Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T17:30:59.584Z Has data issue: false hasContentIssue false

Emplacement features of lamprophyre and carbonatitic lamprophyre dykes at Aillik Bay, Labrador

Published online by Cambridge University Press:  01 May 2009

S. F. Foley
Affiliation:
Abt. Kosmochemie, Max-Planck-Institut für Chemie, Saarstraße 23, 6500 Mainz, F.R.G.

Abstract

Alkaline and ultramafic lamprophyre dykes at Aillik Bay on the coast of central Labrador exhibit features indicative of volatile-rich conditions at the time of emplacement. Aillikites (ultramafic lamprophyres) are flanked by closely spaced fracture systems whose formation was promoted by a carbonate-rich fluid moving ahead of the intruding magma. Sannaites (alkaline lamprophyres) frequently have horned termination structures which are interpreted to be partial reconnections between dyke segments which had separated at an earlier stage of intrusion.

The lamprophyre dykes comprise three sets which are interpreted as cone sheets and radial dykes related to an intrusive centre located beneath the Labrador Sea to the northeast of the coastal exposures. This complex is one of several on the margins of the Labrador Sea, and its position may be influenced by the Archean/Aphebian boundary and by a major oceanic structural feature represented by offsets in seafloor magnetic anomalies.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. M. 1951. The Dynamics of Faulting. Edinburgh: Oliver and Boyd, 206 pp.Google Scholar
Anderson, O. L. 1979. The role of fracture dynamics in kimberlite pipe formation. In Kimberlites, Diatremes and Diamonds: Their Geology, Petrology and Geochemistry (ed. Boyd, F. R., Meyer, H. O. A.). pp. 344–53. Washington, USA: A.G.U.CrossRefGoogle Scholar
Andrews, J. R. 1969. A kimberlite dyke in the Nigerdlikasik area, Frederikshåb district. Grønlands Geologiske Undersøgelse Rapport 19, 35–7.CrossRefGoogle Scholar
Andrews, J. R. & Emeleus, C. H. 1971. Preliminary account of kimberlite intrusions from the Frederikshåb district, southwest Greenland. Gronlands Geologiske Undersogelse Rapport 31, 26 pp.Google Scholar
Andrews, J. R. & Emeleus, C. H. 1975. Structural aspects of kimberlite dyke and sheet intrusion in southwest Greenland. Physics and Chemistry of the Earth 9, 4350.CrossRefGoogle Scholar
Andrews, J. R. & Emeleus, C. H. 1976. Kimberlites of West Greenland. In Geology of Greenland, (ed. Escher, A., Watt, W. S.), pp. 575–81. Copenhagen: Grønlands Geologiske Undersogels.Google Scholar
Bachinski, S. W. & Scott, R. B. 1979. Rare-earth and other trace element contents and the origin of minettes (mica-lamprophyres). Geochimica et Cosmochimica Acta 43, 93100.CrossRefGoogle Scholar
Bailey, D. G., Flanagan, M. J., Lalonde, A. & Doherty, R. A. 1981. Kaipokok Bay–Big River map area. Newfoundland Mines Energy Dept, Mineral Development Division Map 81–18.Google Scholar
Barrière, M. 1976. Architecture et dynamisme du complexe éruptif centre de Ploumanac'h (Bretagne). Bulletin Bureau Récherches Mineralogie Geologie Sec 1, No. 3, 247–95.Google Scholar
Bridgwater, D. 1970. A compilation of K/Ar age determinations on rocks from Greenland carried out for G.G.U. in 1969. Grønlands Geologiske Undersøgelse Rapport 28, 4755.CrossRefGoogle Scholar
Bridgwater, D. 1971. Routine K/Ar age determinations on rocks from Greenland carried out for G.G.U. in 1970. Grønlands Geologiske Undersøgelse Rapport 35, 5260.CrossRefGoogle Scholar
Bridgwater, D., Escher, A., Nash, D. F., Watterson, J. 1973. Investigations on the Nagssugtoqidian boundary between Holsteinsborg and Kangamiut, central west Greenland. Grønlands Geologiske Undersøgelse Rapport 55, 22–5.CrossRefGoogle Scholar
