Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-21T23:57:59.692Z Has data issue: false hasContentIssue false

Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension

Published online by Cambridge University Press:  01 May 2009

A. S. Mackenzie
Affiliation:
Organic Geochemistry Unit, University of Bristol, School of Chemistry, Cantock's Close, Bristol BS8 ITS, U.K.
D. McKenzie
Affiliation:
Bullard Laboratories, Department of Earth Sciences, Madingley Rise, Madingley Road, Cambridge CB3 OEZ, U.K.

Abstract

Summary. The reactions involved in oil generation are of great economic importance, but remain to be studied in detail. We have investigated the rates of three reactions which occur before and during the early stages of oil formation, and have used the predicted thermal and subsidence history of stretched basins to estimate the six reaction constants. Two of the reactions are isomerization reactions, at C-20 in a sterane and at C-22 in a hopane hydrocarbon. The third reaction converts C-ring monoaromatic to triaromatic steroid hydrocarbons. No single measure of maturity can describe the progress of these reactions. In old basins, such as the North Sea, both isomerization reactions are almost complete before appreciable aromatization has occurred, whereas in young basins, such as the Pannonian Basin in Hungary, aromatization is almost complete before appreciable isomerization of the steranes has occurred. We show that the calculated progress of these reactions agrees well with that observed in both basins if the frequency factors and activation energies are 6 x 10-3 s-1 and 91 kJ mol-1, 0.016 s-1 and 91 kJ mol-1, 1.8 x 1024 s-1 and 200 kJ mol-1 for the isomerization of steranes, of hopanes, and the aromatization of steroid hydrocarbons respectively. The rate of conversion of the R to the S form was taken to be 1.174 and 1.564 times that of the reverse reactions for sterane and hopane isomerizations respectively, and the aromatization reaction was assumed to be irreversible. All three reactions were assumed to be first order and unimolecular. The aromatization rate is consistent with laboratory observations. The rate of hopane isomerization is not, and different reaction mechanisms probably dominate at different temperatures. The same constants can be used to predict the progress of the reactions in basins which have been uplifted by inversion, such as the Lower Saxony Basin in West Germany. The geochemical observations provide estimates of the amount and time of uplift which agree with those from geological studies. Geochemical observations from the eastern part of the Paris Basin suggest that this region has also been uplifted by between 1 and 2 km.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bally, A. W. 1982. Remarks following a paper by J. F. Dewey and W. C. Pitman, ‘Carboniferous-Permian basins of the U.S. continental interibr.’ In The Evolution of Sedimentary Basins (ed. P., Kent, Bott, M. H. P., McKenzie, D. P. and Williams, C. A.). Phil. Trans. R. Soc. A 305, 147–8.Google Scholar
Beaumont, C. 1978. The evolution of sedimentary basins on a viscoelastic lithosphere. Geophys. J. R. astr. Soc. 55, 471–97.CrossRefGoogle Scholar
Beaumont, C. 1981. Foreland Basins. Geophys. J. R. astr. Soc. 65, 291329.CrossRefGoogle Scholar
Berry, R. S., Rice, S. A. & Ross, J. 1980. Physical Chemistry. New York: John Wiley.Google Scholar
Brunet, M. F. 1981. Etude quantitative de la subsidence du Bassin de Paris. Thèse de Doctorat de 3ème cycle, Univ. Pierre et Marie Curie.Google Scholar
Brunet, M. F. & le Pichon, X. 1982. Subsidence of the Paris Basin. J. geophys. Res. 87, 8547–60.CrossRefGoogle Scholar
Budiansky, B. 1970. Thermal and thermoelastic properties of isotropic composites. J. Composite Materials 4, 286–95.CrossRefGoogle Scholar
