Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T15:49:15.664Z Has data issue: false hasContentIssue false

Two LIPs and two Earth-system crises: the impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle

Published online by Cambridge University Press:  09 June 2015

ANDREW D. SAUNDERS*
Affiliation:
Department of Geology, University of Leicester, LeicesterLE1 7RH
*
*Address for correspondence: [email protected]

Abstract

The links between the Siberian Traps and the end-Permian mass extinction, and between the North Atlantic igneous province (NAIP) and the Paleocene–Eocene thermal maximum (PETM), demonstrate a critical role for large igneous provinces (LIPs) in the disruption of the Earth-surface carbon cycle (ESCC). High-precision ages for both volcanic provinces and the associated environmental crises show that, in both cases, the crisis was contemporaneous with the volcanism. The NAIP comprises two phases: the earlier Phase 1 (c. 61 Ma) and the much more voluminous Phase 2 (c. 56 Ma), linked to the opening of the NE Atlantic. The latter triggered the PETM, the largest Cenozoic hyperthermal. The Siberian Traps are significantly more voluminous than the NAIP, and triggered the end-Permian mass extinction. The masses of volcanic CO2 emitted from these provinces may have been much greater than previously suggested as substantial gas may come from intrusive bodies deep within the crust. Precursory warming due to the accumulation of volcanic CO2 in the atmosphere likely triggered the release of low-δ13C methane hydrate, although the masses of methane hydrate alone may have been insufficient to account for the observed temperature rises. The organic C was likely strongly supplemented by magmatically derived carbon and thermogenic carbon released during emplacement of sills and dykes into C-rich sedimentary units. More data are required on the volcanic flux rates in order to refine the cause–effect relationships between LIPs and the ESCC.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarnes, I., Svensen, H., Connolly, J. A. D. & Podladchikov, Y. Y. 2010. How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochimica et Cosmochimica Acta 74 (24), 7179–95.Google Scholar
Algeo, T. J., Chen, Z. Q., Fraiser, M. L. & Twitchett, R. J. 2011a. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 308 (1–2), 111.Google Scholar
Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J. & Maynard, J. B. 2011b. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 308 (1–2), 6583.CrossRefGoogle Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. 1980. Extraterrestrial causes for the Cretaceous-Tertiary extinction. Science 208, 1095–108.CrossRefGoogle ScholarPubMed
Armstrong McKay, D. I., Tyrrell, T., Wilson, P. A. & Foster, G. L. 2014. Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study. Earth and Planetary Science Letters 403, 254–62.Google Scholar
Artemieva, I. M. & Mooney, W. D. 2001. Thermal thickness and evolution of Precambrian lithosphere: a global study. Journal of Geophysical Research 106 (B8), 16387–414.Google Scholar
Bains, S., Corfield, R. M. & Norris, R. D. 1999. Mechanisms of climate warming at the end of the Paleocene. Science 285 (5428), 724–27.Google Scholar
Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E. & Rampino, M. 2001. Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–33.Google Scholar
Benton, M. J. 2003. When Life Nearly Died. The Greatest Mass Extinction of all Time. London: Thames and Hudson, 336 pp.Google Scholar
Benton, M. J. & Twitchett, R. J. 2003. How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology & Evolution 18 (7), 358–65.Google Scholar
Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters 317, 363–73.Google Scholar
Blake, S., Self, S., Sharma, K. & Sephton, S. 2010. Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation. Earth and Planetary Science Letters 299 (3–4), 328–38.Google Scholar
Bond, D. P. G. & Wignall, P. B. 2014. Large igneous provinces and mass extinctions: an update. In Volcanism, Impacts, and Mass Extinctions (eds Keller, G. & Kerr, A. C.), pp. 2956. Geological Society of America, Special Paper 505.Google Scholar
Bowen, G. J., Maibauer, B. J., Kraus, M. J., Rohl, U., Westerhold, T., Steimke, A., Gingerich, P. D., Wing, S. L. & Clyde, W. C. 2015. Two massive, rapid releases of carbon during the onset of the Paleocene-Eocene thermal maximum. Nature Geoscience 8 (1), 44–7.CrossRefGoogle Scholar
