Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:22:20.609Z Has data issue: false hasContentIssue false

Discovery of a Sphaeroschwagerina fusuline fauna from the Raggyorcaka Lake area, northern Tibet: implications for the origin of the Qiangtang Metamorphic Belt

Published online by Cambridge University Press:  04 November 2015

YI-CHUN ZHANG*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
SHU-ZHONG SHEN
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
QING-GUO ZHAI
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
YU-JIE ZHANG
Affiliation:
Chengdu Center, China Geological Survey, Chengdu 610081, China
DONG-XUN YUAN
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China Department of Earth Sciences, Nanjing University, Nanjing 210008, China
*
Author for correspondence: [email protected]

Abstract

The Qiangtang Metamorphic Belt (QMB) was considered to have either formed in situ by amalgmation of the North and South Qiangtang blocks or been underthrust from the Jinsha suture and exhumed in the interior of a single ‘Qiangtang Block’. A new Sphaeroschwagerina fusuline fauna discovered in the Raggyorcaka Lake area supports the interpretation that the North and South Qiangtang blocks were separated by a wide ocean during Asselian (Early Permian) time, indicating that the QMB was formed by the suturing of the Palaeotethys Ocean along the Longmu Co-Shuanghu suture.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseeva, I. A., Glushenko, N. V., Ivanov, V. K., Inosova, K. I., Kalmykova, M. A., Kashik, D. S., Kozickaya, R. I., Kruzina, A. K., Movshovich, E. V., Redichkin, N. A. & Shvardman, E. G. 1983. Opornyh razrez pogranichnyh sloev Karbona i Permi Uga Vostochno-Evropeiskoi Platformy. Akademiya nauk SSSR, Ministerstvo geologii SSSR, Mezhvedomstvennyi stratigraficheskii komitet SSSR 12, 1135.Google Scholar
Angiolini, L., Gaetani, M., Muttoni, G., Stephenson, M. H. & Zanchi, A. 2007. Tethyan oceanic currents and climate gradients 300 m.y. ago. Geology 35, 1071–4.Google Scholar
Angiolini, L., Zanchi, A., Zanchetta, S., Nicora, A., Vuolo, I., Berra, F., Henderson, C., Malaspina, N., Rettori, R., Vachard, D. & Vezzoli, G. 2015. From rift to drift in South Pamir (Tajikistan): Permian evolution of a Cimmerian terrane. Journal of Asian Earth Sciences 102, 146–69.Google Scholar
Chen, X. & Wang, J. H. 1983. The fusulinids of the maping limestone of the upper Carboniferous from Yishan, Guangxi. Palaeontologia Sinica 164, 1139.Google Scholar
Cheng, L. R., Chen, S. M., Zhang, Y. C. & Wu, S. Z. 2007. Carboniferous fusulinids and fusulinid zone in northern Qiangtang, Tibet. Journal of Jilin University (Earth Science Edition) 37, 17.Google Scholar
Cheng, L. R., Cheng, S. M., Zhang, Y. C. & Wu, S. Z. 2006. Discovery of Carboniferous strata in northern Qiangtang basin, Tibet. Earth Science Frontiers 13, 240–43.Google Scholar
Ding, L., Yang, D., Cai, F. L., Pullen, A., Kapp, P., Gehrels, G. E., Zhang, L. Y., Zhang, Q. H., Lai, Q. Z., Yue, Y. H., Shi, R. D. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics 32, 3448.Google Scholar
Fan, J. J., Li, C., Wang, M., Xie, C. M. & Xu, W. 2015. Features, provenance, and tectonic significance of Carboniferous–Permian glacial marine diamictites in the Southern Qiangtang–Baoshan block, Tibetan Plateau. Gondwana Research, published online 15 November, 2014. doi:10.1016/j.gr.2014.10.015.Google Scholar
Fielding, C. R., Frank, T. D. & Isbell, J. L. 2008. The Late Paleozoic ice age–A review of current understanding and synthesis of global climate patterns. Geological Society of America Special Papers 441, 343–54.Google Scholar
Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N. & Yin, A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30, TC5016, doi:10.1029/2011tc002868.Google Scholar