Christie, P. A. F. & Sclater, J. G. 1980. An extensional origin for the Buchan and Witchground Graben in the North Sea. Nature, Lond. 283, 729–32.CrossRefGoogle Scholar
Day, G. A., Cooper, B. A., Anderson, G., Burgers, W. F. J., Ronnevik, H. C. & Schoneich, H. 1981. Seismic structure maps of the North Sea. In Petroleum Geology of the Continental Shelf of North-West Europe (ed. Illing, L. V. and Hobson, G. D.), pp. 7684. London: Institute of Petroleum.Google Scholar
Dastillung, M. & Albrecht, P. 1977. ΔSterenes as diagenetic intermediates in sediments. Nature, Lond. 269, 678–9.CrossRefGoogle Scholar
Deroo, G. 1967. Influence de la température et de la pression sur la genèse des hydrocarbures. Etude des argiles du Lias du bassin de Paris. Fascicule 1: Reconstitution de l' histoire de l'enfouissement du Toarcien dans le bassin de Paris. Internal report Inst. Fr. Pétr. No. 14427.Google Scholar
England, P. C. 1981. Constraints on continental lithospheric extension. Eos 62, 1022 (abstract).Google Scholar
England, P. C. & Richardson, S. W. 1980. Erosion and the age dependence of continental heat flow. Geophys. J. R. astr. Soc. 62, 421–37.CrossRefGoogle Scholar
Ensminger, A., Albrecht, P., Ourisson, G. & Tissot, B. 1977. Evolution of polycyclic alkanes under the effects of burial (early Toarcian shales, Paris Basin). In Advances in Organic Geochemistry 1975 (ed. R., Campos and J., Gõni), pp. 4552: Madrid: ENADIMSA.Google Scholar
Ensminger, A., Joly, G. & Albrecht, P. 1978. Rearranged steranes in sediments and crude oils. Tetrahedron Lett. 18, 1575–8.CrossRefGoogle Scholar
Ensminger, A., Van Dorsselaer, A., Spyckerelle, C., Albrecht, P. & Ourisson, G. 1974. Pentacyclic triterpanes of the hopane type as ubiquitous geochemical markers: origin and significance. In Advances in Organic Geochemistry 1973 (ed. B., Tissot and F., Bienner), pp. 245–60. Paris: Editions Technip.Google Scholar
Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J. & Boutefeu, A. 1977. Méthode rapide de caractérisation des roches mères de leur potentiel pétrolier et de leur degré d'évolution. Revue Inst. fr. Pétrole 32, 2342.CrossRefGoogle Scholar
Gaskell, S. J. & Eglinton, G. 1976. Sterols of a contemporary lacustrine sediment. Geochim. cosmochim. Acta 40, 1221–8.CrossRefGoogle Scholar
Glasstone, S., Laidler, K. J. & Eyring, H. 1941. The Theory of Rate Processes. New York: McGraw-Hill.Google Scholar
Goy, G. 1979. Les ‘schistes cartons' (Toarcien Inférieur) du bassin de Paris. Thése de Doctorat ès Sciences, Univ. Pierre et Marie Curie.Google Scholar
Gutsche, C. D. & Pasto, D. J. 1975. Fundamentals of Organic Chemistry, pp. 507–19. New Jersey: Prentice Hall.Google Scholar
Hoffmann, C. F., Mackenzie, A. S., Lewis, C. A., Maxwell, J. R., Oudin, J. L., Vandenbroucke, M. & Durand, B. (in the press). A biological marker study of coals, shales and oils of Mahakam Delta, Kalimantan. Chem. Geol. Google Scholar
Hood, A., Gutjahr, C. C. M. & Heacock, R. L. 1975. Organic metamorphism and the generation of petroleum. Bull. Am. Ass. Petrol. Geol. 59, 986–96.Google Scholar
Hunt, J. M. 1979. Petroleum Geochemistry and Geology . San Francisco: W. H. Freeman.Google Scholar
Hussler, G., Chappe, B., Wehrung, P. & Albrecht, P. 1981. Identification of C27—C29 ring A monoaromatic steroids in Cretaceous black shales. Nature 294, 556–8.CrossRefGoogle Scholar
Jarvis, G. T. & McKenzie, D. P. 1980. Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett. 48, 4252.CrossRefGoogle Scholar
Jordan, T. 1981. Thrust loads and foreland basin evolution, Cretaceous western United States. Bull. Am. Ass. Petrol. Geol. 64, 2506–20.Google Scholar
Koesoemadinata, R. P. 1978. Sedimentary framework of Tertiary coal basins of Indonesia, In Proceedings of the Third Regional Conference on Geology and Mineral Resources of South East Asia, (ed. P., Natalaya), pp. 621–40. New York: Wiley.Google Scholar
