Hostname: page-component-6bf8c574d5-956mj Total loading time: 0 Render date: 2025-02-15T09:13:06.480Z Has data issue: false hasContentIssue false

Semi-infinite orbits in affine flag varieties and homology of affine Springer fibers

Published online by Cambridge University Press:  13 February 2025

Roman Bezrukavnikov
Affiliation:
Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA; E-mail: [email protected]
Yakov Varshavsky*
Affiliation:
Einstein Institute of Mathematics Edmond J. Safra Campus The Hebrew University of Jerusalem Givat Ram, Jerusalem, 9190401, Israel;
*
E-mail: [email protected] (corresponding author)

Abstract

Let G be a connected reductive group over an algebraically closed field k, and let $\operatorname {Fl}$ be the affine flag variety of G. For every regular semisimple element $\gamma $ of $G(k((t)))$, the affine Springer fiber $\operatorname {Fl}_\gamma $ can be presented as a union of closed subvarieties $\operatorname {Fl}^{\leq w}_{\gamma }$, defined as the intersection of $\operatorname {Fl}_{\gamma }$ with an affine Schubert variety $\operatorname {Fl}^{\leq w}$.

The main result of this paper asserts that if elements $w_1,\ldots ,w_n$ are sufficiently regular, then the natural map $H_i(\bigcup _{j=1}^n \operatorname {Fl}^{\leq w_j}_{\gamma })\to H_i(\operatorname {Fl}_{\gamma })$ is injective for every $i\in \mathbb Z$. It plays an important role in our work [BV], where our result is used to construct good filtrations of $H_i(\operatorname {Fl}_{\gamma })$. Along the way, we also show that every affine Schubert variety can be written as an intersection of closures of semi-infinite orbits.

Type
Number Theory
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Introduction

Let k be an algebraically closed field, $K:=k((t))$ the field of Laurent power series over k, and $\mathcal {O}=\mathcal {O}_K=k[[t]]$ the ring of integers of K. Let G be a connected reductive group over k, and let $G^{\operatorname {sc}}$ be the simply-connected covering of the derived group of G. For an algebraic group H over K (resp. $\mathcal {O}$ ), we denote by $LH$ (resp. $L^+(H)$ ) the corresponding loop (resp. arc) group.

We fix a maximal torus $T\subseteq G$ and an Iwahori subgroup scheme $I\subseteq L^+(G)$ such that $I\cap LT=L^+(T)$ , and let $T_{G^{\operatorname {sc}}}\subseteq G^{\operatorname {sc}}$ and $I^{\operatorname {sc}}\subseteq L^+(G^{\operatorname {sc}})$ be the corresponding maximal torus and the Iwahori subgroups of $G^{\operatorname {sc}}$ , respectively. Let $W=W_G$ be the Weyl group of G, let $\Lambda =X_*(T_{G^{\operatorname {sc}}})$ be the group of cocharacters, and let $\widetilde {W}:=W\ltimes \Lambda $ be the affine Weyl group of G.

Denote by $\operatorname {Fl}=L(G^{\operatorname {sc}})/I^{\operatorname {sc}}$ the affine flag variety of $G^{\operatorname {sc}}$ . Then we have a natural embedding $\widetilde {W}\hookrightarrow \operatorname {Fl}$ . For every $w\in \widetilde {W}$ , we denote by $\operatorname {Fl}^{\leq w}\subseteq \operatorname {Fl}$ the closure of the $I^{\operatorname {sc}}$ -orbit $I^{\operatorname {sc}}w\subseteq \operatorname {Fl}$ . Then each $\operatorname {Fl}^{\leq w}$ is a closed projective subscheme of $\operatorname {Fl}$ , usually referred to as the affine Schubert variety, while $\operatorname {Fl}$ is an inductive limit of the $\operatorname {Fl}^{\leq w}$ ’s.

For a regular semi-simple element $\gamma \in G(K)$ , we denote by $\operatorname {Fl}_{\gamma }\subseteq \operatorname {Fl}$ the corresponding affine Springer fiber (i.e., the closed ind-subscheme of points $gI^{\operatorname {sc}}\in \operatorname {Fl}$ such that $g^{-1}\gamma g\in I$ ).

Let $G_{\gamma }$ be the centralizer of $\gamma $ in G. It is a torus defined over K. Let $S_{\gamma }\subseteq G_{\gamma }$ be the maximal K-split torus. We will always assume that $S_{\gamma }$ is contained in $T_K$ , where $T_K$ denote the extension of scalars of T to K.