Bowen, G. J. & Zachos, J. C. 2010. Rapid carbon sequestration at the termination of the Paleocene-Eocene Thermal Maximum. Nature Geoscience 3 (12), 866–9.Google Scholar
Bralower, T. J., Kelly, D. C., Gibbs, S., Farley, K., Eccles, L., Lindemann, T. L. & Smith, G. J. 2014a. Impact of dissolution on the sedimentary record of the Paleocene–Eocene thermal maximum. Earth and Planetary Science Letters 401 (0), 7082.Google Scholar
Bralower, T. J., Meissner, K. J., Alexander, K. & Thomas, D. J. 2014b. The dynamics of global change at the Paleocene-Eocene thermal maximum: A data-model comparison. Geochemistry, Geophysics, Geosystems 15 (10), 3830–48.Google Scholar
Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America 108 (43), 17631–34.CrossRefGoogle ScholarPubMed
Buffett, B. & Archer, D. 2004. Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth and Planetary Science Letters 227 (3–4), 185–99.Google Scholar
Burgess, S. D., Bowring, S. & Shen, S.-Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences 111 (9), 3316–21.Google Scholar
Campbell, I. A., Czamanske, G. K., Fedorenko, V. A., Hill, R. I. & Stepanov, V. 1992. Synchronism of the Siberian Traps and the Permian-Triassic boundary. Science 258, 1760–3.Google Scholar
Campbell, I. H. & Griffiths, R. W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters 99, 7993.Google Scholar
Cao, C., Love, G. D., Hays, L. E., Wang, W., Shen, S. & Summons, R. E. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters 281 (3–4), 188201.CrossRefGoogle Scholar
Cao, C. Q., Wang, W. & Jin, Y. G. 2002. Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China. Chinese Science Bulletin 47 (13), 1125–9.Google Scholar
Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J. E. A., Cui, Y., Kump, L. & Croudace, I. W. 2011. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems 12 (6), Q0AA17.Google Scholar
Chen, B., Joachimski, M. M., Shen, S.-Z., Lambert, L. L., Lai, X.-L., Wang, X.-D., Chen, J. & Yuan, D.-X. 2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research 24 (1), 7789.Google Scholar
Chen, Z., Wang, X., Hu, J., Yang, S., Zhu, M., Dong, X., Tang, Z., Peng, P. A. & Ding, Z. 2014. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene–Eocene Thermal Maximum record from central China. Earth and Planetary Science Letters 408 (0), 331–40.Google Scholar
Chenet, A.-L., Quidelleur, X., Fluteau, F., Courtillot, V. & Bajpai, S. 2007. 40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth and Planetary Science Letters 263 (1–2), 115.Google Scholar
Cohen, A. S., Coe, A. L. & Kemp, D. B. 2007. The Late Paleocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their timescales, associated environmental changes, causes and consequences. Journal of the Geological Society 164, 1093–8.Google Scholar
Coltice, N., Simon, L. & Lecuyer, C. 2004. Carbon isotope cycle and mantle structure. Geophysical Research Letters 31 (5), 5.Google Scholar
Cordery, M. J., Davies, G. F. & Campbell, I. H. 1997. Genesis of flood basalts from eclogite-bearing mantle plumes. Journal of Geophysical Research 102 (B9), 20179–97.CrossRefGoogle Scholar
Courtillot, V. 1994. Mass extinctions in the last 300 million years: one impact and seven flood basalts? Israeli Journal of Earth Sciences 43, 255–66.Google Scholar
Courtillot, V. & McLinton, J. 2002. Evolutionary Catastrophes: The Science of Mass Extinction. Cambridge: Cambridge University Press.Google Scholar
Cui, Y. & Kump, L. R. 2014. Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Reviews, published online 8 May 2014. doi: doi:10.1016/j.earscirev.2014.04.007.CrossRefGoogle Scholar
Czamanske, G. K., Gurevitch, V., Fedorenko, V. & Simonov, O. 1998. Demise of the Siberian plume: palaeogeographic and palaeotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. International Geology Review 40, 95115.Google Scholar
Dal Corso, J., Mietto, P., Newton, R. J., Pancost, R. D., Preto, N., Roghi, G. & Wignall, P. B. 2012. Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology 40 (1), 7982.Google Scholar
Deines, P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews 58 (3–4), 247–78.Google Scholar
Des Marais, D. J. & Moore, J. G. 1984. Carbon and its isotopes in mid-oceanic basaltic glasses. Earth and Planetary Science Letters 69, 4357.Google Scholar
Dickens, G. R., Oneil, J. R., Rea, D. K. & Owen, R. M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the Paleocene. Paleoceanography 10 (6), 965–71.Google Scholar
