Special Publication no. 41.Google Scholar
Joannin, S., Cornée, J. J., Moissette, P., Suc, J. P., Koskeridou, E., Lécuyer, C., Buisine, C., Kouli, E. & Ferry, S. 2007. Changes in vegetation and marine environments in the eastern Mediterranean (Rhodes Island, Greece) during the Early and Middle Pleistocene. Journal of the Geological Society 164, 1119–31.CrossRefGoogle Scholar
Jorissen, F. J. 1988. Benthic foraminifera from the Adriatic Sea; principles of phenotypic variations. Utrecht Micropaleontological Bulletins 37, 1176.Google Scholar
Jorissen, F. J. 1999. Benthic foraminiferal microhabitats below the sediment-water interface. In Modern Foraminifera (ed. Sen Gupta, B. K.), pp. 161–79. Great Britain: Kluwer Academic Publishers.Google Scholar
Jorissen, F. J., Fontanier, C. & Thomas, E. 2007. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. In Proxies in Late Cenozoic Paleoceanography (eds Hillaire-Marcel, C. & de Vernal, A.), pp. 263313. Amsterdam: Elsevier.Google Scholar
Kidwell, S. M. 1986. Taphonomic feedback in Miocene assemblages: testing the role of dead hardparts in benthic communities. Palaios 1, 239–55.Google Scholar
Kidwell, S. M. 1998. Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30, 977–95.Google Scholar
Kontogianni, V. A., Tsoulos, N. & Stiros, S. C. 2002. Coastal uplift, earthquakes and active faulting of Rhodes Island (Aegean Arc): modeling based on geodetic inversion. Marine Geology 186, 299317.Google Scholar
Koskeridou, E., Thivaiou, D. & Giamali, Ch. 2013. Molluscan assemblages in a highly variable setting in littoral bottoms of the lower Pleistocene of Rhodes (Greece). Bulletin of the Geological Society of Greece, 47, 178–83.Google Scholar
Koukouras, A. & Russo, A. 1991. Midlittoral soft substratum macrofaunal assemblages in the north Aegean Sea. Marine Ecology 12, 293316.Google Scholar
Lécuyer, C., Daux, V., Moissette, P., Cornée, J. J., Quillévéré, F., Koskeridou, E., Fourel, F., Martineau, F. & Reynard, B. 2012. Stable carbon and oxygen isotope compositions of invertebrate carbonate shells and the reconstruction of paleotemperatures and paleosalinities: A case study of the early Pleistocene of Rhodes, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 350–352, 3948.CrossRefGoogle Scholar
Loucks, R. G. & Sarg, J. F. (eds) 1993. Carbonate Sequence Stratigraphy, Recent Developments and Applications. American Association of Petroleum Geologists, Memoir 57, 545 pp.Google Scholar
Massari, F., Capraro, L. & Rio, D. 2007. Climatic modulation of timing of systems-tract development with respect to sea-level changes (middle Pleistocene of Crotone, Calabria, southern Italy). Journal of Sedimentary Research 77, 461–8.Google Scholar
Merzeraud, G. 2009. Stratigraphie Séquentielle. Histoire, Principes et Applications. Vuibert: Société Géologique de France, 160 pp.Google Scholar
Meulenkamp, J. E., De Mulder, E. F. J. & Van De Weerd, A. 1972. Sedimentary history and paleogeography of the Late Cenozoic of the Island of Rhodos. Zeitschrift der Deutschen Geologischen Gesellschaft 123, 541–53.CrossRefGoogle Scholar
Michez, N., Dirberg, G., Bellan-Santini, D., Verlaque, M., Bellan, G., Pergent, G., Pergent-Martini, C., Labrune, C., Francour, P. & Sartoretto, S. 2011. Typologie des Biocénoses Benthiques de Méditerranée, Liste de Référence Française et Correspondances. Paris: Muséum National d’Histoire Naturelle, 48 pp.Google Scholar
Miller, K. G., Mountain, G. S., Wright, J. D. & Browning, J. V. 2011. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic record. Oceanography 24, 4053.Google Scholar