For every ind-subscheme $Z\subseteq \operatorname {Fl}_G$ , we denote by $Z_{\gamma }$ the intersection $Z\cap \operatorname {Fl}_{\gamma }$ . Then $\operatorname {Fl}_{\gamma }$ is a union of the $\operatorname {Fl}^{\leq w}_{\gamma }$ ; hence, each homology group $H_i(\operatorname {Fl}_{\gamma })$ is by definition the direct limit of the $H_i(\operatorname {Fl}_{\gamma }^{\leq w})$ ’s. The main result of this paper implies that the canonical map $H_i(\operatorname {Fl}_{\gamma }^{\leq w})\to H_i(\operatorname {Fl}_{\gamma })$ is injective if w is sufficiently regular.

More precisely, let $\pi :\widetilde {W}\to \widetilde {W}/W=\Lambda $ be the projection. For $m\in \mathbb N$ , we say that $w\in \widetilde {W}$ is m-regular if $|\langle \alpha ,\pi (w)\rangle |\geq m$ for every root $\alpha $ of $(G,T)$ . The main goal of this paper is to prove the following result used in our companion work [Reference Bezrukavnikov and VarshavskyBV].

Theorem 0.1. There exists $m\in \mathbb N$ (depending on $\gamma $ ) such that for every finite set $w_1,\ldots ,w_n$ of m-regular elements of $\widetilde {W}$ , the natural map $H_i(\bigcup _{j=1}^n \operatorname {Fl}^{\leq w_j}_{\gamma })\to H_i(\operatorname {Fl}_{\gamma })$ is injective for every $i\in \mathbb Z$ .

If the group G and element $\gamma $ are defined over ${\mathbb F}_q$ , the expression

$$\begin{align*}\left| \left(\bigcup_{j=1}^n \operatorname{Fl}^{\leq w_j}_{\gamma}\right)({\mathbb F}_q)\right|=\operatorname{Tr}\left(\operatorname{Fr},H_*\left(\bigcup_{j=1}^n \operatorname{Fl}^{\leq w_j}_{\gamma}\right)\right) \end{align*}$$

appears in computation of truncated orbital integrals.

As explained in [Reference Bezrukavnikov and VarshavskyBV], Theorem 0.1 allows one to interpret $H_i(\bigcup _{j=1}^n \operatorname {Fl}^{\leq w_j}_{\gamma })$ as a term of a filtration on $H_i(\operatorname {Fl}_{\gamma })$ , which turns out to have favorable properties with respect to the affine Springer action: it is a good filtration compatible with a natural filtration on the group ring of the affine Weyl group. This provides a way to interpret a certain weighted orbital integral (or rather the closely related value of the averaging of a distribution) in terms of $H_*(\operatorname {Fl}_{\gamma })$ equipped with an action of Frobenius and affine Springer action.

Theorem 0.1 will be deduced from a more general result. For each Borel subgroup $B\supseteq T$ of G, we denote its unipotent radical by $U_{B}\subseteq G$ . For every $w\in \widetilde {W}$ , we denote by $\operatorname {Fl}^{\leq _{B}w}\subseteq \operatorname {Fl}$ the closure of the $U_{B}(K)$ -orbit $U_{B}(K)w\subseteq \operatorname {Fl}$ , which is called the semi-infinite orbit. Then $\operatorname {Fl}^{\leq _{B}w}$ is a closed ind-subscheme of $\operatorname {Fl}$ .

We consider tuples $\overline {w}=\{w_B\}_B$ of elements of $\widetilde {W}$ , where B runs over the set of all Borel subgroups $B\supseteq T$ of G. Most of the time will restrict ourselves to tuples, which are admissible (see Definition 1.3.1) and m-regular (see Notation 1.3.9). In particular, the last assumption implies that each $w_B$ is m-regular.

For each tuple $\overline {w}$ , we denote by $\operatorname {Fl}^{\leq \overline {w}}$ the reduced intersection $\bigcap _{B}\operatorname {Fl}^{\leq _{B}w_{B}}$ . Each $\operatorname {Fl}^{\leq \overline {w}}$ is a projective scheme (see Corollary 2.1.7(c)).

Theorem 0.1 follows from the following two results:

Theorem 0.2. For every $w\in \widetilde {W}$ , there exists a unique admissible tuple $\overline {w}$ such that $\operatorname {Fl}^{\leq w}=\operatorname {Fl}^{\leq \overline {w}}$ . Moreover, there exists $r\in \mathbb N$ such that for every $m\in \mathbb N$ and every $(m+r)$ -regular $w\in \widetilde {W}$ , the tuple $\overline {w}$ is m-regular.

