Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T21:05:15.789Z Has data issue: false hasContentIssue false

Diagenesis of bivalves from Jurassic and Lower Cretaceous lacustrine deposits of northeastern China

Published online by Cambridge University Press:  04 June 2015

FRANZ T. FÜRSICH*
Affiliation:
GeoZentrum Nordbayern, FG Paläoumwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 21008 Nanjing, China
YANHONG PAN
Affiliation:
Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 21008 Nanjing, China
*
Author for correspondence: [email protected]

Abstract

In contrast to the numerous excellently preserved arthropods, vertebrates and plants from the Mesozoic lacustrine fossil lagerstätten of northeastern China, which have calcium phosphate or organic skeletons, the preservation of taxa with a calcareous skeleton is fairly poor. Here we investigate, using a scanning electron microscope and energy dispersive X-ray spectrometer, the preservational modes of bivalves from the Jurassic Daohugou Fossil Beds of Inner Mongolia and the Lower Cretaceous Yixian Formation of eastern Liaoning. The Jurassic bivalve Ferganoconcha sibirica is preserved as strongly compressed composite moulds which contain remains of the organic periostracum. In the Yixian Formation, the bivalves Sphaerium anderssoni and Arguniella ventricosa occur as compacted internal, external or composite moulds or are preserved with a silicified shell, and rarely with a shell consisting of iron hydroxides, which had replaced pyrite during late diagenesis/weathering. Silicification produced partly fabric-replacive microcrystalline quartz and partly void-filling megaquartz crystals after the carbonate shell had been dissolved. Films of authigenic aluminosilicate minerals, partly secondarily silicified, cover the exterior and interior shell surfaces. Occasionally, early diagenetic pyrite crystals, now oxidized to iron hydroxides, filled shell cavities forming internal moulds and rarely replaced the bivalve shell. The poor preservation of the bivalves reflects the environment and water chemistry of these lakes, which were heavily influenced by volcanic processes. Frequent ash deposition and decomposition of volcanic glass particles created acidic and alkaline lake and interstitial waters, which led to early diagenetic formation of authigenic aluminosilicate minerals, ferruginous internal moulds, dissolution of shell carbonate and silicification of shells.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behr, H.-J. 2002. Magadiite and Magadi chert: a critical analysis of the silica sediments in the Lake Magadi Basin, Kenya. In Sedimentation in Continental Rifts (eds Renaut, R. W. & Ashley, G. M.), pp. 257–73. Society of Economic Paleontologists and Mineralogists, Special Publication 73.Google Scholar
Berner, R. A. 1971. Principles of Chemical Sedimentology. New York: McGraw-Hill, 240 pp.Google Scholar
Bertling, M. 1992. Arachnostega n. ichnog. – burrowing traces in internal moulds of boring bivalves (late Jurassic, northern Germany). Paläontologische Zeitschrift 66, 177–85.Google Scholar
Bieler, R., Carter, J. G. & Coen, E. V. 2010. Classification of bivalve families. Malacologia 52, 113–33.Google Scholar
Butts, S. H. & Briggs, D. E. G. 2011. Silicification through time. In Taphonomy: Process and Bias Through Time (eds Allison, P. A. & Bottjer, D. J.), pp. 411–34. Topics in Geobiology 32. Dordrecht: Springer.Google Scholar
Calvert, S. E. 1974. Deposition and diagenesis of silica in marine sediments. In Pelagic Sediments on Land and Under the Sea (eds Hsü, K. J. & Jenkyns, H. C.), pp. 273–99. International Association of Sedimentologists, Special Publication 1.Google Scholar