Brooks, C. K., Noe-Nygaard, A., Rex, D. C., Ronsbo, J. G. 1978. An occurrence of ultrapotassic dykes in the neighbourhood of Holsteinsborg, west Greenland. Bulletin of the Geological Society of Denmark 27, 18.CrossRefGoogle Scholar
Clark, A. M. S. 1979. Proterozoic deformation and igneous intrusion in part of the Makkovik Sub-province, Labrador. Precambrian Research 10, 95114.CrossRefGoogle Scholar
Clarke, D. B. & Pedersen, A. K. 1976. Tertiary volcanic province of West Greenland. In Geology of Greenland, pp. 354–85. (eds. Escher, A., Watt, W. S.), Copenhagen: Grønlands Geologiske Undersøgelse.Google Scholar
Collerson, K. D. & Malpas, J. G. 1977. Partial melts in upper mantle nodules from Labrador Kimberlites. Second International Kimberlite Conference Extended Abstracts (unpaged).Google Scholar
Currie, K. L. 1976. The alkaline rocks of Canada. Geological Survey of Canada, Bulletin 239, 228. pp.Google Scholar
Currie, K. L. & Ferguson, J. 1970. The mechanism of intrusion of lamprophyre dykes indicated by offsetting of dykes. Tectonophysics 9, 525–35.CrossRefGoogle Scholar
Dawson, J. B. 1967. A review of the geology of kimberlite. In Ultramafic and Related Rocks (ed. Wyllie, P. J.), pp. 241–51.Google Scholar
Delaney, P. T., Pollard, D. D., Ziony, J. I. & McKee, E. H. 1986. Field relations between dykes and joints: emplacement processes and paleostress analysis. Journal of Geophysical Research 91, 4920–38.CrossRefGoogle Scholar
Doig, R. 1970. An alkaline province linking Europe and North America. Canadian Journal of Earth Science 7, 22–8.CrossRefGoogle Scholar
Dunham, A. C. & Emeleus, C. H. 1967. The Tertiary geology of Rhum, Inner Hebrides. Proceedings of the Geologists Association 78, 391418.CrossRefGoogle Scholar
Emeleus, C. H. & Upton, B. G. J. 1976. The Gardar period in southern Greenland. In Geology of Greenland (ed. Escher, A. & Watt, W. S.), pp. 152–81. Copenhagen: Grønlands Geologiske Undersøgelse.Google Scholar
Foley, S. F. 1984. Liquid immiscibility and melt segregation in alkaline lamprophyres from Labrador. Lithos 17, 127–37.CrossRefGoogle Scholar
Frank, F. C. 1965. On dilatancy in relation to seismic sources. Review of Geophysics 3, 484503.CrossRefGoogle Scholar
Gandhi, S. S., Grasty, R. L., Grieve, R. A. F. 1969. The geology and geochronology of the Makkovik Bay area, Labrador. Canadian Journal of Earth Sciences 6, 1019–35.CrossRefGoogle Scholar
Garson, M. S. 1966. Carbonatites in Malawi. In Carbonatites, (ed. Tuttle, O. F., Gittins, J.), pp. 3371. New York: John Wiley & Sons (Interscience).Google Scholar
Gephart, J. W. 1987. Deformation around the Crede Caldera: a consequence of isostatic adjustment following caldera formation. Journal of Geophysical Research 92, 10601–16.CrossRefGoogle Scholar
Gittins, J. 1966. Summaries and bibligraphies of carbonatite complexes. In Carbonatites (Ed. Tuttle, O. F., Gittins, J.), pp. 417541. New York: Wiley (Interscience).Google Scholar
Gower, C. F., Ryan, A. B., Bailey, D. G., Thomas, A. 1980. The position of the Grenville Front in eastern and central Labrador. Canadian Journal of Earth Sciences 17. 784–7.CrossRefGoogle Scholar
Griffin, W. L. & Taylor, P. N. 1975. The Fen damkjernite: petrology of a ‘central-complex kimberlite’. Physics and Chemistry of the Earth 99, 163–77.Google Scholar
Hansen, K. 1980. Lamprophyres and carbonatitic lamprophyres related to rifting in the Labrador Sea. Lithos 13, 145–52.CrossRefGoogle Scholar
Janse, A. J. A. 1969. Gross Brukkaros, A probable carbonatite volcano in the Nama plateau of southwest Africa. Geological Society of America Bulletin 80, 573–86.CrossRefGoogle Scholar
Johnson, A. M. 1970. Dyke patterns at Spanish Peaks, Colorado, In Physical Processes in Geology pp. 400–28, San Francisco: Freeman and Cooper.Google Scholar