Dickin, A. P. 1988. The North Atlantic Tertiary Province. In Continental Flood Basalts (ed. Macdougall, J. D.), pp. 111–49. Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar
Dickson, A. J., Cohen, A. S. & Coe, A. L. 2012. Seawater oxygenation during the Paleocene-Eocene Thermal Maximum. Geology 40 (7), 639–42.Google Scholar
Dickson, A. J., Rees-Owen, R. L., Maerz, C., Coe, A. L., Cohen, A. S., Pancost, R. D., Taylor, K. & Shcherbinina, E. 2014. The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29 (6), 471–88.Google Scholar
Dunkley Jones, T., Ridgwell, A., Lunt, D. J., Maslin, M. A., Schmidt, D. N. & Valdes, P. J. 2010. A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 368 (1919), 2395–415.Google Scholar
Eldholm, O. & Grue, K. 1994. North Atlantic volcanic margins: dimensions and production rates. Journal of Geophysical Research 99 (B2), 2955–68.Google Scholar
Eldholm, O. & Thomas, E. 1993. Environmental impact of volcanic margin formation. Earth and Planetary Science Letters 117, 319–29.Google Scholar
Elkins-Tanton, L. T. 2007. Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. Journal of Geophysical Research-Solid Earth 112 (B3), doi: 10.1029/2005JB004072.Google Scholar
Erwin, D. H. 2005. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton and Oxford: Princeton University Press, 296 pp.Google Scholar
Fraiser, M. L. & Bottjer, D. J. 2007. Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 252 (1–2), 164–75.Google Scholar
Fram, M. & Lesher, C. E. 1993. Geochemical constraints on mantle melting during creation of the North Atlantic basin. Nature 363, 712–5.Google Scholar
Fram, M. S. & Lesher, C. E. 1997. Generation and polybaric differentiation of East Greenland early Tertiary flood basalts. Journal of Petrology 38 (2), 231–75.Google Scholar
Fram, M. S., Lesher, C. E. & Volpe, A. M. 1998. Mantle melting systematics: the transition from continental to oceanic volcanism on the southeast Greenland margin. In Scientific Results, Ocean Drilling Program 152 (eds Saunders, A. D., Larsen, H. C. & Wise, S.), pp. 373–86. College Station, Texas: Ocean Drilling Program.Google Scholar
Ganino, C. & Arndt, N. T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37 (4), 323–6.Google Scholar
Geikie, A. 1903. Textbook of Geology, 4th edition. London: MacMillan & Co. Ltd. Google Scholar
Gladczenko, T. P., Coffin, M. F. & Eldholm, O. 1997. Crustal structure of the Ontong Java Plateau: modelling of new gravity and existing seismic data. Journal of Geophysical Research 102 (B10), 22711–29.Google Scholar
Godderis, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. 2014. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews 128, 122–38.Google Scholar
Grard, A., Francois, L. M., Dessert, C. & Goddéris, Y. 2005. Basaltic volcanism and mass extinction at the Permo-Triassic boundary: environmental impact and modeling of the global carbon cycle. Earth and Planetary Science Letters 234, 207–21.Google Scholar
Grice, K., Cao, C. Q., Love, G. D., Bottcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W. & Jin, Y. G. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307 (5710), 706–9.Google Scholar
Hallam, A. 2005. Catastrophes and Lesser Calamities: The Causes of Mass Extinctions. Oxford: Oxford University Press, 240 pp.Google Scholar
Hallam, A. & Wignall, P. B. 1997. Mass Extinctions and Their Aftermath. New York, NY: Oxford University Press, 320 pp.Google Scholar
Handley, L., Crouch, E. M. & Pancost, R. D. 2011. A New Zealand record of sea level rise and environmental change during the Paleocene-Eocene Thermal Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 305 (1–4), 185200.Google Scholar
Hansen, H. J. 2006. Stable isotopes of carbon from basaltic rocks and their possible relation to atmospheric isotope excursions. Lithos 92 (1–2), 105–16.Google Scholar
Hartley, M. E., Maclennan, J., Edmonds, M. & Thordarson, T. 2014. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth and Planetary Science Letters 393, 120–31.CrossRefGoogle Scholar
Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., Blake, S., Naldrett, A. J., Doherty, W. & Gorbachev, N. S. 1995. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34, 6188.Google Scholar
Holser, W. T., Schönlaub, H.-P., Attrep, M., Boeckelmann, K., Klein, P., Magaritiz, M., Orth, C. J., Fenninger, A., Jenny, C., Kralik, M., Mauritsch, H., Pak, E., Schramm, J.-M., Stattegger, K. & Schmöller, R. 1989. A unique geochemical record at the Permian-Triassic boundary. Nature 337, 3944.Google Scholar
