Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T19:38:00.249Z Has data issue: false hasContentIssue false

The debated age of the ammonoid Durvilleoceras Waterhouse

Published online by Cambridge University Press:  01 May 2009

J. B. Waterhouse
Affiliation:
Department of Geology and Mineralogy, University of Queensland, Brisbane, Australia

Summary

Although the ammonoid Durvilleoceras is apparently very close in its morphology to early Triassic genera, it comes from a formation that underlies formations with early Triassic and late Permian faunas, and appears to be of late Middle Permian age. New occurrences of the ammonoid support this thesis. Conjecturally, the genus may have inhabited deep cold waters of the southern hemisphere during the Permian Period, before giving rise to genera found in shelf deposits of the early Triassic. Alternatively, if really Triassic in age, Durvilleoceras indicates a major low-angle thrust, previously unsuspected, that has repeated Triassic sequences for a length of over 450 km before disruption by the Alpine Fault. No evidence is yet known to support this alternative.

Type
Articles
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boles, J. R. 1974. Structure, stratigraphy and petrology of mainly Triassic rocks, Hokonui Hills, Southland, New Zealand. N.Z. Jl Geol. Geophys. 17, 337–74.CrossRefGoogle Scholar
Dickins, J. M. 1956. Permian Pelcypods from the Carnarvon Basin, Western Australia. Bull. Bur. min. Res. Geol. Geophys. 29, 142.Google Scholar
Furnish, W. M., Glenister, B. F., Kummel, B., Spinosa, C., Sweet, W. & Teichert, C. 1976. Reinterpretation of ceratitic ammonoids from the Greville Formation, New Zealand. Geol. Mag. 113, 3946.CrossRefGoogle Scholar
Grant, R. E. & Cooper, G. A. 1973. Brachiopods and Permian correlations. In The Permian and Triassic Systems and their Mutual Boundary (ed. Logan, A. and Hills, L. V.). Mem. Canad. Petrol. geol. Soc. 2, 572–95, 7 figs.Google Scholar
Hector, J. 1878. Progress Report. N.Z. geol. Surv. Rep. Geol. Explor. 1877–78 11, ixv.Google Scholar
Hochstetter, R. von, 1864. Geologie von Neuseeland. Beiträge zur Geologie der Provinzen Auckland und Nelson. Reise der osterreich Fregatte Novara um die Erde usw. Geol. Teil, 1 (1).Google Scholar
Johnston, M. R. & Stevens, G. R. 1978. New Fossil localities in the Mataia Group, Nelson, and comments on its age relationships. N.Z. Jl Geol. Geophys. 21, 113–16.CrossRefGoogle Scholar
Kozur, H. 1977. Beiträge zur stratigraphie und Paläontologie der Trias. des Perms: Teil 1. Probleme der Abgrenzung und Gliederung des Perms. Freib. Forsch. fh. C 319. Leipzig.Google Scholar
Kummel, B. 1959. Lower Triassic Ammonoids from Western Southland, New Zealand. N.Z. Jl Geol. Geophys. 2, 429–47.CrossRefGoogle Scholar
Kummel, B. 1965. New Lower Triassic Ammonoids from New Zealand. N.Z. Jl Geol. Geophys. 8, 537–47.CrossRefGoogle Scholar
Marshall, P. 1912. Geology of New Zealand. Wellington: J. McKay.Google Scholar
Nakazawa, K., Kapoor, H. M., Ishii, K., Bando, Y., Okimura, Y., Tokuoka, T., Murata, M., Nakamura, K., Nogami, Y., Sakagami, S. & Shimizu, D. 1975. The Upper Permian and Lower Triassic in Kashmir, India. Mem. Fac. Sci. Univ. Ser. Mineral. 42, 1, 1106, 12 pl.Google Scholar
Newell, N. D. 1973. The very last moment of the Paleozoic Era. Mem. Can. Soc. Petrol. Geol. 2, 110.Google Scholar
Tozer, E. G. 1971. Triassic time and ammonoids. Problems and proposals. Canad. Jl Earth Sci. 8, 8891031.Google Scholar
Vozin, V. F. & Tikhomirova, V. V. 1964. Field atlas of Triassic bivalved and Cephalopod molluscs of the north-east USSR. Acad. Nauk. SSSR Geol. Inst. Siberian branch: 1195. 50 pl. (In Russian.)Google Scholar
Waagen, W. 1891. Salt Range Fossils. Geological Results. Ind. geol. Surv. Palaeont. ser. 13, 4 (2), 89242.Google Scholar
Waterhouse, J. B. 1960. Mellarium, a new Triassic Pleurotomariid Gastropod from New Zealand. N.Z. Jl Geol. Geophys. 3, 271–83.CrossRefGoogle Scholar
Waterhouse, J. B. 1963. New Zealand species of the Permian bivalve Atomodesma Beyrich. Palaeontology 6, 669717.Google Scholar
Waterhouse, J. B. 1964. Permian stratigraphy and faunas of New Zealand. Bull. N.Z. geol. Surv. 72, 1101.Google Scholar
Waterhouse, J. B. 1965. A Historical Survey of the pre-Cretaceous Geology of New Zealand. Part 1. N.Z. Jl Geol. Geophys. 8 (6), 931–98.CrossRefGoogle Scholar
Waterhouse, J. B. 1973(a). An Ophiceratid ammonoid from the New Zealand Permian and for the Permian-Triassic boundary. Geol. Mag. 110, 305–29.CrossRefGoogle Scholar
Waterhouse, J. B. 1973(b). Communal hierarchy and significance of environmental parameters for Brachiopods: the New Zealand Permian model. Contr. R. Ont. Mus. Life Sci. 92, 149.Google Scholar
Waterhouse, J. B. 1975. The Rangitata Orogen. Pacific Geology 9, 3573.Google Scholar
Waterhouse, J. B. 1976(a). World correlations for marine Permian faunas. Pap. Dept. Geol. Univ. Qd 7 (2), ixvii: 1232.Google Scholar
Waterhouse, J. B. 1976 (b). Permian-Triassic boundary in New Zealand. N.Z. Jl Geol. Geophys. 19 (3), 373–84.CrossRefGoogle Scholar
Waterhouse, J. B. 1978. Permian brachiopoda and molluscs from northwest Nepal. Palaeontographica A 160, 1175, 26 pls.Google Scholar
Waterhouse, J. B. & Bonham-Carter, G. 1975. Global distribution and character of Permian biomes based on brachiopod assemblages. Canad. J. Earth Sci. 12 (7), 10851146.CrossRefGoogle Scholar