Kaitaro, S. 1952. On some offset structures in dilation dykes. Bulletin Commission Geologique du Finland 157, 6774.Google Scholar
Kaitaro, S. 1953. Geologic structure of the Late Precambrian intrusives in the Ava area, Aland Island. Bulletin Commission Geologique du Finland 162, 71 pp.Google Scholar
Kampunzu, A. B., Lubala, R. T., Caron, J.-P. H., Vellutini, P.-J. 1983. Sur l'existence de deux cycles volcaniques précédent le volcanisme actuel des Virunga (Nord Kivu–Zaire). Comptes Rendues de l'academie des Sciences de Paris Série II, 296, 839–44.Google Scholar
King, A. F. & McMillan, N. J. 1975. A Mid–Mesozoic breccia from the coast of Labrador. Canadian Journal of Earth Sciences 12, 4451.CrossRefGoogle Scholar
Kranck, E. H. 1953. Bedrock geology of the seaboard of Labrador between Domino Run and Hopedale, Newfoundland. Geological Survey of Canada Bulletin 26, 45 pp.Google Scholar
Kresten, P. 1980. The Alnö Complex: tectonics of dyke emplacement. Lithos 13, 153–8.CrossRefGoogle Scholar
Larsen, O. & Moller, J. 1968a. K–Ar age determinations from West Greenland I. Reconnaissance program. Gronlands Geologiske Undersolgelse Rapport 15, 82–6.CrossRefGoogle Scholar
Larsen, O. & Moller, J. 1968b. Potassium–Argon age studies in western Greenland. Canadian Journal of Earth Sciences 5, 683–91.CrossRefGoogle Scholar
LeBas, M. J. 1977. Carbonatite–Nephelinite Volcanism. London: Wiley. 347 pp.Google Scholar
Leech, G. B., Lowden, J. A., Stockwell, C. H., Wanless, R. K. 1963. Age determinations and geological studies Geological Survey of Canada Paper 63–17, 114–17.Google Scholar
Malpas, J. G., Foley, S. F. & King, A. F. 1986. Alkaline mafic and ultramafic lamprophyres from the Aillik Bay area, Labrador. Canadian Journal of Earth Science 23, 1902–18.CrossRefGoogle Scholar
Martin, R. J. 1980. Pore-pressure stabilization of failure in Westerly granite. Geophysical Research Letters 7, 404–6.CrossRefGoogle Scholar
Mathias, M. 1974. Alkaline rocks in southern Africa. In The Alkaline Rocks (ed. Sorensen, H.) pp. 189202. London: Wiley.Google Scholar
McHone, J. G. 1978. Distribution, orientations and ages of mafic dykes in central New England. Geological Society of America Bulletin 89, 1645–55.2.0.CO;2>CrossRefGoogle Scholar
McTigue, D. F. 1987. Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. Journal of Geophysical Research 92, 12931–40.CrossRefGoogle Scholar
Mohr, P. A. & Potter, E. C. 1976. The Sagatu ridge dyke swarm, Ethiopian rift margin. Journal of Volcanology and Geothermal Research 1, 5571.CrossRefGoogle Scholar
Moore, J. M. 1975. A mechanical interpretation of the vein and dyke systems of the S.W.England orefields. Mineralium Deposita 10, 374–88.CrossRefGoogle Scholar
Neumann, E. R. & Ramberg, I. B. 1978. Paleorifts – concluding remarks. In Tectonics and Geophysics of Continental Rifts (ed. Ramberg, I. B., Neumann, E. R.), pp. 409–24. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Odè, H. 1957. Mechanical analysis of the dyke pattern of the Spanish Peaks area, Colorado. Geological Society of America Bulletin 68, 567–76.CrossRefGoogle Scholar
Phillips, W. J. 1974. The dynamic emplacement of cone sheets. Tectonophysics 24, 6984.CrossRefGoogle Scholar
Piper, J. D. A. & Gibson, I. L. 1972. Stress control of processes at extensional plate margins. Nature 238, 83–6.Google Scholar
Pollard, D. D. 1973. Derivation and evolution of a mechanical model for sheet intrusion. Tectonophysics 19, 233–69.CrossRefGoogle Scholar
Pollard, D. D. & Johnson, A. M. 1973. Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah II; bending and failure of overbudren layers and sill formation. Tectonophysics 18, 311–54.CrossRefGoogle Scholar
Pollard, D. D., Muller, O. H., Dockstader, D. R. 1975. The form and growth of fingered sheet intrusions. Geological Society of American Bulletin 86, 351–63.2.0.CO;2>CrossRefGoogle Scholar
