Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:27:18.708Z Has data issue: false hasContentIssue false

Discovery of a Neoproterozoic granite in the Northern Alxa region, NW China: its age, petrogenesis and tectonic significance

Published online by Cambridge University Press:  21 September 2015

WEN ZHANG
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden
VICTORIA PEASE
Affiliation:
Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden
QINGPENG MENG
Affiliation:
Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China
RONGGUO ZHENG
Affiliation:
Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China
TONNY B. THOMSEN
Affiliation:
Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden Geological Survey of Denmark and Greenland, Øster Voldgade 10 DK-1350 Copenhagen, Denmark
CORA WOHLGEMUTH-UEBERWASSER
Affiliation:
Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden
TAIRAN WU*
Affiliation:
Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China
*
Author for correspondence: [email protected]

Abstract

A Neoproterozoic granite (Western Huhetaoergai granite) from the Northern Alxa region, southern Central Asia Orogenic Belt (CAOB) is first recognized by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb zircon dating (889±8 Ma). It is a highly fractionated potassium-rich calc-alkaline pluton with low εNd(t) (−2.6 to −1.1) and high (87Sr/86Sr)t (0.727305–0.735626), and is probably derived from a mantle source and assimilated crustal rocks with very high 87Sr/86Sr. Regional geology implies that it may reflect the existence of a microcontinent, and the formation of the Western Huhetaoergai granite is related to the assembly of Rodinia.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C. J. & Othman, D. B. 1980. Nd–Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. Nature 286, 335–42.Google Scholar
Badarch, G., Dickson Cunningham, W. & Windley, B. F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences 21, 87110.Google Scholar
Barnes, C. G., Prestvik, T., Sundvoll, B. & Surratt, D. 2005. Pervasive assimilation of carbonate and silicate rocks in the Hortavær igneous complex, north-central Norway. Lithos 80, 179–99.Google Scholar
Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602–22.Google Scholar
Berzin, N. A. & Dobretsov, N. L. 1994. Geodynamic evolution of southern Siberia in late Precambrian-early Paleozoic time. In Proceedings of the 29th International Geological Congress on Reconstruction of the Paleoasian Ocean. VSP, Utrecht, 53–70.Google Scholar
BGGP (Bureau of Geology, Gansu Province). 1979. Guaizihunan and Yingejing Sheets. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGGP (Bureau of Geology, Gansu Province). 1980. Suoguonao Sheet. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGGP (Bureau of Geology, Gansu Province). 1981a. Yagan and Guaizihu Sheets. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGGP (Bureau of Geology, Gansu Province). 1981b. Jianguoying, Ejinaqi, Huxixincun, Wutaohai, Xianshui and Gulunai Sheets. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGIMAR (Bureau of Geology, Inner Mongolia Autonomous Region). 1980. Wuerte and Hailisu Sheets. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGNHAR (Bureau of Geology, Ningxia Hui Autonomous Region). 1976. Qinggeletu Sheet. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGNHAR (Bureau of Geology, Ningxia Hui Autonomous Region). 1980a. Wuliji Sheet. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGNHAR (Bureau of Geology, Ningxia Hui Autonomous Region). 1980b. Yingen Sheet. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGNHAR (Bureau of Geology, Ningxia Hui Autonomous Region). 1980c. Kunaitoulamamiao Sheet. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGNHAR (Bureau of Geology, Ningxia Hui Autonomous Region). 1980d. Alatanaobao Sheet. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGNHAR (Bureau of Geology, Ningxia Hui Autonomous Region). 1982a. Hariaoribuerge Sheet. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