Isbell, J. L., Henry, L. C., Gulbranson, E. L., Limarino, C. O., Fraiser, M. L., Koch, Z. J., Ciccioli, P. L. & Dineen, A. A. 2012. Glacial paradoxes during the Late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research 22, 119.CrossRefGoogle Scholar
Kapp, P., Yin, A., Manning, C. E., Harrison, T. M., Taylor, M. H. & Ding, L. 2003. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22, 117.Google Scholar
Kapp, P., Yin, A., Manning, C. E., Murphy, M., Harrison, T. M., Spurlin, M., Ding, L., Deng, X. G. & Wu, C. M. 2000. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology 28, 1922.Google Scholar
Leven, E. J. 1987. Sistema i filogeniya semeystva Schubertellidae Skinner, 1931. Paleontologicheskiy Zhurnal 2, 3040.Google Scholar
Leven, E. J. & Gorgij, M. N. 2006. Upper Carboniferous–Permian stratigraphy and fusulinids from the Anarak region, central Iran. Russian Journal of Earth Sciences 8, 125.Google Scholar
Li, C. 1987. The Longmucuo-Shuanghu-Lancangjiang plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in northern Xizang, China. Journal of Jilin University (Earth Science Edition) 17, 155–66.Google Scholar
Li, C., Cheng, L. R., Hu, K., Yang, Z. R. & Chen, Y. R. 1995. Study on the Paleo-Tethys Suture Zone of Longmu Co-Shuanghu, Tibet. Beijing: Geological Publishing House, 131 pp.Google Scholar
Li, C., Zhai, Q. G., Dong, Y. S. & Huang, X. P. 2006. Discovery of ecologite and its significance from the Qiangtang area, central Tibet. Chinese Science Bulletin 51, 1095–100.Google Scholar
Li, C., Zhai, Q. G., Dong, Y. S., Zeng, Q. G. & Huang, X. P. 2007. Longmu Co-Shuanghu plate suture and evolution records of paleo-Tethyan oceanic in Qiangtang area, Qinghai-Tibet plateau. Frontiers of Earth Science in China 1, 257–64.Google Scholar
Li, C. & Zheng, A. Z. 1993. Paleozoic stratigraphy in the Qiangtang region of Tibet: relations of the Gondwana and Yangtze continents and ocean closure near the end of the Carboniferous. International Geological Review 35, 797804.CrossRefGoogle Scholar
Li, L. Z. & Lin, J. X. 1994. Fusulinids. In Sinian to Permian Stratigraphy and Palaeontology of the Tarim Basin, Xinjiang (eds Southern Xinjiang Petroleum Prospecting Corporation, Xinjiang Petroleum Administration Bureau & Jianghan Petroleum Institute), pp. 71106. Beijing: The Petroleum Industry Press.Google Scholar
Liang, D. Y., Nie, Z. T., Guo, T. Y., Xu, B. W., Zhang, Y. Z. & Wang, W. P. 1983. Permo-Carboniferous Gondwana-Tethys facies in southern Karakoran Ali, Xizang (Tibet). Earth Science 19, 927.Google Scholar
Liang, X., Wang, G., Yuan, G. & Liu, Y. 2012. Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: implications for the late Triassic subduction of the Paleo-Tethys Ocean. Gondwana Research 22, 470–81.Google Scholar
Liu, G. C. 1993. Age assignment of Kaixinling Group and Wuli group in the middle Tanggula Mountains. Qinghai Geology 2, 19.Google Scholar
Liu, Y., Santosh, M., Zhao, Z. B., Niu, W. C. & Wang, G. H. 2011. Evidence for palaeo-Tethyan oceanic subduction within central Qiangtang, northern Tibet. Lithos 127, 3953.Google Scholar
Metcalfe, I. 2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences 66, 133.Google Scholar
Pullen, A. & Kapp, P. 2014. Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: Insights from the Qiangtang metamorphic belt, central Tibet. Geological Society of America Special Papers 507, 7187.Google Scholar
Pullen, A., Kapp, P., Gehrels, G. E., Ding, L. & Zhang, Q. 2011. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure. Geological Society of America Bulletin 123, 585600.Google Scholar
Pullen, A., Kapp, P., Gehrels, G. E., Vervoort, J. D. & Ding, L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 36, 351–4.Google Scholar
Rauzer-chernousova, D. M. & Scherbovich, S. F. 1949. Shvageriny evropeiskoi chasti SSSR. Trudy Instituta Geologicheskih Nauk, Akademiya Nauk Ukrainskoi SSR 105, 61114.Google Scholar
Rauzer-chernousova, D. M. & Scherbovich, S. F. 1958. O shvagerinovom gorizonte tsentral'noi chasti russkoi platformy. Trudy Geologicheskogo Instituta, Akademiya Nauk SSSR 13, 356.Google Scholar