Moissette, P. 2012. Seagrass-associated byozoan communities from the Late Pliocene of the Island of Rhodes (Greece). In Bryozoan Studies 2010 (eds Ernst, A., Schäfer, P. & Scholz, J.), pp. 187201. Berlin, Heidelberg: Springer-Verlag, Lecture Notes in Earth System Sciences 143.Google Scholar
Moissette, P., Koskeridou, E., Cornée, J. J. & André, J. P. 2013. Fossil assemblages associated with submerged beachrock beds as indicators of environmental changes in terrigenous sediments: Examples from the Gelasian (Early Pleistocene) of Rhodes, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 1427.CrossRefGoogle Scholar
Moissette, P., Koskeridou, E., Cornée, J. J., Guillocheau, F. & Lécuyer, C. 2007. Spectacular preservation of seagrasses and seagrass-associated communities from the Pliocene of Rhodes, Greece. Palaios 22, 200–11.CrossRefGoogle Scholar
Moissette, P. & Spjeldnaes, N. 1995. Plio-Pleistocene deep-water bryozoans from Rhodes, Greece. Palaeontology 38, 771–99.Google Scholar
Moissette, P., Spjeldnaes, N. & Georgiades-Dikeoulia, E. 2002. Highly diverse bryozoan faunas from the Plio-Pleistocene of the Greek island of Rhodes. In Bryozoan Studies 2001 (eds Wyse Jackson, P. N., Butler, C. J. & Spencer Jones, M. E.), pp. 215–20. Rotterdam: Balkema.Google Scholar
Morton, B., Britton, J. C. & Frias Martins, A. M. 1998. Ecologia Costeira dos Açores. Ponta Delgada: Sociedade Afonso Chaves, 249 pp.Google Scholar
Mutti, E., Orombelli, G. & Pozzi, R. 1970. Geological studies on the Dodecanese Islands (Aegean Sea). IX. Geological map of the island of Rhodes (Greece); explanatory notes. Annales Géologiques des Pays Helléniques 22, 79226.Google Scholar
Nelson, C. S., Freiwald, A., Titschack, J. & List, S. 2001, Lithostratigraphy and sequence architecture of temperate mixed siliciclastic-carbonate facies in a new Plio-Pleistocene section at Plimiri, Rhodes Island (Greece). Occasional Report No. 25: Department of Earth Sciences, University of Waikato, Hamilton, p. 1–50.Google Scholar
Nerlović, V., Doğan, A. & Hrs-Brenko, M. 2011. Response to oxygen deficiency (depletion): Bivalve assemblages as an indicator of ecosystem instability in the northern Adriatic Sea. Biologia, Section Zoology 66, 1114–26.Google Scholar
Novosel, M., Požar-Domac, A. & Pasarić, M. 2004. Diversity and distribution of the Bryozoa along underwater cliffs in the Adriatic Sea with special reference to thermal regime. Marine Ecology 25, 155–70.Google Scholar
O’Connell, L. G., James, N. P. & Bone, Y. 2012. The Miocene Nullarbor Limestone, southern Australia; deposition on a vast subtropical epeiric platform. Sedimentary Geology 253–254, 116.Google Scholar
O’Dea, A. 2009. Relation of form to life habit in free-living cupuladriid bryozoans. Aquatic Biology 7, 118.Google Scholar
Pérès, J. M. 1967. The Mediterranean benthos. Oceanography and Marine Biology, An Annual Review 5, 449533.Google Scholar
Pérès, J. M. & Picard, J. 1964. Nouveau manuel de bionomie benthique de la Mer Méditerranée. Recueil des Travaux de la Station marine d’Endoume 31, 1137.Google Scholar
Perry, C. T. & Beavington-Penney, S. J. 2005. Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island, Mozambique. Sedimentary Geology 174, 161–76.Google Scholar
Pirazzoli, P. A., Montaggioni, L. F., Saliege, J. F., Segonzac, G., Thommeret, Y. & Vergnaud-Grazzini, C. 1989. Crustal block movements from Holocene shorelines: Rhodes Island (Greece). Tectonophysics 170, 89114.CrossRefGoogle Scholar
Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L. & Hilgen, F. 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews 25, 3113–37.Google Scholar