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto, T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L. & Williams, B. 2012. The geological record of ocean acidification. Science 335 (6072), 1058–63.Google Scholar
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–38.Google Scholar
Ivanov, A. V., He, H., Yan, L., Ryabov, V. V., Shevko, A. Y., Palesskii, S. V. & Nikolaeva, I. V. 2013. Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Science Reviews 122 (0), 5876.Google Scholar
Ivanov, A. V., He, H., Yang, L., Nikolaeva, I. V. & Palesskii, S. V. 2009. 40Ar/39Ar dating of intrusive magmatism in the Angara-Taseevskaya syncline and its implication for duration of magmatism of the Siberian traps. Journal of Asian Earth Sciences 35 (1), 112.Google Scholar
Jones, T. D., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A., Valdes, P. J. & Maslin, M. 2013. Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum. Earth-Science Reviews 125, 123–45.Google Scholar
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, A., Davis, D. W. & Trofimov, V. R. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214, 7591.Google Scholar
Kamo, S. L., Czamanske, G. K. & Krogh, T. E. 1996. A minimum U-Pb age for Siberian flood-basalt volcanism. Geochimica et Cosmochimica Acta 60 (18), 3505–11.Google Scholar
Katz, M. E., Pak, D. K., Dickens, G. R. & Miller, K. G. 1999. The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science 286, 1531–3.Google Scholar
Kennett, J. P. & Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353 (6341), 225–9.Google Scholar
Kent, D. V., Cramer, B. S., Lanci, L., Wang, D., Wright, J. D. & Van der Voo, R. 2003. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth and Planetary Science Letters 211, 1326.Google Scholar
Kidder, D. L. & Worsley, T. R. 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology 203 (3–4), 207–37.CrossRefGoogle Scholar
Knox, R. W. & Morton, A. C. 1988. The record of early Tertiary N Atlantic volcanism in sediments of the North Sea Basin. In Early Tertiary Volcanism and the Opening of the NE Atlantic (eds Morton, A. C. & Parson, L. M.), pp. 407–19. Geological Society of London, Special Publication no. 39.Google Scholar
Korte, C. & Kozur, H. W. 2010. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. Journal of Asian Earth Sciences 39 (4), 215–35.Google Scholar
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R. & Wijbrans, J. R. 2008. Synchronizing rock clocks of Earth history. Science 320 (5875), 500–4.Google Scholar
Kump, L. R., Pavlov, A. & Arthur, M. A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33 (5), 397400.Google Scholar
Kvenvolden, K. A. 2002. Methane hydrate in the global organic carbon cycle. Terra Nova 14 (5), 302–6.Google Scholar
Larsen, L. M., Watt, W. S. & Watt, M. 1989. Geology and petrology of the Lower Tertiary plateau basalts of the Scoresby Sund region, East Greenland. Bulletin of the Geological Survey of Greenland 157, 1164.Google Scholar
Larsen, R. B. & Tegner, C. 2006. Pressure conditions for the solidification of the Skaergaard intrusion: eruption of East Greenland flood basalts in less than 300,000 years. Lithos 92 (1–2), 181–97.Google Scholar
Larsen, T. B., Yuen, D. A. & Storey, M. 1999. Ultrafast mantle plumes and implications for flood basalt volcanism in the northern Atlantic region. Tectonophysics 311, 3143.Google Scholar
Lawver, L. A. & Müller, R. D. 1994. Iceland hotspot track. Geology 22, 311–4.Google Scholar
Lightfoot, P. C., Naldrett, A. J., Gorbachev, N. S., Doherty, W. & Fedorenko, V. A. 1990. Geochemistry of the Siberian Traps of the Noril'sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contributions to Mineralogy and Petrology 104, 631–44.Google Scholar
Majorowicz, J., Grasby, S. E., Safanda, J. & Beauchamp, B. 2014. Gas hydrate contribution to Late Permian global warming. Earth and Planetary Science Letters 393 (0), 243–53.Google Scholar
Maslin, M. A. & Thomas, E. 2003. Balancing the deglacial global carbon budget: the hydrate factor. Quaternary Science Reviews 22 (15–7), 1729–36.Google Scholar
Mattey, D. P., Carr, R. H., Wright, I. P. & Pillinger, C. T. 1984. Carbon isotopes in submarine basalts. Earth and Planetary Science Letters 70, 196206.Google Scholar