Lopatin, N. V. 1971. Temperature and geologic time as factors in coalification [in Russian]. Akad. Nauk S.S.R. Izv. Ser. Geol. 3, 95106.Google Scholar
Ludwig, B., Hussler, G., Wehrung, P. & Albrecht, P. 1981. C26—C29 triaromatic steroid derivatives in sediments and petroleums. Tetrahedron Lett. 22, 3313–6.CrossRefGoogle Scholar
Mackenzie, A. S. 1980. Application of biological marker compounds to subsurface geological processes. Ph.D. thesis, University of Bristol.Google Scholar
Mackenzie, A. S., Brassell, S. C., Eglinton, G. & Maxwell, J. R. 1982. Chemical fossils — the geological fate of steroids. Science 217, 491504.CrossRefGoogle ScholarPubMed
Mackenzie, A. S., Hoffmann, C. F. & Maxwell, J. R. 1981. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. III. Changes in aromatic steroid hydrocarbons. Geochim. cosmochim. Acta 45, 1345–55.CrossRefGoogle Scholar
Mackenzie, A. S., Lamb, N. A. & Maxwell, J. R. 1982. Steroid hydrocarbons and the thermal history of sediments. Nature 295, 223–6.CrossRefGoogle Scholar
Mackenzie, A. S., Lewis, C. A. & Maxwell, J. R. 1981. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. IV. Laboratory thermal alteration studies. Geochirn. cosmochim. Acta 45, 2369–76.CrossRefGoogle Scholar
Mackenzie, A. S., Leythaeuser, D., Altebäumer, F. -J., Disko, U. & Rullkötter, J. (to be submitted). Molecular measurements of maturity for Lias δ shales in N.W. Germany. Geochim. cosmochim. Acta. Google Scholar
Mackenzie, A. S. & Maxwell, J. R. 1981. Assessment of thermal maturation in sedimentary rocks by molecular measurements. In Organic Maturation Studies and Fossil Fuel Exploration (ed. J., Brooks), pp. 239–54. London: Academic Press.Google Scholar
Mackenzie, A. S., Patience, R. L., Maxwell, J. R., Vandenbroucke, M. & Durand, B. 1980. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. cosmochim. Acta 44, 1709–21.CrossRefGoogle Scholar
Magnier, P. L., Oki, T. & Witoelar Kartaadiputra, L. 1975. The Mahakam Delta, Kalimantan, Indonesia. In Proc. 9th World Petroleum Congress 2, 239–50. London: Heyden.Google Scholar
Maxwell, J. R., Mackenzie, A. S. & Volkman, J. R. 1980. Configuration at C-24 in steranes and sterols. Nature, Lond. 286, 694–7.CrossRefGoogle Scholar
McKenzie, D. P. 1978. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40, 2532.CrossRefGoogle Scholar
McKenzie, D. P. 1981. The variation of temperature with time and hydrocarbon maturation in sedimentary basins formed by extension. Earth Planet. Sci. Lett. 55, 8798.CrossRefGoogle Scholar
Mégnien, C. et al. 1980. Synthèse géologique du Bassin de Paris, Mémoire B.R.G.M. 101 and 102.Google Scholar
Nwachukwu, S. O. 1976. Approximate geothermal gradients in Niger Delta sedimentary basin. Bull. Am. Ass. Petrol. Geol. 60, 1073–7.Google Scholar
Ourisson, G., Albrecht, P. & Rohmer, M. 1979. The hopanoids: Palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51, 709–29.CrossRefGoogle Scholar
Oxburgh, E. R. & Andrews-Speed, C. P. 1981. Temperature, thermal gradients and heat flow in the southwestern North Sea. In Petroleum Geology of the Continental Shelf of North West Europe (ed. Illing, L. V. and Hobson, G. D.), pp. 141–51. London: Institute of Petroleum.Google Scholar
Petrov, A. A., Pustil'nikova, S. D., Abriutina, N. N. & Kagramonova, G. R. 1976. Petroleum steranes and triterpanes [in Russian]. Neftekhimiia 16, 411–27.Google Scholar
Phillipi, G. T. 1965. On the depth, time and mechanism of petroleum generation. Geochim. cosmochim. Acta 29, 1021–49.CrossRefGoogle Scholar
Pomerol, C. 1974. Le Bassin de Paris. In Géologie de la France, vol. 1 (ed. J., Debelmas). Paris: Doin.Google Scholar
Putnis, A. & McConnell, J. D. C. 1980. Principles of Mineral Behaviour. Oxford: Blackwell Scientific Publications.Google Scholar
Reznikov, A. N. 1967. The geochemical conversion of oils and condensates in the catagenesis zone [in Russian]. Geologiya Nefti i Gaza 5, 24–8.Google Scholar