Reich, S., Di Martino, E., Todd, J. A., Wesselingh, F. P. & Renema, W. 2015. Indirect paleo-seagrass indicators (IPSIs): A review. Earth-Science Reviews 143, 161–86.Google Scholar
Reuter, M., Piller, W. E., Harzhauser, M., Kroh, A., Rögl, F. & Ćorić, S. 2011. The Quilon Limestone, Kerala Basin, India: an archive for Miocene Indo-Pacific seagrass beds. Lethaia 44, 7686.CrossRefGoogle Scholar
Riedel, B., Zuschin, M. & Stachowitsch, M. 2012. Tolerance of benthic macrofauna to hypoxia and anoxia in shallow coastal seas: a realistic scenario. Marine Ecology Progress Series 458, 3952.Google Scholar
Riedl, R. 1983. Fauna und Flora des Mittelmeeres. Ein systematischer Meeresführer für Biologen und Naturfreunde. 3rd edition. Hamburg, Berlin: Verlag Paul Parey, 836 pp.Google Scholar
Rosso, A. 1996 a. Popolamenti e tanatocenosi a briozoi di fondi mobili circalitorali del Golfo di Noto (Sicilia, Italia). Naturalista Siciliana 20, 189225.Google Scholar
Rosso, A. 1996 b. Valutazione della biodiversità in Mediterraneo: l’esempio dei popolamenti a briozoi della biocenosi del detritico costiero. Biologia Marina Mediterranea 3, 5865.Google Scholar
Rosso, A., Di Martino, E., Sanfilippo, A. & Di Martino, V. 2012. Bryozoan communities and thanatocoenoses from submarine caves in the Plemmirio marine protected area (SE Sicily). In Bryozoan Studies 2010 (eds Ernst, A., Schäfer, P. & Scholz, J.). pp. 251–69. Berlin, Heidelberg: Springer-Verlag, Lecture Notes in Earth System Sciences 143.Google Scholar
Scarponi, D. & Kowalewski, M. 2007. Sequence stratigraphic anatomy of diversity patterns: Late Quaternary benthic mollusks of the Po Plain, Italy. Palaios 22, 296305.Google Scholar
Selley, R. C. 2000. Applied Sedimentology. Second edition San Diego: Academic Press, 523 pp.Google Scholar
Sgarrella, F., Di Donato, V. & Sprovieri, R. 2012. Benthic foraminiferal assemblage turnover during intensification of the Northern Hemisphere glaciation in the Piacenzian Punta Piccola section (Southern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 333–334, 5974.Google Scholar
Simboura, N. & Zenetos, A. 2002. Benthic indicators to use in ecological quality classification of Mediterranean soft bottoms marine ecosystems, including a new biotic index. Mediterranean Marine Science 3/2, 77111.Google Scholar
Sissingh, W. 1972. Late Cenozoic Ostracoda of the South Aegean Island Arc. Utrecht Micropaleontological Bulletins 6, 1187.Google Scholar
Spjeldnaes, N. & Moissette, P. 1997. Celleporid (bryozoan) thickets from the upper Pliocene of the Island of Rhodes, Greece. In Cool-water Carbonates (eds James, N. P. & Clarke, J. A. D.), pp. 263–70. Tulsa: SEPM Special Publication, no. 56.Google Scholar
Steinthorsdottir, M., Lidgard, S. & Hakansson, E. 2006. Fossils, sediments, tectonics. Reconstructing palaeoenvironments in a Pliocene–Pleistocene Mediterranean microbasin. Facies 52, 361–80.CrossRefGoogle Scholar
Taylor, P. D. & Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62, 1103.Google Scholar
ten Veen, J. H. & Kleinspehn, K. L. 2002. Geodynamics along an increasingly curved convergent plate margin: Late Miocene-Pleistocene Rhodes, Greece. Tectonics 21, 121.Google Scholar
Thomsen, E., Rasmussen, T. L. & Hastrup, A. 2001. Calcareous nannofossil, ostracode and foraminifera biostratigraphy of Plio-Pleistocene deposits, Rhodes (Greece), with a correlation to the Vrica section (Italy). Journal of Micropalaeontology 20, 143–54.Google Scholar
Titschack, J., Bromley, R. G. & Freiwald, A. 2005. Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): Sedimentology and facies. Sedimentary Geology 180, 2956.Google Scholar