McCartney, K., Huffman, A. R. & Tredoux, M. 1990. A paradigm for endogenous causation of mass extinctions. In Global Catastrophes in Earth History (eds Sharpton, V. L. & Ward, P. D.), pp. 125–38. Geological Society of America, Special Paper no. 247.Google Scholar
McLean, D. M. 1985. Deccan traps mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Research 6 (3), 235–59.Google Scholar
Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M. & Payne, J. L. 2011. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters 302 (3–4), 378–84.Google Scholar
Mussard, K. M., Le Hir, G., Fluteau, F., Lefebvre, V. & Godderis, Y. 2014. Modeling the carbon-sulfate interplays in climate changes related to the emplacement of continental flood basalts. In Volcanism, Impacts, and Mass Extinctions (eds Keller, G. & Kerr, A. C.), pp. 339–52. Geological Society of America, Special Paper no. 505.Google Scholar
Officer, C. B. & Drake, C. L. 1983. The Cretaceous-Tertiary transition. Science 219 (4591), 1383–90.Google Scholar
Officer, C. B. & Drake, C. L. 1985. Terminal Cretaceous environmental events. Science 227 (4691), 1161–7.Google Scholar
Officer, C. B., Hallam, A., Drake, C. L. & Devine, J. D. 1987. Late Cretaceous and paroxysmal Cretaceous Tertiary extinctions. Nature 326 (6109), 143–9.CrossRefGoogle Scholar
Ogden, D. E. & Sleep, N. H. 2012. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America 109 (1), 5962.Google Scholar
Pagani, M., Caldeira, K., Archer, D. & Zachos, J. C. 2006. An ancient carbon mystery. Science 314 (5805), 1556–7.Google Scholar
Pälicke, C., Delaney, M. L. & Zachos, J. C. 2014. Deep-sea redox across the Paleocene-Eocene thermal maximum. Geochemistry Geophysics Geosystems 15 (4), 1038–53.Google Scholar
Payne, J. L. & Clapham, M. E. 2012. End-Permian Mass Extinction in the Oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences 40, 89111.Google Scholar
Payne, J. L. & Kump, L. R. 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and Planetary Science Letters 256 (1–2), 264–77.Google Scholar
Payne, J. L., Lehrmann, D. J., Follett, D., Seibel, M., Kump, L. R., Riccardi, A., Altiner, D., Sano, H. & Wei, J. 2007. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geological Society of America Bulletin 119 (7–8), 771–84.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P. & Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305 (5683), 506–9.Google Scholar
Payne, J. L., Turchyn, A. V., Paytan, A., DePaolo, D. J., Lehrmann, D. J., Yu, M. & Wei, J. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences 107 (19), 8543–8.Google Scholar
Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E. & Zachos, J. C. 2014. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29 (5), 2014PA002621.Google Scholar
Racki, G. 2012. The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome”. Acta Palaeontologica Polonica 57 (4), 681702.Google Scholar
Racki, G. & Wignall, P. B. 2005. Late Permian double-phased mass extinction and volcanism: an oceanographic perspective. Developments in Palaeontology and Stratigraphy 20, 263–97.Google Scholar
Rampino, M. R. & Caldeira, K. 2005. Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17 (6), 554–9.Google Scholar
Rampino, M. R., Self, S. & Stothers, R. B. 1988. Volcanic winters. Annual Review of Earth and Planetary Science 16, 7399.Google Scholar
Rampino, M. R. & Stothers, R. B. 1988. Flood basalt volcanism during the past 250 million years. Science 241, 663–8.Google Scholar
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206 (4415), 217–8.Google Scholar
Ravizza, G., Norris, R. N., Blusztajn, J. & Aubry, M. P. 2001. An osmium isotope excursion associated with the Late Paleocene thermal maximum: Evidence of intensified chemical weathering. Paleoceanography 16 (2), 155–63.Google Scholar
Reichow, M. K., Pringle, M. S., Al'Mukhamedov, A. I., Allen, M. B., Andreichev, V. L., Buslov, M. M., Davies, C. E., Fedoseev, G. S., Fitton, J. G., Inger, S., Medvedev, A. Y., Mitchell, C., Puchkov, V. N., Safonova, I. Y., Scott, R. A. & Saunders, A. D. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth and Planetary Science Letters 277 (1–2), 920.Google Scholar
Reichow, M. K., Saunders, A. D., White, R. V., Pringle, M. S., Al'Mukhamedov, A. I., Medvedev, A. & Korda, N. 2002. New 40Ar–39Ar data on basalts from the West Siberian Basin: Extent of the Siberian flood basalt province doubled. Science 296, 1846–9.Google Scholar
Renne, P. R. & Basu, A. R. 1991. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science 253, 176–9.Google Scholar