Carson, G. A. 1991. Silicification of fossils. In Taphonomy: Releasing the Data Locked in the Fossil Record (eds Allison, P. A. & Briggs, D. E. G.), pp. 456–99. Topics in Geobiology 9. Dordrecht: Springer.Google Scholar
Carter, J. G. 1990. Glossary of skeletal biomineralization. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Volume 1 (ed. Carter, J. G.), pp. 609–71. New York: Van Nostrand Reinhold.Google Scholar
Chang, M. M., Chen, P. J., Wang, Y. Q., Wang, Y. & Miao, D. S. (eds). 2003. The Jehol Biota. Shanghai: Shanghai Scientific & Technical Publishers, 208 pp.Google Scholar
Conway Morris, S. 1990. Late Precambrian and Cambrian soft-bodied faunas. Annual Review of Earth and Planetary Sciences 18, 101–22.Google Scholar
Cox, L. R. 1969. ?Family Ferganoconchidae Martinson, 1956. In Treatise on Invertebrate Paleontology, Part N: Mollusca 6, Bivalvia 1 (ed. Moore, R. C.). Boulder, Colorado: Geological Society of America and Lawrence, Kansas: University of Kansas Press, N410 pp.Google Scholar
Duan, Y., Zheng, S. L., Hu, D. Y., Zhang, L. J. & Wang, W. L. 2009. Preliminary report on Middle Jurassic strata and fossils from Linglongta area of Jianchang, Liaoning. Global Geology 28, 143–7.Google Scholar
Fairbridge, R. W. 1983. Syndiagenesis–anadiagenesis–epidiagenesis; phases in lithogenesis. In Diagenesis in Sediments and Sedimentary Rocks 2 (eds Larsen, G. & Chilingar, G. V.), pp. 17113. Amsterdam: Elsevier.Google Scholar
Ferris, F. G., Fyfe, W. S. & Beveridge, T. J. 1987. Bacteria as nucleation sites for authigenic minerals in a meta-contaminated lake sediment. Chemical Geology 63, 225–32.Google Scholar
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D. & Hartman, B. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta 43, 1075–90.Google Scholar
Fürsich, F. T., Sha, J. G., Jiang, B. Y. & Pan, Y. H. 2007. High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE-China). Palaeogeography, Palaeoclimatology, Palaeoecology 253, 434–57.Google Scholar
Haberyan, K. A. & Hecky, R. E. 1987. The late Pleistocene and Holocene stratigraphy and paleolimnology of lakes Kivu and Tanganyika. Palaeogeography, Palaeoclimatology, Palaeoecology 61, 169–97.Google Scholar
Hethke, M., Fürsich, F. T., Jiang, B. Y. & Klaus, R. 2013a. Oxygen deficiency in Lake Sihetun; formation of the Lower Cretaceous Liaoning fossillagerstätte (China). Journal of the Geological Society, London 170, 817–32.Google Scholar
Hethke, M., Fürsich, F. T., Jiang, B. Y. & Pan, Y. H. 2013b. Seasonal to sub-seasonal palaeoenvironmental changes in Lake Sihetun (Lower Cretaceous Yixian Formation, NE China). International Journal of Earth Sciences 102, 351–78. Google Scholar
Holdaway, H. K. & Clayton, C. J. 1982. Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine 119, 371–82.Google Scholar
Huang, D. Y. 2014. Trace back the origin of recent insect orders – evidence from the Middle Jurassic Daohugou Biota. Science Foundation in China 22, 3442.Google Scholar
Jiang, B. Y. 2006. Non-marine Ferganoconcha (Bivalvia) from the Middle Jurassic in Daohugou area, Ningcheng county, Inner Mongolia, China. Acta Palaeontologica Sinica 45, 259–64.Google Scholar
Jiang, B. Y., Fürsich, F. T. & Hethke, M. 2012. Depositional evolution of the Early Cretaceous Sihetun Lake and implications for regional climatic and volcanic history in western Liaoning, NE China. Sedimentary Geology 257–260, 3144.Google Scholar
Jiang, B. Y., Fürsich, F. T., Sha, J. G., Wang, B. & Niu, Y. Z. 2011. Early Cretaceous volcanism and its impact on fossil preservation in Western Liaoning, NE China. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 255–69.Google Scholar
Konhauser, K. O. & Urrutia, M. M. 1999. Bacterial clay authigenesis: a common biogeochemical process. Chemical Geology 161, 399413.Google Scholar