Robinson, A. C., Ducea, M. & Lapen, T. J. 2012. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics 31, TC2016. doi:10.1029/2011TC003013.CrossRefGoogle Scholar
Sakamoto, T. & Ishibashi, T. 2002. Paleontological study of fusulinoidean fossils from the Terbat Formation, Sarawak, East Malaysia. Memoirs of the Faculty of Science, Kyushu University, Series D, Earth and Planetary Sciences 31, 2957.Google Scholar
Sheng, J. Z. & Wang, R. N. 1984. Fusulinid-bearing formations and fusulinid fauna from the Dadun coalfield of Pei Xian, northern Jiangsu. Bulletin of Nanjing Institute of Geology and Palaeontology, Academia Sinica 7, 168.Google Scholar
Shi, G. R. & Archbold, N. W. 1998. Permian marine biogeography of SE Asia. In Biogeography and Geological Evolution of SE Asia (eds Hall, R. & Holloway, D. J.), pp. 5772. Leiden: Backbuys Publishers.Google Scholar
Shi, G. R., Archbold, N. W. & Zhan, L. P. 1995. Distribution and characteristics of mid-Permian (Late Artinskian–Ufimian) mixed/transitional marine faunas in the Asian region and their palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 114, 241–71.Google Scholar
Sichuan Regional Geological Survey & Nanjing Institute of Geology and Palaeontology. 1982. Stratigraphy and Palaeontology of Western Sichuan and Eastern Tibet, No.1. Sichuan: Sichuan People's Publishing House, 341 pp.Google Scholar
Ueno, K., Wang, Y. J. & Wang, X. D. 2003. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian Belt, west Yunnan, southwest China: an overview. Island Arc 12, 145–61.Google Scholar
Wen, S. X. 1979. New data on strata from Northern Tibet. Journal of Stratigraphy 3, 150–56.Google Scholar
Wu, G. C., Yao, J. X. & Ji, Z. S. 2009. The Late Carboniferous fusulinids in the central part of northern Qiangtang, Tibet, China. Geological Bulletin of China 28, 1276–80.Google Scholar
Yin, A. & Harrison, T. M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.Google Scholar
Zhai, Q. G., Jahn, B. M., Wang, J., Su, L., Mo, X. X., Wang, K. L., Suohan, T. & Lee, H. Y. 2013. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos 168–169, 186–99.Google Scholar
Zhai, Q. G., Zhang, R. Y., Jahn, B. M., Li, C., Song, S. G. & Wang, J. 2011. Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P–T path. Lithos 125, 173–89.Google Scholar
Zhang, K. J., Cai, J. X., Zhang, Y. X. & Zhao, T. P. 2006 a. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth and Planetary Science Letters 245, 722–9.Google Scholar
Zhang, K. J., Zhang, Y. X., Li, B., Zhu, Y. T. & Wei, R. Z. 2006 b. The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: Evidence from geochemical comparison with the Jinsa suture. Geology 34, 493–6.CrossRefGoogle Scholar
Zhang, Y. C., Shi, G. R. & Shen, S. Z. 2013. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai–Tibet Plateau. Gondwana Research 24, 5576.Google Scholar
Zhang, Y. C., Shi, G. R., Shen, S. Z. & Yuan, D. X. 2014. Permian fusuline fauna from the lower part of the Lugu formation in the Central Qiangtang Block and its Geological Implications. Acta Geologica Sinica - English Edition 88, 365–79.Google Scholar
Zhao, Z., Bons, P. D., Wang, G., Liu, Y. & Zheng, Y. 2014. Origin and pre-Cenozoic evolution of the south Qiangtang basement, Central Tibet. Tectonophysics 623, 5266.Google Scholar
Zhao, Z., Bons, P. D., Wang, G., Soesoo, A. & Liu, Y. 2015. Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet. Solid Earth 6, 457–73.Google Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., Hou, Z. Q. & Mo, X. X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research 23, 1429–54.Google Scholar
Zhu, T. X., Zhang, Q. Y., Dong, H., Wang, Y. J., Yu, Y. S. & Feng, X. T. 2006. Discovery of the Late Devonian and Late Permian radiolarian cherts in tectonic mélanges in the Cêdo Caka area, Shuanghu, northern Tibet, China. Geological Bulletin of China 25, 1413–8.Google Scholar