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L. & DePaolo, D. J. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology 145 (1–2), 117–52.Google Scholar
Renne, P. R., Zichao, Z., Richards, M. A., Black, M. T. & Basu, A. R. 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science 269, 1413–6.Google Scholar
Retallack, G. J. & Jahren, A. H. 2008. Methane release from igneous intrusion of coal during Late Permian extinction events. Journal of Geology 116, 120.Google Scholar
Retallack, G. J. & Krull, E. S. 2006. Carbon isotopic evidence for terminal-Permian methane outbursts and their role in extinctions of animals, plants, coral reefs, and peat swamps. In Wetlands Through Time (eds Greb, S. F. & DiMichele, W. A.), pp. 249–68. Special Paper of the Geological Society of America, Special Paper no. 399.Google Scholar
Riccardi, A. L., Arthur, M. A. & Kump, L. R. 2006. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochimica et Cosmochimica Acta 70 (23), 5740–52.Google Scholar
Riccardi, A., Kump, L. R., Arthur, M. A. & D'Hondt, S. 2007. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology 248 (1–2), 7381.Google Scholar
Richards, M. A., Duncan, R. A. & Courtillot, V. E. 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–7.Google Scholar
Röhl, U., Westerhold, T., Bralower, T. J. & Zachos, J. C. 2007. On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochemistry Geophysics Geosystems 8, Q12002.Google Scholar
Ross, P.-S., Ukstins-Peate, I., McClintock, M. K., Xu, Y. G.,Skilling, I. P., White, J. D. L. & Houghton, B. F. 2005. Mafic volcaniclastic deposits in flood basalt provinces: a review. Journal of Volcanology and Geothermal Research 145, 281314.Google Scholar
Saunders, A. D., England, R. W., Reichow, M. K. & White, R. V. 2005. A mantle plume origin for the Siberian Traps: uplift and extension in the West Siberian Basin, Russia. Lithos 79, 407–24.Google Scholar
Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J. & Kent, R. W. 1997. The North Atlantic Igneous Province. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 4593. American Geophysical Union, Monograph no. 100.Google Scholar
Saunders, A. D., Jones, S. M., Morgan, L. A., Pierce, K. L., Widdowson, M. & Xu, Y. G. 2007. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chemical Geology 241 (3–4), 282318.Google Scholar
Saunders, A. D., Larsen, H. C. & Fitton, J. G. 1998. Magmatic development of the southeast Greenland margin and evolution of the Iceland plume: geochemical constraints from Leg 152 (eds Saunders, A. D., Larsen, H. C. & Wise, S. W. J.), pp. 479501. College Station, TX: Ocean Drilling Program.Google Scholar
Saunders, A. & Reichow, M. 2009. The Siberian Traps and the End-Permian mass extinction: a critical review. Chinese Science Bulletin 54 (1), 2037.Google Scholar
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T. & Willumsen, P. S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327 (5970), 1214–8.Google Scholar
Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S. 2008. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science 319 (5870), 1654–7.Google Scholar
Self, S., Thordarson, T. & Widdowson, M. 2005. Gas fluxes from flood basalt eruptions. Elements 1 (5), 283–7.Google Scholar
Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth and Planetary Science Letters 248 (1–2), 517–31.Google Scholar
Sharma, M. 1997. Siberian Traps. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 273–95. American Geophysical Union, Monograph no. 100.Google Scholar
Shen, J., Algeo, T. J., Zhou, L., Feng, Q., Yu, J. & Ellwood, B. 2012. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology 10 (1), 82103.Google Scholar
Shen, S. Z., Crowley, J. L., Wang, Y., Bowring, S. A., Erwin, D. H., Sadler, P. M., Cao, C. Q., Rothman, D. H., Henderson, C. M., Ramezani, J., Zhang, H., Shen, Y. N., Wang, X. D., Wang, W., Mu, L., Li, W. Z., Tang, Y. G., Liu, X. L., Liu, L. J., Zeng, Y., Jiang, Y. F. & Jin, Y. G. 2011. Calibrating the End-Permian Mass Extinction. Science 334 (6061), 1367–72.Google Scholar
Sinton, C. W., Hitchen, K. & Duncan, R. A. 1998. 40Ar−39Ar geochronology of silicic and basic volcanic rocks on the margins of the North Atlantic. Geological Magazine 135 (2), 161–70.Google Scholar
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichart, G.-J., Damste, J. S. S., Crouch, E. M. & Dickens, G. R. 2007. Environmental precursors to rapid light carbon injection at the Paleocene/Eocene boundary. Nature 450 (7173), 1218–21.Google Scholar