Theorem 0.3. There exists $m\in \mathbb N$ (depending on $\gamma $ ) such that for every finite set $\overline {w}_1,\ldots ,\overline {w}_n$ of m-regular admissible tuples, the natural map $H_i(\bigcup _{j=1}^n \operatorname {Fl}^{\leq \overline {w}_j}_{\gamma })\to H_i(\operatorname {Fl}_{\gamma })$ is injective for all i.

Notice that Theorem 0.3 is vacuous if $\gamma $ is elliptic. Indeed, in this case, the affine Springer fiber $\operatorname {Fl}_{\gamma }$ is of finite type, so there exists an integer m such that for every m-regular admissible tuple $\overline {w}$ , we have an equality $\operatorname {Fl}_{\gamma }^{\leq \overline {w}}=\operatorname {Fl}_{\gamma }$ .

To show the assertion in general, we use induction on the semisimple rank of G. Namely, if $\gamma $ is not elliptic, then $\operatorname {Fl}_{\gamma }$ is equipped with an action of a nontrivial torus S, and the scheme of fixed points $\operatorname {Fl}_{\gamma }^S$ is naturally isomorphic to a disjoint union of affine Springer fibers corresponding to a proper Levi subgroup M of G. Thus, an analog of Theorem 0.3 for $\operatorname {Fl}_{\gamma }^S$ holds by induction hypothesis, and we use finiteness properties of $H_i(\operatorname {Fl}_{\gamma })$ and localization theorem in equivariant cohomology to relate homology of $\operatorname {Fl}_{\gamma }$ with that of $\operatorname {Fl}_{\gamma }^S$ .

The paper is organized as follows. In Section 1, we study orderings on affine Weyl groups and introduce admissible tuples, which play a central role later. In Section 2, we study semi-infinite orbits in affine flag varieties and their intersections, establish Theorem 0.2, and show technical results needed later. In Section 3, we study geometric properties of the affine Springer fibers and establish a finiteness property of its homology.

Finally, in Section 4, we prove Theorem 0.3 using results of the previous sections. Namely, we review the localization theorem in the equivariant cohomology with compact support in subsection 4.1, give a criterion of an injectivity of the map on homology in subsection 4.2, and complete the proof in subsection 4.3.

The authors thank the anonymous referee for numerous corrections and suggestions that helped us to improve the exposition.

1 Combinatorics of affine Weyl groups

1.1 Preliminaries

1.1.1. Roots

(a) Let V be a finite dimensional vector space over $\mathbb R$ , $V^*$ the dual space, and let $\Phi \subseteq V^*$ be a (reduced) root system (see, for example, [Reference BehrendBe] or [Reference BourbakiBo, Section VI]).

(b) We denote by $\mathcal {C}=\mathcal {C}_{\Phi }$ the set of all Weyl chambers $C\subseteq V$ of $\Phi $ . For each $C\in \mathcal {C}$ , we denote by $\Phi _{C}\subseteq \Phi $ the set of C-positive roots, by $\Delta _{C}\subseteq \Phi _C$ the set of C-simple roots, and by $\Psi _C\subseteq V^*$ the set of C-fundamental weights.

(c) We set $\widetilde {\Phi }:=\Phi \times \mathbb Z$ and call it the set of affine roots. Every $\widetilde {\alpha }=(\alpha ,n)$ is identified with an affine function $\widetilde {\alpha }:V\to \mathbb R$ , given by the rule $\widetilde {\alpha }(x)=\alpha (x)+n$ . In particular, we identify each root $\alpha \in \Phi $ with affine root $(\alpha ,0)\in \widetilde {\Phi }$ . For a subset $\Phi '\subseteq \Phi $ (resp. a Weyl chamber $C\in \mathcal {C}$ ), we denote by $\widetilde {\Phi '}$ (resp. $\widetilde {\Phi }_C$ ), the set of all $\widetilde {\alpha }=(\alpha ,n)\in \widetilde {\Phi }$ such that $\alpha \in \Phi '$ (resp. $\alpha \in \Phi _C$ ).

(d) Let $W=W_{\Phi }\subseteq \operatorname {Aut} (V)$ be the Weyl group of $\Phi $ , let $\Lambda \subseteq V$ be the subgroup generated by coroots $\{\check {\alpha }\}_{\alpha \in \Phi }$ , and let $\widetilde {W}:=W\ltimes \Lambda $ be the affine Weyl group of $\Phi $ . We will denote by $\pi $ the natural projection $\widetilde {W}\to \widetilde {W}/W=\Lambda $ .