BGNHAR (Bureau of Geology, Ningxia Hui Autonomous Region). 1982b. Shalataoerhan Sheet. Regional Geological Survey Report (1:200000) (in Chinese).Google Scholar
Chen, B., Jahn, B. M. & Tian, W. 2009. Evolution of the Solonker suture zone: constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences 34, 245–57.Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.Google Scholar
Demoux, A., Kröner, A., Liu, D. & Badarch, G. 2009. Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating. International Journal of Earth Sciences 98, 1365–80.Google Scholar
Faure, G. & Mensing, T. M. 2010. The Transantarctic Mountains: Rocks, Ice, Meteorites and Water. Heidelberg: Springer Verlag, 804 pp.Google Scholar
Feng, J., Xiao, W., Windley, B., Han, C., Wan, B., Zhang, J. E., Ao, S., Zhang, Z. & Lin, L. 2013. Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: implications for Late Permian accretionary tectonics in the southern Altaids. Journal of Asian Earth Sciences 78, 114–42.Google Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.Google Scholar
Geng, Y., Wang, X., Shen, Q. & Wu, C. 2002. The discovery of Neoproterozoic Jinningian deformed granites in Alax area and its significance. Acta Petrologica et Mineralogica 21, 412–21 (in Chinese with English abstract).Google Scholar
Geng, Y. & Zhou, X. 2010. Early Neoproterozoic granite events in Alax area of Inner Mongolia and their geological significance: evidence from geochronology. Acta Petrologica et Mineralogica 29, 779–95 (in Chinese with English abstract).Google Scholar
He, G., Li, M., Liu, D. & Zhou, N. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumqi, Xinjiang: Xingjiang People's Publishing House, 437 pp.Google Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.Google Scholar
Irving, A.J. & Green, D.H. 1976. Geochemistry and petrogenesis of the newer basalts of Victoria and South Australia. Journal of the Geological Society of Australia 23, 4566.Google Scholar
Jahn, B. M., Windley, B., Natal'in, B. & Dobretsov, N. 2004. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences 23, 599603.Google Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 181–93.Google Scholar
Jahn, B. M., Wu, F. Y. & Hong, D. W. 2000. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east-central Asia. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences) 109, 520.Google Scholar
Jiang, H. Y., He, Z. Y., Zong, K. Q., Zhang, Z. M. & Zhao, Z. D. 2013. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt. Acta Petrologica Sinica 29, 3949–67 (in Chinese with English abstract).Google Scholar
Khain, E., Bibikova, E., Salnikova, E., Kröner, A., Gibsher, A., Didenko, A., Degtyarev, K. & Fedotova, A. 2003. The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions. Precambrian Research 122, 329–58.Google Scholar
Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., Kotov, A. B., Kozakov, I. K., Salnikova, E. B. & Larin, A. M. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. Journal of Asian Earth Sciences 23, 605–27.Google Scholar
Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D., Hoffmann, J. & Wong, J. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research 25, 103–25.CrossRefGoogle Scholar
Kröner, A., Windley, B. F., Badarch, G., Tomurtogoo, O., Hegner, E., Jahn, B. M., Gruschka, S., Khain, E. V., Demoux, A. & Wingate, M. T. D. 2007. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. In 4-D Framework of Continental Crust (eds Hatcher, R.D. Jr.,Carlson, M.P.,McBride, J.H. & Martínez Catalán, J.R.), pp. 181209. Geological Society of America, Boulder, Memoir no. 200.Google Scholar