Smirnov, A. V. & Tarduno, J. A. 2010. Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: implications for the nature of hotspots and mantle plumes. Earth and Planetary Science Letters 297 (3–4), 687–90.Google Scholar
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A. & Vasiliev, Y. R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477 (7364), 312–6.Google Scholar
Song, H., Tong, J., Algeo, T. J., Horacek, M., Qiu, H., Song, H., Tian, L. & Chen, Z.-Q. 2013a. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change 105 (0), 720.Google Scholar
Song, H., Wignall, P. B., Tong, J. & Yin, H. 2013b. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience 6 (1), 52–6.Google Scholar
Storey, M., Duncan, R. A. & Swisher, C. C. 2007. Paleocene-Eocene thermal maximum and the opening of the northeast Atlantic. Science 316 (5824), 587–9.Google Scholar
Storey, M., Duncan, R. A. & Tegner, C. 2007. Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot. Chemical Geology 241 (3–4), 264–81.Google Scholar
Stothers, R. B. 1993. Flood basalts and extinction events. Geophysical Research Letters 20 (13), 1399–402.Google Scholar
Stothers, R. B., Wolff, J. A., Self, S. & Rampino, M. R. 1986. Basaltic fissure eruptions, plume heights, and atmospheric aerosols. Geophysical Research Letters 13 (8), 725–8.Google Scholar
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L & Lai, X. 2012. Lethally hot temperatures during the early Triassic greenhouse. Science 338 (6105), 366–70.Google Scholar
Svensen, H., Planke, S., Chevallier, L., Malthe-Sorenssen, A., Corfu, F. & Jamtveit, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters 256 (3–4), 554–66.Google Scholar
Svensen, H., Planke, S. & Corfu, F. 2010. Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society of London 167, 433–6.Google Scholar
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R. & Rey, S. S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–5.Google Scholar
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y. & Jamtveit, B. 2009a. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277 (3–4), 490500.Google Scholar
Svensen, H., Schmidbauer, N., Roscher, M., Stordal, F. & Planke, S. 2009b. Contact metamorphism, halocarbons, and environmental crises of the past. Environmental Chemistry 6 (6), 466–71.Google Scholar
Takahashi, S., Kaiho, K., Oba, M. & Kakegawa, T. 2010. A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa. Palaeogeography, Palaeoclimatology, Palaeoecology 292 (3–4), 532–9.Google Scholar
Takahashi, S., Oba, M., Kaiho, K., Yamakita, S. & Sakata, S. 2009. Panthalassic oceanic anoxia at the end of the Early Triassic: A cause of delay in the recovery of life after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 274 (3–4), 185–95.Google Scholar
Takahashi, S., Yamasaki, S.-I., Ogawa, Y., Kimura, K., Kaiho, K., Yoshida, T. & Tsuchiya, N. 2014. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth and Planetary Science Letters 393, 94104.Google Scholar
Thomas, B. C., Melott, A. L., Jackman, C. H., Laird, C. M., Medvedev, M. V., Stolarski, R. S., Gehrels, N., Cannizzo, J. K., Hogan, D. P. & Ejzak, L. M. 2005. Gamma-ray bursts and the earth: exploration of atmospheric, biological, climatic, and biogeochemical effects. Astrophysical Journal 634 (1), 509–33.Google Scholar
Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E. & Bohaty, S. 2002. Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30 (12), 1067–70.Google Scholar
Thomas, E. 1989. Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters. In Origins and Evolution of the Antarctic Biota (ed. Crame, J. A.), pp. 283–96. Geological Society of London, Special Publication no. 47.Google Scholar
Thomas, E. & Shackleton, N. J. 1996. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. In Correlation of the Early Paleogene in Northwest Europe (eds O'B. Knox, R. W., Corfield, R. M. & Dunay, R. E.), pp. 401–41. Geological Society of London, Special Publication no. 101.Google Scholar
Thomson, K. 2004. Sill complex geometry and internal architecture: a 3D seismic perspective. In Physical Geology of High-Level Magmatic Systems (eds Breitkreuz, C. & Petford, N.), pp. 229–32. Geological Society of London, Special Publication no. 234.Google Scholar
Thordarson, T. & Self, S. 1996. Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA. Journal of Volcanology and Geothermal Research 74, 4973.Google Scholar