(e) The lattice $\Lambda $ acts on V by translations. Then the group $\widetilde {W}$ acts on V by affine transformations; hence, it acts on $\widetilde {\Phi }$ by the rule $w(\widetilde {\alpha })(x)=\widetilde {\alpha }(w^{-1}(x))$ for all $x\in V$ . In particular, for each $\mu \in \Lambda $ and $(\alpha ,n)\in \widetilde {\Phi }$ , we have $\mu (\alpha ,n)=(\alpha ,n-\langle \alpha ,\mu \rangle )$ .

(f) For each $\widetilde {\alpha }\in \widetilde {\Phi }$ , the affine reflection $s_{\widetilde {\alpha }}$ satisfies $s_{\widetilde {\alpha }}(x)=x-\widetilde {\alpha }(x)\check {\alpha }$ for all $x\in V$ . In particular, for all $(\alpha ,n)\in \widetilde {\Phi }$ , we have equality $s_{\alpha ,n}=(-n\check {\alpha })s_{\alpha }\in \widetilde {W}$ .

(g) For each $\alpha \in \Phi $ , we denote by $\widetilde {W}_{\alpha }\subseteq \widetilde {W}$ the subgroup generated by reflections $s_{\widetilde {\alpha }}$ , with $\widetilde {\alpha }=(\alpha ,n), n\in \mathbb Z$ .

1.1.2. The fundamental Weyl chamber

(a) We fix a Weyl chamber $C_0\in \mathcal {C}$ and denote by $A_0$ the fundamental alcove such that $A_0\subseteq C_0$ and such that $0\in V$ lies in the closure of $A_0$ .

(b) The choice of $C_0$ defines the set of positive roots $\Phi _{>0}=\Phi _{C_0}\subseteq \Phi $ and the set of positive affine roots $\widetilde {\Phi }_{>0}\subseteq \widetilde {\Phi }$ . Explicitly, $\widetilde {\alpha }=(\alpha ,n)\in \widetilde {\Phi }$ is positive if and only if either $n>0$ , or $n=0$ and $\alpha>0$ .

(c) Then $C_0$ defines a set of simple reflection $S\subseteq W$ , and $A_0$ defines a set of simple affine reflections $\widetilde {S}\subseteq \widetilde {W}$ . In particular, a choice of $C_0$ defines length functions and Bruhat orders $\leq $ on both W and $\widetilde {W}$ .

(d) Using $A_0$ , we identify each $w\in \widetilde {W}$ with the corresponding alcove $w(A_0)\subseteq V$ . In particular, we will say that $w\in \widetilde {W}$ belongs to $C\in \mathcal {C}$ , or $w\in C$ , if $w(A_0)\subseteq C$ . Explicitly, this means that $\langle \alpha ,w(A_0)\rangle =\langle w^{-1}(\alpha ),A_0\rangle \geq 0$ for each $\alpha \in \Phi _{C}$ , or, what is the same, $w^{-1}(\Phi _{C})\subseteq \widetilde {\Phi }_{>0}$ .

1.1.3. Fundamental weights

(a) We set $\Psi :=\bigcup _{C\in \mathcal {C}}\Psi _C\subseteq V^*$ . For $\psi \in \Psi $ and $C\in \mathcal {C}$ , we write $C\owns \psi $ , if $\psi \in \Psi _C$ .

(b) Every $\psi \in \Psi $ gives rise to a fundamental coweight $\check {\psi }\in \Lambda _{\mathbb Q}:=\Lambda \otimes _{\mathbb Z}\mathbb Q\subseteq V$ . Namely, $\check {\psi }$ is characterized by condition that for every $C\in \mathcal {C}$ such that $\psi \in \Psi _C$ and every $\alpha \in \Delta _C$ , we have $\langle \alpha ,\check {\psi }\rangle =\langle \psi ,\check {\alpha }\rangle $ . In particular, for every $C\in \mathcal {C}$ , we have $\psi \in \Psi _C$ if and only if $\check {\psi }$ lies in the closure of C.

(c) For every $\psi \in \Psi $ , we denote by $\Phi (\psi )$ (resp. $\Phi ^{\psi }$ ) the set of $\alpha \in \Phi $ such that $\langle \alpha ,\check {\psi }\rangle \geq 0$ (resp. $\langle \alpha ,\check {\psi }\rangle =0$ ). Notice that $\Phi ^{\psi }$ is a root system, and there is a bijection $C\mapsto C^{\psi }$ between Weyl chambers $C\owns \psi $ of $\Phi $ and Weyl chambers of $\Phi ^{\psi }$ . This bijection satisfies the property that $(\Phi ^{\psi })_{C^{\psi }}=\Phi _{C}\cap \Phi ^{\psi }$ . We denote by $W^{\psi }\subseteq W$ and $\widetilde {W}^{\psi }\subseteq \widetilde {W}$ the Weyl group and the affine Weyl group of $\Phi ^{\psi }$ , respectively.