Li, Y., Zhou, H., Brouwer, F. M., Wijbrans, J. R., Zhong, Z. & Liu, H. 2011. Tectonic significance of the Xilin Gol Complex, Inner Mongolia, China: Petrological, geochemical and U-Pb zircon age constraints. Journal of Asian Earth Sciences 42, 1018–29.Google Scholar
Li, Z., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R., Fitzsimons, I., Fuck, R., Gladkochub, D. & Jacobs, J. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Liu, Q., Zhao, G., Sun, M., Eizenhöfer, P. R., Han, Y., Hou, W., Zhang, X., Wang, B., Liu, D. & Xu, B. 2015. Ages and tectonic implications of Neoproterozoic ortho- and paragneisses in the Beishan Orogenic Belt, China. Precambrian Research 266, 551–78.Google Scholar
Lu, S., Li, H., Zhang, C. & Niu, G. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research 160, 94107.Google Scholar
McDermott, F. & Hawkesworth, C. 1990. The evolution of strontium isotopes in the upper continental crust. Nature 344, 850–3.CrossRefGoogle Scholar
Metcalf, R. V., Smith, E. I., Walker, J. D., Reed, R. C. & Gonzales, D. A. 1995. Isotopic disequilibrium among commingled hybrid magmas: evidence for a two-stage magma mixing-commingling process in the Mt. Perkins Pluton, Arizona. Journal of Geology 103, 509–27.Google Scholar
Pearce, J. A. 1996. Sources and settings of granitic rocks. Episodes 19, 120–5.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94.Google Scholar
Salnikova, E. B., Kozakov, I. K., Kotov, A. B., Kröner, A., Todt, W., Bibikova, E. V., Nutman, A., Yakovleva, S. Z. & Kovach, V. P. 2001. Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt: Loss of a Precambrian microcontinent. Precambrian Research 110, 143–64.CrossRefGoogle Scholar
Satish-Kumar, M., Miyamoto, T., Hermann, J., Kagami, H., Osanai, Y. & Motoyoshi, Y. 2008. Pre-metamorphic carbon, oxygen and strontium isotope signature of high-grade marbles from the Lützow-Holm Complex, East Antarctica: apparent age constraints of carbonate deposition. In Geodynamic Evolution of East Antarctica: A Key to the East-West Gondwana Connection (eds Satish-Kumar, M.,Motoyoshi, Y.,Osanai, Y.,Hiroi, Y. & Shiraishi, K.), pp. 147–64. Geological Society of London, Special Publication no. 308.Google Scholar
Şengör, A. M. C., Natal'In, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299307.Google Scholar
Shand, S. J. 1943. Eruptive Rocks: Their Genesis, Composition, and Classification, with a chapter on meteorites. 2nd edition. London: Thomas Murby and Company, 444 pp.Google Scholar
Shi, G., Liu, D., Zhang, F., Jian, P., Miao, L., Shi, Y. & Tao, H. 2003. SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China. Chinese Science Bulletin 48, 2742–8.Google Scholar
Shu, L. S., Deng, X. L., Zhu, W. B., Ma, D. S. & Xiao, W. J. 2011. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain. Journal of Asian Earth Sciences 42, 774–90.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), p. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Sylvester, P. J. 1989. Post-collisional alkaline granites. Journal of Geology 97, 261–80.CrossRefGoogle Scholar
Taylor, J., Webb, L., Johnson, C. & Heumann, M. 2013. The lost South Gobi microcontinent: protolith studies of metamorphic tectonites and implications for the evolution of continental crust in Southeastern Mongolia. Geosciences 3, 543–84.Google Scholar
Vernikovsky, V., Vernikovskaya, A., Wingate, M., Popov, N. & Kovach, V. 2007. The 880–864 Ma granites of the Yenisey Ridge, western Siberian margin: Geochemistry, SHRIMP geochronology, and tectonic implications. Precambrian Research 154, 175–91.Google Scholar
Wang, T., Wang, S. & Wang, J. 1994. The Formation and Evolution of Paleozoic Continental Crust in Alax Region. Lanzhou: Lanzhou University Press 215 pp. (in Chinese with English abstract).Google Scholar
Wang, T., Zheng, Y., Gehrels, G. & Mu, Z. 2001. Geochronological evidence for existence of South Mongolian microcontinent: a zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex. Chinese Science Bulletin 46, 2005–8.Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kroner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164, 3147.Google Scholar