Kremer, B., Kazmierczak, J., Łukomska-Kowalczyk, M. & Kempe, S. 2012. Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo‘ou’s caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12, 535–48.Google Scholar
Leng, Q. & Yang, H. 2003. Pyrite framboids associated with the Mesozoic Jehol Biota in northeastern China: implications for microenvironment during early fossilization. Progress in Natural Science 13, 206–12.Google Scholar
Loope, D. B. & Watkins, D. K. 1989. Pennsylvanian fossils replaced by red chert: early oxidation of pyritic precursors. Journal of Sedimentary Petrology 59, 375–86.Google Scholar
Li, Y., Sha, J. G., Wang, Q. F. & Chen, S. W. 2007. Lacustrine tempestite litho- and biofacies in the Lower Cretaceous Yixian Formation, Beipiao, western Liaoning, northeast China. Cretaceous Research 28, 194–8.Google Scholar
Maliva, R. G. & Siever, R. 1988. Mechanisms and controls of silicification of fossils in limestones. Journal of Geology 96, 387–98.Google Scholar
Murata, K. J. 1940 Volcanic ash as a source of silica for the silicification of wood. American Journal of Science 276, 1120–30.Google Scholar
Orr, P. J., Briggs, D. E. G. & Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science 281, 1173–5.Google Scholar
Orr, P. J., Briggs, D. E. G. & Kearns, S. L. 2008. Taphonomy of exceptionally preserved crustaceans from the Upper Carboniferous of southeastern Ireland. Palaios 23, 298312.Google Scholar
Pan, Y. H., Sha, J. G. & Fürsich, F. T. 2014. A model for organic fossilisation of the Early Cretaceous Jehol Lagerstätte based on the taphonomy of “Ephemeropsis trisetalis. Palaios 29, 363–77.Google Scholar
Pan, Y. H., Sha, J. G., Fürsich, F. T., Wang, Y. Q., Zhang, X. L. & Yao, X. G. 2012. Dynamics of the lacustrine fauna from the Early Cretaceous Yixian Formation, China: implications of volcanic and climatic factors. Lethaia 45, 299314.Google Scholar
Pan, Y. H., Sha, J. G. & Yao, X. G. 2012. Taphonomy of Early Cretaceous freshwater bivalve concentrations from the Sihetun area, western Liaoning, NE China. Cretaceous Research 34, 94106.Google Scholar
Schmitt, J. G. & Boyd, D. W. 1981. Patterns of silicification in Permian pelecypods and brachiopods from Wyoming. Journal of Sedimentary Petrology 51, 1297–308.Google Scholar
Sullivan, C., Wang, Y., Hone, D. W. E., Wang, Y. Q., Xu, X. & Zhang, F. C. 2014. The vertebrates of the Jurassic Daohugou Biota of northeastern China. Journal of Vertebrate Paleontology 34, 243–80.Google Scholar
Surdam, R. C. & Parker, R. D. 1972. Authigenic alumino-silicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming. Geological Society of America Bulletin 83, 689700.Google Scholar
Wang, B., Zhang, H. C., Jarzembowski, E. A., Fang, Y. & Zheng, D. R. 2013. Taphonomic variability of fossil insects: a biostratinomic study of Palaeontinidae and Tettigarctidae (Insecta: Hemiptera) from the Jurassic Daohugou Lagerstätte. Palaios 28, 233–42.Google Scholar
Wang, B., Zhao, F. C., Zhang, H. C., Fang, Y. & Zheng, D. R. 2012. Widespread pyritization of insects in the Early Cretaceous Jehol Biota. Palaios 27, 707–11.Google Scholar
Wang, X. L., Zhou, Z. G., He, H. Y., Jin, F., Wang, Y. Q., Zhang, J. Y., Wang, Y., Xu, X. & Zhang, F. C. 2005. Stratigraphy and age of the Daohugou Bed in Ningcheng, Inner Mongolia. Chinese Science Bulletin, 50, 2369–76.Google Scholar
Wise, S. W. & Weaver, F. M. 1979. Volcanic ash: examples of devitrification and early diagenesis. In Scanning Electron Microscopy, pp. 511–8. AMF O'Hare, Illinois: SEM Inc.Google Scholar
Wise, S. W., Weaver, F. M. & Guven, N. 1973. Early silica diagenesis in volcanic and sedimentary rocks: devitrification and replacement phenomena. In 31st Annual Proceedings of Electron Microscopists of America, pp. 206–7.Google Scholar