(d) For every $\psi \in \Psi $ , we fix a Weyl chamber $C^{\psi }_0$ of $\Phi ^{\psi }$ . As in Section 1.1.2(b), this choice defines the set of positive affine roots $\widetilde {\Phi }^{\psi }_{>0}\subseteq \widetilde {\Phi }^{\psi }$ , and we denote by $\widetilde {W}_{\psi }\subseteq \widetilde {W}$ the set of all $w\in \widetilde {W}$ such that $w^{-1}(\widetilde {\Phi }^{\psi }_{>0})\subseteq \widetilde {\Phi }_{>0}$ . Then for every $w\in \widetilde {W}$ , there exists a unique decomposition $w=w^{\psi }w_{\psi }$ , where $w^{\psi }\in \widetilde {W}^{\psi }$ and $w_{\psi }\in \widetilde {W}_{\psi }$ (compare, for example, [Reference Bezrukavnikov and VarshavskyBV, Lemma B.1.7(b)]). In other words, $\widetilde {W}_{\psi }\subseteq \widetilde {W}$ is a set of representatives of the set of left cosets $\widetilde {W}^{\psi }\backslash \widetilde {W}$ .

1.1.4. Properties of the Bruhat order

(a) Let $w',w"\in \widetilde {W}$ and $s\in \widetilde {S}$ be such that $w'\leq w"$ . Then we have either $w's\leq w"s$ (resp. $sw'\leq sw"$ ) or $w's\leq w"$ and $w'\leq w"s$ (resp. $sw'\leq w"$ and $w'\leq sw"$ ) or both (see, for example, [Reference Björner and BrentiBB, Proposition 2.2.7]).

(b) Let $w',w"\in \widetilde {W}$ and $s\in \widetilde {S}$ be such that $sw'<w'$ and $sw"<w"$ . Then, by part (a), we have $w'\leq w"$ if and only if $sw'\leq sw"$ .

(c) Let $w,w'$ and $w"$ be elements of $\widetilde {W}$ such that $l(ww')=l(w)+l(w')$ and $ww'\leq ww"$ . Then $w'\leq w"$ . Indeed, if $w=s\in \widetilde {S}$ , then the assertion follows from part (a). The general case follows by induction on $l(w)$ . By a similar argument, if $l(ww")=l(w)+l(w")$ and $w'\leq w"$ , then $ww'\leq ww"$ .

(d) For every $\mu \in \Lambda $ and $u\in W$ , we have $l(u\mu u^{-1})=l(\mu )$ . Indeed, it is enough to show the assertion in the case $u=s=s_{\alpha }$ for a simple root $\alpha $ . In this case, we have $s\mu s=\mu $ , if $\langle \alpha ,\mu \rangle =0$ ; $s\mu>\mu >\mu s$ if $\langle \alpha ,\mu \rangle>0$ ; and $s\mu <\mu <\mu s$ if $\langle \alpha ,\mu \rangle <0$ .

(e) Note that $w\in \widetilde {W}$ belongs to $C_0$ if and only if $l(sw)>l(w)$ for every $s\in S$ . In other words, $\widetilde {W}\cap C_0$ is the set of the shortest representatives of cosets $W\backslash \widetilde {W}$ . In particular, for every $w\in \widetilde {W}\cap C_0$ and $u\in W$ , we have $l(uw)=l(u)+l(w)$ , and for every $u\leq u'$ in W, we have $uw\leq u'w$ .

(f) The characterization of $C_0$ given in part (e) implies that for every $w\in \widetilde {W}\cap C_0$ and $s\in \widetilde {S}$ with $ws<w$ , we have $ws\in C_0$ .

(g) For every $u\in W$ and every $\mu \in \Lambda \cap C_0$ , we have $u\leq \mu $ . Indeed, it is enough to show that $u\leq _R\mu $ (see [Reference Björner and BrentiBB, Definition 3.1.1]). Hence, by [Reference Björner and BrentiBB, Proposition 3.1.3], it is enough to show that for every affine root $\widetilde {\alpha }>0$ such that $u(\widetilde {\alpha })<0$ , we have $\mu (\widetilde {\alpha })<0$ . If $\widetilde {\alpha }=(\alpha ,n)>0$ satisfies $u(\widetilde {\alpha })=(u(\alpha ),n)<0$ , then $n=0$ , and $\alpha>0$ . Hence, $\mu (\widetilde {\alpha })=(\alpha ,-\langle \alpha ,\mu \rangle )<0$ because $\mu \in C_0$ is regular; thus, $\langle \alpha ,\mu \rangle>0$ .