Rhead, M. M., Eglinton, G. & Draffan, G. H. 1971. Hydrocarbons produced by the thermal alteration of cholesterol under conditions stimulating the maturation of sediments. Chem. Geol. 8, 277–97.CrossRefGoogle Scholar
Royden, L. & Keen, C. E. 1980. Rifting process and thermal evolution of the continental margin of Eastern Canada determined from the subsidence rates. Earth Planet. Sci. Lett. 51, 343–61.CrossRefGoogle Scholar
Royden, L., Sclater, J. G. & von Herzen, R. P. 1980. Continental margin subsidence and heat flow: important parameters in the formation of petroleum hydrocarbons. Bull. Am. Ass. Petrol. Geol. 64, 173–87.Google Scholar
Sajgò, Cs. 1980. Hydrocarbon generation in a super thick Neogene sequence in South-east Hungary, a study of the extractable organic matter. In Advances in Organic Geochemistry 1979, (ed. Douglas, A. G. and Maxwell, J. R.), pp. 103–13. Oxford: Pergamon Press.Google Scholar
Schaeflé, J. 1979. Marqueurs biologiques hydroaromatiques de sédiments et pétroles. Thèse de Doctorat ès Sciences. Univ. Louis Pasteur.Google Scholar
Sclater, J. G. and Christie, P. A. F. 1980. Continental stretching — an explanation of the post-early Cretaceous subsidence of the Central Graben of the North Sea. J. geophys. Res. 85, 3711–39.CrossRefGoogle Scholar
Sclater, J. G., Royden, L., Horvath, F., Buchfiel, B. C., Semken, S. & Stegna, L. 1980. The formation of the inter-Carpathian Basins determined from subsidence. Earth Planet. Sci. Lett. 51, 139–62.CrossRefGoogle Scholar
Seifert, W. K., Carlson, R. M. & Moldowan, J. M. (in the press). Geomimetic synthesis, structure assignment and geochemical correlations. Application of monoaromatized petroleum steranes. In Advances in Organic Geochemistry (ed. M., Bjorøy et al.). Chichester: Wiley.Google Scholar
Seifert, W. K. & Moldowan, J. M. 1980. The effect of thermal stress on source rock quality as measured by hopane stereochemistry. In Advances in Organic Geochemistry 1979, (ed. Douglas, A. G. and Maxwell, J. R.), pp. 229–37. Oxford: Pergamon Press.Google Scholar
Snowdon, L. R. 1979. Errors in extrapolation of experimental kinetic parameters to organic geochemical systems. Bull. Am. Ass. Petrol. Geol. 63, 1128–38.Google Scholar
Steckler, M. S. & Watts, A. B. 1980. The Gulf of Lion: subsidence of a young continental margin. Nature 287, 425–9.CrossRefGoogle Scholar
Tissot, B., Durand, B., Espitalié, J. & Combaz, A. 1974. Influence of nature and diagenesis of organic matter in formation of petroleum. Bull. Am. Ass. Petrol. Geol. 58, 499506.Google Scholar
Tissot, B. & Welte, D. H. 1978. Petroleum Formation and Occurrence. Berlin: Springer Verlag.CrossRefGoogle Scholar
van Graas, G., Baas, J. M. A., van der Graaf, B. & de Leeuw, J. W. 1982. Theoretical organic geochemistry. I. The thermodynamic stability of several cholestane isomers calculated from molecular dynamics. Geochim. cosmochim. Acta 46, 2399–402.CrossRefGoogle Scholar
Waples, D. H. 1980. Time and temperature in petroleum formation: Application of Lopatin's method to petroleum exploration. Bull. Am. Ass. Petrol. Geol. 64, 916–26.Google Scholar
Wood, R. J. 1981. The subsidence history of Conoco well 15/30—1, Central Graben, North Sea. Earth Planet. Sci. Lett. 54, 306–12.CrossRefGoogle Scholar
Wood, R. J. 1982. Subsidence in the North Sea. Ph.D. thesis, Cambridge University.Google Scholar
Wood, R. J. & Barton, P. 1983. Crustal thinning and subsidence in the North Sea. Nature 302, 134–6.CrossRefGoogle Scholar
Young, A., Monaghan, P. H. & Schweisberger, R. T. 1977. Calculation of ages of hydrocarbons in oils — Physical chemistry applied to petroleum geochemistry. I. Bull. Am. Ass. Petrol. Geol. 61, 573600.Google Scholar
Ziegler, P. A. 1980. Northwestern Europe: Geology and hydrocarbon provinces. Spec. Mem. Can. Soc. Pet. Geol. 6, 653706.Google Scholar