Wu, F., Jahn, B. M., Wilde, S., Lo, C., Yui, T., Lin, Q., Ge, W. & Sun, D. 2003 a. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67, 191204.Google Scholar
Wu, F., Jahn, B. M., Wilde, S., Lo, C., Yui, T., Lin, Q., Ge, W. & Sun, D. 2003 b. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66, 241–73.Google Scholar
Wu, T. & He, G. 1992. Ophiolitic melange belts in the northern margin of the Alashan Block. Journal of Graduate School, China University of Geosciences 6, 286–96 (in Chinese with English abstract).Google Scholar
Wu, T., He, G. & Zhang, C. 1998. On Palaeozoic Tectonics in the Alxa Region, Inner Mongolia, China. Acta Geologica Sinica, English Edition 72, 256–63.Google Scholar
Xiao, W., Windley, B. F., Hao, J. & Zhai, M. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics 22, 1069, doi: 10.1029/2002TC001484.Google Scholar
Yarmolyuk, V. V., Kovach, V. P., Kovalenko, V. I., Terent'eva, L. B., Kozakov, I. K., Kotov, A. B. & Eenjin, G. 2007. Isotopic composition of the Hercynian crust of southern Mongolia: substantiation of the Hercynian juvenile crust-forming event. Doklady Earth Sciences 417, 1178–82.CrossRefGoogle Scholar
Yarmolyuk, V. V., Kovalenko, V. I., Sal'nikova, E. B., Kovach, V. P., Kozlovsky, A. M., Kotov, A. B. & Lebedev, V. I. 2008. Geochronology of igneous rocks and formation of the Late Paleozoic south Mongolian active margin of the Siberian continent. Stratigraphy and Geological Correlation 16, 162–81.Google Scholar
Yarmolyuk, V. V., Kovalenko, V. I., Sal'nikova, E. B., Kozakov, I. K., Kotov, A. B., Kovach, V. P., Vladykin, N. V. & Yakovleva, S. Z. 2005. U-Pb-Age of sin- and postmetamorphic granitoids from Southern Mongolia: evidence for the presence of grenvilides in the Central Asian Fold Belt. Doklady Earth Sciences 404, 986–90.Google Scholar
Yu, S., Zhang, J., Del Real, P. G., Zhao, X., Hou, K., Gong, J. & Li, Y. 2013. The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibet Plateau: constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks. Journal of Asian Earth Sciences 73, 372–95.Google Scholar
Zen, E. 1988. Phase relations of peraluminous granitic rocks and their petrogenetic implications. Annual Review of Earth and Planetary Sciences 16, 2151.Google Scholar
Zheng, R., Wu, T., Zhang, W., Feng, J., Xu, C., Meng, Q. & Zhang, Z. 2013 a. Geochronology and geochemistry of the Yagan granite in the northern margin of the Alxa block: constraints on the tectonic evolution of the southern Altaids. Acta Petrologica Sinica 29, 2665–75 (in Chinese with English abstract).Google Scholar
Zheng, R., Wu, T., Zhang, W., Xu, C. & Meng, Q. 2013 b. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt. Journal of Asian Earth Sciences 62, 463–75.Google Scholar
Zheng, R., Wu, T., Zhang, W., Xu, C., Meng, Q. & Zhang, Z. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: Geochronological and geochemical evidences from ophiolites. Gondwana Research 25, 842–58.Google Scholar
Zuo, G. & He, G. 1990. Plate Tectonics and Metallogenic Regularities in Beishan Region. Beijing: Peking University Press, 226 pp.Google Scholar
Supplementary material: File

Zhang supplementary material

Appendix S1

Download Zhang supplementary material(File)
File 41.5 KB
Supplementary material: File

Zhang supplementary material

Table S1

Download Zhang supplementary material(File)
File 95.7 KB
Supplementary material: File

Zhang supplementary material

Table S2

Download Zhang supplementary material(File)
File 44.5 KB
Supplementary material: File

Zhang supplementary material

Table S3

Download Zhang supplementary material(File)
File 66 KB
Supplementary material: File

Zhang supplementary material

Table S4

Download Zhang supplementary material(File)
File 20.1 KB