Lemma 1.1.5. Assume that $w',w"\in C\cap \widetilde {W}$ for some $C\in \mathcal {C}$ and $w'<w"$ . Then

(a) for every $u\in W$ , we have $uw'<uw"$ ;

(b) there exists a sequence $w'<w_1<\ldots <w_n=w"$ such that $w_i\in C$ and $l(w_i)=l(w')+i$ for each i;

(c) for every $\mu \in \Lambda \cap C$ and $w\in \widetilde {W}\cap C$ , we have $l(\mu w)=l(\mu )+ l(w)$ .

Proof. (a) By induction, it is enough to show that for every element $s\in S$ , we have $sw'<sw"$ . By Section 1.1.4(b), it is enough to show that $w'<sw'$ if and only if $w"<sw"$ . Let $u\in W$ be such that $C=u(C_0)$ . Then it follows from Section 1.1.4(e) that each condition $w'<sw'$ and $w"<sw"$ is equivalent to $u<su$ .

(b) Using part (a) and Section 1.1.4(e), we may assume that $C=C_0$ . If $l(w")-l(w')=1$ , there is nothing to prove, so we can assume that $l(w")-l(w')>1$ . By induction, it is enough to show the existence of $w\in C_0$ such that $w'<w<w"$ .

Choose $s\in \widetilde {S}$ such that $w"s<w"$ . Then $w"s\in C_0$ by Section 1.1.4(f). If $w'<w"s$ , then $w:=w"s$ does the job. If not, then by Section 1.1.4(a) we get $w's<w'$ and $w's<w"s$ . Then by Section 1.1.4(f), we have $w's\in C_0$ , so by induction on $l(w")$ , there exist $w\in C_0$ such that $w's<w<w"s$ .

If $ws<w$ , then it follows from Section 1.1.4(a) that $w'\leq w<w"s$ , contradicting our assumption. Hence, we may assume that $ws>w$ , in which case by Section 1.1.4(a) we have $w'<ws<w"$ ; thus, it is enough to show that $ws\in C_0$ .

Assume that $ws\notin C_0$ . Since $w\in C_0$ , this would imply that there exists a simple root $\alpha $ of $C_0$ such that $ws=s_{\alpha }w$ . Then we have $w'<s_{\alpha }w$ and $w'\in C_0$ and therefore by Section 1.1.4(c) that $w'\leq w<w"s$ , contradicting the assumption.

(c) Using Sections 1.1.4(d),(e), we can assume that $C=C_0$ . Now the proof goes by induction on $l(w)$ . Choose $s\in \widetilde {S}$ such that $ws<w$ . Then $ws\in C_0$ by Section 1.1.4(f); hence, by the induction hypothesis, we have

$$\begin{align*}l(\mu ws)=l(\mu)+l(ws)=l(\mu)+l(w)-1. \end{align*}$$

Thus, it is enough to show that $\mu ws<\mu w$ .

Let $\alpha $ be a simple affine root such that $s=s_{\alpha }$ . Then $\widetilde {\beta }:=w(\alpha )<0$ because $ws<w$ , and we want to show that $\mu (\widetilde {\beta })=\mu w(\alpha )<0$ . Write $\widetilde {\beta }$ in the form $(\beta ,n)$ , where $\beta \in \Phi $ . Then $\mu (\widetilde {\beta })=\widetilde {\beta }-\langle \beta ,\mu \rangle $ , so it remains to show that $\langle \beta ,\mu \rangle \geq 0$ .

Since $\widetilde {\beta }<0$ , we get $n\leq 0$ ; therefore, $w^{-1}(\beta )=\alpha -n>0$ . This implies that $\beta \in \Phi _{C_0}$ because $w\in C_0$ ; hence, $\langle \beta ,\mu \rangle \geq 0$ because $\mu \in C_0$ .

1.2 Orderings on affine Weyl groups

Notation 1.2.1. (a) Let $\widetilde {\alpha }\in \widetilde {\Phi }$ and $w\in \widetilde {W}$ . We say that $s_{\widetilde {\alpha }}w<_{\widetilde {\alpha }}w$ if $w^{-1}(\widetilde {\alpha })>0$ .