Rock, N. M. S. 1977. The nature and origin of lamprophyres: some definitions, distinctions and derivations. Earth Science Reviews 13, 123–69.CrossRefGoogle Scholar
Rock, N. M. S. 1980. Rare-earth and other trace element contents and the origin of minettes. A critical comment on a paper by Bachinski and Scott. Geochimica et Cosmochimica Acta 44, 1385–8.CrossRefGoogle Scholar
Rock, N. M. S. 1986. The nature and origin of ultramafic lamprophyres: alnöites and allied rocks. Journal of Petrology 27, 155–96.CrossRefGoogle Scholar
Rogers, R. D. & Bird, D. K. 1987. Fracture propagation associated with dike emplacement at the Skaergaard intrusion, East Greenland. Journal of Structural Geology 9, 7186.CrossRefGoogle Scholar
Royden, L. & Keen, C. E. 1980. Rifting processes and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth and Planetary Science Letters 51, 343–61.CrossRefGoogle Scholar
Ryan, A. B. & Kay, E. A. 1982. Basement cover relationships and plutonic rocks in the Makkovik Subprovince, north of Postville, coastal Labrador (13 J/3, 3 O/4). Newfoundland Department of Mines and Energy, Mineral Development Division Rept 821, 109–21.Google Scholar
Sammis, C. G. & Julian, B. R. 1987. Fracture instabilities accompanying dike intrusion. Journal of Geophysical Research 92, 2597–605.CrossRefGoogle Scholar
Scott, B. H. 1981. Kimberlite and lamproite dykes from Holsteinsborg, West Greenland. Meddelelser om Grønland Geoscience 4, 124.CrossRefGoogle Scholar
Secher, K. & Larsen, L. M. 1978. A new Phanerozoic carbonatite complex in southwest Greenland. Grønlands Geologiske Undersøgelse Rapport 90, 4650.CrossRefGoogle Scholar
Secher, K. & Larsen, L. M. 1980. Geology and mineralogy of the Sarfartoq carbonatite complex, southern West Greenland. Lithos 13, 199212.CrossRefGoogle Scholar
Sorensen, H. 1974. The Alkaline Rocks London: Wiley, 622 pp.Google Scholar
Stracke, K. J., Ferguson, J. & Black, L. P. 1979. Structural setting of kimberlites in southeastern Australia. In Kimberlites Diatremes and Diamonds: Their Geology, Petrology and Geochemistry pp. 7191. (ed. Boyd, F. R., Meyer, H. O. A.). Washington, USA: A.G.U.CrossRefGoogle Scholar
Sutton, J. S. 1972. The Precambrian gneisses and supracrustal rocks of the western shore of Kaipokok Bay, Labrador, Newfoundland. Canadian Journal of Earth Sciences 9, 1677–92.CrossRefGoogle Scholar
Taylor, F. C. 1971. A revision of the Precambrian structural provinces in northeastern Quebec and northern Canada. Canadian Journalof Earth Sciences 8, 579–84.CrossRefGoogle Scholar
Taylor, F. C. 1972. The Nain Province. In Variation in Tectonic Styles in Canada. Geologial Survey of Canada Special Paper I 1 (ed. Price, R. A., Douglas, R. J. W.). 436–52.Google Scholar
Upton, B. G. J. 1970. Basic rocks of the Gardar igneous province. Gronlands Geologiske Undersøgelse Rapport 28, 26–9.CrossRefGoogle Scholar
Upton, B. G. J. 1974. The alkaline province of southwest Greenland. In The Alkaline Rocks (ed. Sorensen, H.), pp. 221–38. London: Wiley.Google Scholar
van der Linden, W. J. M. & Srivastava, S. P. 1975. The crustal structure of the continental margin off central Labrador. Geological Survey of Canada Paper 7430, 233–45.Google Scholar
von Eckermann, H. 1966. Progress of research on the Alnö carbonatite. In Carbonatities, (ed. Tuttle, O. F., Gittins, J.) pp. 331, New York: John Wiley (Interscience).Google Scholar
Walker, G. P. L. 1975. A new concept of the evolution of the British Tertiary intrusive centres. Journal of the Geological Society of London 131, 121–41.CrossRefGoogle Scholar
Watt, W. S. 1969. The coast-parallel dyke swarm of Southwest Greenland in relation to the opening of the Labrador Sea. Canadian Journal of Earth Science 6, 1320–1.CrossRefGoogle Scholar