Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T03:15:17.819Z Has data issue: false hasContentIssue false

Factors controlling the kinetics of crystallization: supersaturation evolution in a porous medium. Application to barite crystallization

Published online by Cambridge University Press:  01 May 2009

Manuel Prieto
Affiliation:
Departamento de Cristalografia y Mineralogia, Universidad Complutense de Madrid, 28040, Madrid, Spain
Andrew Putnis
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, England
Lurdes Fernandez-Diaz
Affiliation:
Departamento de Cristalografia y Mineralogia, Universidad Complutense de Madrid, 28040, Madrid, Spain

Abstract

The nucleation of barite has been studied in a system involving the doublediffusion of Ba2+ and SO42- in an Na-rich aqueoussolution, through a porous medium. The evolution of the concentration profiles in the medium, which is a column of porous silica gel, has been determined as a function of time by direct chemical analysis of the diffusion-controlled mass transfer. By measuring the pH evolution, a Debye–Huckel treatment of ionic complexing has enabled the supersaturation evolution to be determined. The location of barite precipitation in the column is controlled both by the need to exceed a threshold supersaturation, as well as achieve an ‘equality range’ in which [Ba2+]/[SO42−] is close to unity. The value of the threshold supersaturation is a kinetic parameter and depends on the rate at which supersaturation increases. The experimental system described here has wide application to the study of crystallization phenomena in rocks. Experiments on the effect of additives designed to inhibit nucleation of barite in North Sea oil wells are used to quantify the resultant increase in supersaturation threshold.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Botsaris, G. D. 1982. Effects of impurities in crystallisation processes. In Industrial Crystallisation '81(eds Jancic, S. J. and de Jong, E. J.), pp. 109–16. Amsterdam: North Holland.Google Scholar
Cardew, P. T., Davey, R. J. & Garside, J. 1979. Evaluation of supersaturation in crystal growth from solution. Journal of Crystal Growth 46, 534–8.CrossRefGoogle Scholar
Carpenter, M. A. & Putnis, A. 1985. Cation order and disorder during crystal growth: some implications for natural mineral assemblages. In Metamorphic Reactions (eds Thompson, A. B. and Rubic, D. C.), pp. 126. Advances in Physical Chemistry vol. 4. New York: Springer-Verlag.CrossRefGoogle Scholar
Davey, R. J. 1982. The role of additives in precipitation processes. In Industrial Crystallisation '81(eds Jancic, S. J. and de Jong, E. J.), pp. 123–35. Amsterdam: North Holland.Google Scholar
Fernandez-Diaz, L., Putnis, A. & Cumberbatch, T. 1990. Nucleation of barite and the effect of additives. European Journal of Mineralogy In press.CrossRefGoogle Scholar
Garcia-Ruiz, J. M. 1982. Crystal growth in gels: A laboratory analogous to natural crystallisation. In Crystal growth in sedimentary environments(eds Rodriguez, R. and Sunagawa, I.), pp. 209–24. Estudios Geologicos 38.Google Scholar
Henisch, H. K. 1989. Crystals in Gels and Leisegang Rings. Cambridge University Press.Google Scholar
Henisch, H. K. & Garcia-Ruiz, J. M. 1986 a. Crystal growth in gels and Liesegang ring formation. I: Diffusion relationships. Journal of Crystal Growth 75, 195202.CrossRefGoogle Scholar
Henisch, H. K. & Garcia-Ruiz, J. M. 1986 b. Crystal growth in gels and Liesegang ring formation. II: Crystallisation criteria and successive precipitation. Journal of Crystal Growth 75, 203–11.CrossRefGoogle Scholar
Iler, R. K. 1979. The Chemistry of Silica. New York: John Wiley and SonsGoogle Scholar
Lundager-Madsen, H. E. 1984. Aspects physiochemiques de la lithiase urinaire. Nephrologie 5, 151–8.Google Scholar
Martell, A. M. & Smith, R. M. 1974. Critical Stability Constants. New York: Plenum Press.Google Scholar
Nielsen, A. E. 1964. Kinetics of Precipitation. Oxford: Pergamon.Google Scholar
O'Hara, M. & Reid, R. C. 1973. Modelling Crystal Growth Rates from Solution. New Jersey: Prentice-Hall.Google Scholar
Prieto, M., Viedma, C., Lopez-Aceuedo, V., Martin-Vivaldi, J. L. & Lopez-Andres, S. 1988. Mass transfer and supersaturation in crystal growth in gels. Application to CaSO4 2H2O. Journal of Crystal Growth 92, 61–8.CrossRefGoogle Scholar
Prieto, M., Fernandez-Diaz, L. & Lopez-Andres, S. 1989. Supersaturation evolution and first precipitate location in crystal growth ingels; application to barium and strontium carbonates. Journal of Crystal Growth 98, 447–60.CrossRefGoogle Scholar
Ridley, J. 1985. The effect of reaction enthalpy on the progress of a metamorphic reaction. In Metamorphic Reactions (eds Thompson, A. B. and Rubic, D. C.), pp. 8097. Advances in Physical Chemistry vol. 4. New York: Springer-Verlag.CrossRefGoogle Scholar
Sellwood, B. W. (ed.) 1990. Zoned carbonate cements: techniques, applications and implications. Special Issue. Sedimentary Geology 65, 205355.Google Scholar
Srzic, D., Pokric, B. & Pucar, Z. 1976. Precipitation in gels under double-diffusion conditions; critical concentrations and solubility products of salts. Zeitschrift für Physikalische Chemie 103, 157–69.CrossRefGoogle Scholar
Sohnel, O. & Mullin, J. W. 1978. A method for the determination of precipitation induction periods. Journal of Crystal Growth 44, 377–82.CrossRefGoogle Scholar
Sunagawa, I. 1981. Characteristics of crystal growth in nature asseen from the morphology of mineral crystals. Bulletin de Mineralogie 104, 81–7.CrossRefGoogle Scholar
Van Leeuwen, C. & Blomen, L. J. M. J. 1979. On the presentation of growth curves. Journal of Crystal Growth 46, 96103.CrossRefGoogle Scholar
Walton, A. G. 1969. Nucleation in liquids and solutions. In Nucleation (ed. Zettlemoyer, A. C.). New York: Dekker.Google Scholar
Weijnen, M. P. C., van der Leeden, M. C. & Rosmalen, G. M. 1987. Influence of the molecular structure of phosphanate inhibitors on various aspects of barite and gypsum crystallisation. In Geochemistry of the Earth's surface and Mineral formation (eds. Rodriguez, R. and Thardy, Y.), pp. 753–76. Madrid: C.S.I.C.Google Scholar
Wood, B. J. & Walther, J. V. 1983. Rates of hydrothermal reactions. Science 222, 413–15.CrossRefGoogle ScholarPubMed