Thordarson, T. & Self, S. 2003. Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. Journal of Geophysical Research 108 (D1), doi: 10.1029/2001JD002042.Google Scholar
Thordarson, T., Self, S., Oskarsson, N. & Hulseboch, T. 1996. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland. Bulletin Volcanologique 58, 205–25.Google Scholar
Tolan, T. L., Reidel, S. P., Beeson, M. H., Anderson, J. L., Fecht, K. R. & Swanson, D. A. 1989. Revisions to the estimates of the areal extent and volume of the Columbia River Basalt Group. In Volcanism and Tectonism in the Columbia River Flood-basalt Province (eds Reidel, S. P. & Hooper, P. R.), pp. 120. Geological Society of America, Special Paper no. 239.Google Scholar
Twitchett, R. J. 2007. Climate change across the Permo-Triassic boundary. In Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer models and Biological Proxies (eds Williams, M., Haywodd, A. M., Gregory, F. J. & Schmidt, D. N.), pp. 191200. London: The Geological Society. Special Publication of the Micropalaeontological Society.Google Scholar
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H. & Wignall, P. B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29 (4), 351–4.Google Scholar
Tyrrell, G. W. 1937. Flood basalts and fissure eruptions. Bulletin of Volcanology 1, 89111.Google Scholar
Vogt, P. R. 1972. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature 240 (5380), 338–42.Google Scholar
Wang, Y., Sadler, P. M., Shen, S.-Z., Erwin, D. H., Zhang, Y.-C., Wang, X.-D., Wang, W., Crowley, J. L. & Henderson, C. M. 2014. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40 (1), 113–29.Google Scholar
Westerhold, T., Roehl, U. & Laskar, J. 2012. Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochemistry Geophysics Geosystems 13, Q06015.Google Scholar
White, R. S. & McKenzie, D. P. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research 94, 7685–729.Google Scholar
White, R. S., Spence, G. D., Fowler, S. R., McKenzie, D. P., Westbrook, G. K. & Bowen, A. N. 1987. Magmatism at rifted continental margins. Nature 330, 439–44.Google Scholar
White, R. V. & Saunders, A. D. 2005. Volcanism, impact and mass extinctions: incredible or credible coincidences. Lithos 79, 299316.Google Scholar
Wieczorek, R., Fantle, M. S., Kump, L. R. & Ravizza, G. 2013. Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum. Geochimica et Cosmochimica Acta 119, 391410.Google Scholar
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews 53 (1–2), 133.Google Scholar
Wignall, P. B. & Hallam, A. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93 (1–2), 2146.Google Scholar
Wignall, P. B., Morante, R. & Newton, R. 1998. The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies fauna and trace fossils. Geological Magazine 135 (1), 4762.Google Scholar
Wignall, P. B. & Newton, R. 2003. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. Palaios 18 (2), 153–67.Google Scholar
Wignall, P. B. & Twitchett, R. J. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–8.Google Scholar
Wooden, J. L., Czamanske, G. K., Fedorenko, V. A., Arndt, N. T., Chauvel, C., Bouse, R. M., King, B. W., Knight, R. J. & Siems, D. F. 1993. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. Geochimica et Cosmochimica Acta 57, 3677–704.Google Scholar
Wotzlaw, J.-F., Bindeman, I. N., Schaltegger, U., Brooks, C. K. & Naslund, H. R. 2012. High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex. Earth and Planetary Science Letters 355–356(0), 199212.Google Scholar
Wright, J. D. & Schaller, M. F. 2013. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. Proceedings of the National Academy of Sciences 110 (40), 15908–13.Google Scholar
Zachos, J. C., McCarren, H., Murphy, B., Roehl, U. & Westerhold, T. 2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth and Planetary Science Letters 299 (1–2), 242–9.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292 (5517), 686–93.Google Scholar
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicola, M., Raffi, I., Lourens, L. J., McCarren, H. & Kroon, D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611–15.Google Scholar
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J. & Premoli-Silva, I. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302 (5650), 1551–4.Google Scholar
Zeebe, R. E. 2013. What caused the long duration of the Paleocene-Eocene Thermal Maximum? Paleoceanography 28 (3), 440–52.Google Scholar