(b) Let $\Phi '\subseteq \Phi $ be a subset, and $w',w"\in \widetilde {W}$ . We say that $w"<_{\Phi '} w'$ if there exist affine roots $\widetilde {\alpha }_1,\ldots ,\widetilde {\alpha }_n\in \widetilde {\Phi '}$ such that $s_{\widetilde {\alpha }_i}\ldots s_{\widetilde {\alpha }_1}w'<_{\widetilde {\alpha }_i}s_{\widetilde {\alpha }_{i-1}}\ldots s_{\widetilde {\alpha }_1}w'$ for all i, and $w"=s_{\widetilde {\alpha }_n}\ldots s_{\widetilde {\alpha }_1}w'$ . For $\alpha \in \Phi $ , we write $w"<_{\alpha } w'$ instead of $w"<_{\{\alpha \}} w'$ .

(c) Let $\Phi '\subseteq \Phi $ , and $x',x"\in V$ . We say that $x"<_{\Phi '} x'$ if the difference $x'-x"$ is a positive linear combination of elements $\check {\alpha }$ with $\alpha \in \Phi '$ . For $\alpha \in \Phi $ , we write $x"<_{\alpha } x'$ instead of $x"<_{\{\alpha \}} x'$ .

(d) For each $C\in \mathcal {C}$ , $\psi \in \Psi $ (and $\psi \in C$ ), we write $<_C$ (resp. $<_{\psi }$ , resp. $<_{C^{\psi }}$ ) instead of $<_{\Phi _C}$ (resp. $<_{\Phi (\psi )}$ , resp. $<_{\Phi ^{\psi }(C^{\psi })}$ ).

Lemma 1.2.2. (a) For each $\widetilde {\alpha }=(\alpha ,n)\in \widetilde {\Phi }$ and $w\in \widetilde {W}$ , we have $s_{\widetilde {\alpha }}w<_{\widetilde {\alpha }}w$ (see Section 1.2.1(a)) if and only if $s_{\widetilde {\alpha }}w(x)<_{\alpha }w(x)$ (see Section 1.2.1 (c)) for all $x\in A_0$ .

(b) For each $\alpha \in \Phi $ and $w\in \widetilde {W}$ , we have $w<_{\alpha }\check {\alpha }w$ (see Section 1.2.1(b)).

(c) For each $x',x"\in V$ and $\psi \in \Psi $ , we have $x'\leq _{\psi } x"$ (see Section 1.2.1(c)) if and only if $\langle \psi ,x'\rangle \leq \langle \psi ,x"\rangle $ .

Proof. (a) Fix $x\in A_0$ . Then $w^{-1}(\widetilde {\alpha })>0$ if and only if $w^{-1}(\widetilde {\alpha })(x)=\widetilde {\alpha }(w(x))>0$ . Thus, $s_{\widetilde {\alpha }}w<_{\widetilde {\alpha }}w$ if and only if $s_{\widetilde {\alpha }}w(x)=w(x)-\widetilde {\alpha }(w(x))\check {\alpha }<_{\alpha }w(x)$ .

(b) Let $r\in \mathbb Z$ such that the affine root $\widetilde {\alpha }=(\alpha ,r)$ satisfies $0<\widetilde {\alpha }(\check {\alpha }w(x))<1$ . Using identity $\widetilde {\alpha }(s_{\widetilde {\alpha }}(\check {\alpha }w(x)))=- \widetilde {\alpha }(\check {\alpha }w(x))$ , we get $0<(\widetilde {\alpha }+1)(s_{\widetilde {\alpha }}(\check {\alpha }w(x)))<1$ . Thus, by the observation of part (a), we have $w=s_{\widetilde {\alpha }+1}s_{\widetilde {\alpha }}(\check {\alpha }w)<_{\widetilde {\alpha }+1}s_{\widetilde {\alpha }}(\check {\alpha }w)<_{\widetilde {\alpha }}\check {\alpha }w$ ; hence, $w<_{\alpha }\check {\alpha }w$ .

(c) The ‘only if’ assertion follows from definitions. To see the ‘if’ assertion, we choose a Weyl chamber $C\ni \psi $ , and let $\alpha _{\psi }\in \Delta _C$ be the simple root, corresponding to $\psi $ . Then the difference $x"-x'$ can be (uniquely) written in the form $\sum _{\alpha \in \Delta _C} c_{\alpha }\check {\alpha }$ with $c_{\alpha }\in \mathbb R$ , and the assumption that $\langle \psi ,x'\rangle \leq \langle \psi ,x"\rangle $ implies that $c_{\alpha _{\psi }}\geq 0$ . Now the assertion follows from the observation that for every $\alpha \in \Delta _C\smallsetminus \{\alpha _{\psi }\}$ , we have $\alpha \in \Phi (\psi )$ and $-\alpha \in \Phi (\psi )$ .