Titschack, J. & Freiwald, A. 2005. Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In Cold-water Corals and Ecosystems (eds Freiwald, A. & Roberts, J. M.), pp. 4159. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Titschack, J., Joseph, N., Fietzke, J., Freiwald, A. & Bromley, R. G. 2013. Record of a tectonically-controlled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sedimentary Geology 283, 1533.CrossRefGoogle Scholar
Titschack, J., Nelson, C. S., Beck, T., Freiwald, A. & Radtke, U. 2008. Sedimentary evolution of a Late Pleistocene temperate red algal reef (Coralligène) on Rhodes, Greece: correlation with global sea-level fluctuations. Sedimentology 55, 1747–76.Google Scholar
Urra, J., Gofas, S., Rueda, J. L. & Marina, P. 2011. Molluscan assemblages in littoral soft bottoms of the Alboran Sea (Western Mediterranean Sea). Marine Biology Research 7, 2742.CrossRefGoogle Scholar
Vaks, A., Woodhead, J., Bar-Matthews, M., Ayalon, A., Cliff, R. A., Zilberman, T., Matthews, A. & Frumkin, A. 2013. Pliocene–Pleistocene climate of the northern margin of Saharan–Arabian Desert recorded in speleothems from the Negev Desert, Israel. Earth and Planetary Science Letters 368, 88100.Google Scholar
van Hinsbergen, D. J. J., Krijgsman, W., Langereis, C. G., Cornée, J. J., Duermeijer, C. E. & Van Vugt, N. 2007. Discrete Plio-Pleistocene phases of tilting and counterclockwise rotation in the southeastern Aegean arc (Rhodos, Greece): early Pliocene formation of the south Aegean left-lateral strike-slip system. Journal of the Geological Society 164, 1133–44.CrossRefGoogle Scholar
Weber, K. & Zuschin, M. 2013. Delta-associated molluscan life and death assemblages in the northern Adriatic Sea: Implications for paleoecology, regional diversity and conservation. Palaeogeography, Palaeoclimatology, Palaeoecology 370, 7791.CrossRefGoogle ScholarPubMed
Wilson, J. B. 1986. Faunas of tidal current- and wave-dominated continental shelves and their use in the recognition of storm deposits. In Shelf Sands and Sandstones (eds Knight, R. J. & McLean, J. R.), pp. 313–26. Canadian Society of Petroleum Geologists, Memoir II.Google Scholar
Wright, C. A. & Burchette, T. P. 1996. Shallow-water carbonate environments. In Sedimentary Environments: Processes, Facies, Stratigraphy (ed. Reading, H. G.), pp. 325–94. Oxford: Blackwell Scientific Publications.Google Scholar
Yanko, V. V. 1990. Stratigraphy and paleogeography of the marine Pleistocene and Holocene deposits of the southern seas of the USSR. Memorie della Società Geologica Italiana 44, 167–87.Google Scholar
Zabala, M. 1986. Fauna dels briozous dels països catalans. Institut d’Estudis Catalans, Arxius de la Secció de Ciències 84, 1836.Google Scholar
Zazo, C. 1999. Interglacial sea levels. Quaternary International 55, 101–13.CrossRefGoogle Scholar
Zazo, C., Goy, J. L., Dabrio, C. J., Bardají, T., Hillaire-Marcel, C., Ghaleb, B., González-Delgado, J. A. & Soler, V. 2003. Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: records of coastal uplift, sea-level highstands and climate changes. Marine Geology 194, 103–33.CrossRefGoogle Scholar
Zenetos, A., Christianidis, S., Pancucci, M. A., Simboura, N. & Tziavos, C. 1997. Oceanologic study of an open coastal area in the Ionian Sea with emphasis on its benthic fauna and some zoogeographical remarks. Oceanologica Acta 20, 437–51.Google Scholar
Zenetos, A., Vardala-Theodorou, E. & Alexandrakis, C. 2005. Update of the marine Bivalvia Mollusca checklist in Greek waters. Journal of the Marine Biological Association of the UK 85, 993–8.CrossRefGoogle Scholar