Corollary 1.2.3. (a) For each $w,w'\in \widetilde {W}$ and $\alpha \in \Phi $ , we have $w<_{\alpha }w'$ if and only if we have $w\in \widetilde {W}_{\alpha }w'$ and $w(x)<_{\alpha }w'(x)$ for all $x\in A_0$ .

(b) For each $\Phi '\subseteq \Phi $ and $w,w'\in \widetilde {W}$ with $w<_{\Phi '} w'$ , we have $w(x)<_{\Phi '} w'(x)$ for each $x\in A_0$ ; hence, $\pi (w)\leq _{\Phi '} \pi (w')$ in the sense of Section 1.2.1(c).

(c) Let $\Phi '\subseteq \Phi $ have a property that if $\mu \in \Lambda $ is a positive linear combination of elements $\check {\alpha }$ with $\alpha \in \Phi '$ , then $\mu $ is a finite sum of elements $\check {\alpha }$ with $\alpha \in \Phi '$ . Then for every $\mu ,\mu '\in \Lambda $ , we have $\mu <_{\Phi '}\mu '$ in the sense of Section 1.2.1(b) if and only if $\mu <_{\Phi '}\mu '$ in the sense of Section 1.2.1(c).

Proof. (a) If $w<_{\alpha }w'$ , then $w\in \widetilde {W}_{\alpha }w'$ (by definition), and $w(x)<_{\alpha }w'(x)$ for all $x\in A_0$ (by Lemma 1.2.2(a)). Conversely, assume that $w=uw'$ with $u\in \widetilde {W}_{\alpha }$ such that $w(x)<_{\alpha }w'(x)$ for all $x\in A_0$ . Then we have either $u=s_{\widetilde {\alpha }}$ or $u=\check {\alpha }^m$ for some $m\in \mathbb Z_{<0}$ . In the first case, we have $w<_{\alpha }w'$ by Lemma 1.2.2(a), while in the second one, we have $w<_{\alpha }w'$ by Lemma 1.2.2(b).

(b) By definition, it is enough to assume that $w=s_{\widetilde {\alpha }}w'<_{\widetilde {\alpha }}w'$ . In this case, the first assertion follows from Lemma 1.2.2(a). Next, since $0\in V$ lies in the closure of $A_0\subseteq V$ , the second one follows from the equality $\pi (w)=w(0)$ .

(c) Assume that $\mu <_{\Phi '}\mu '$ in the sense of Section 1.2.1(c). By our assumption of $\Phi '$ , we may assume that $\mu =\mu '-\check {\alpha }$ for some $\alpha \in \Phi '$ . In this case, it follows from Lemma 1.2.2(b) that $\mu <_{\Phi '}\mu '$ in the sense of Section 1.2.1(b). The converse assertion follows from part (b).

Remarks 1.2.4. (a) Let $\Phi '\subseteq \Phi $ , let $w\in \widetilde {W}$ , and let $w_{\operatorname {fin}}\in W$ be the image of $w\in \widetilde {W}$ under the projection $\widetilde {W}\to W$ . Then it follows from definition that for every $w'\leq _{\Phi '} w"$ , we have $w w'\leq _{w_{\operatorname {fin}}(\Phi ')} ww"$ . In particular,

(i) for every $\mu \in \Lambda $ , we have $w'\leq _{\Phi '} w"$ if and only if $\mu w'\leq _{\Phi '} \mu w"$ ;

(ii) for every $u\in W$ , we have $w'\leq _{\Phi '} w"$ if and only if $uw'\leq _{u(\Phi ')} uw"$ .

(b) Note that for each $\alpha \in \Phi $ , the subset $\Phi ':=\{\alpha \}$ satisfies the assumption of Corollary 1.2.3(c).

(c) Arguing as in Lemma 1.2.2(c), we see that for each $\psi \in \Psi $ , the subset $\Phi ':=\Phi (\psi )$ satisfies the assumption of Corollary 1.2.3(c).

Proposition 1.2.5. Let $w',w"\in \widetilde {W}$ , and let C be a Weyl chamber.

Then $w'\leq _C w"$ if and only if for every sufficiently regular $\mu \in \Lambda \cap C$ , we have $\mu w'\leq \mu w"$ ; that is, there exists $\mu \in \Lambda \cap C$ such that $\mu '\mu w'\leq \mu '\mu w"$ for every $\mu '\in \Lambda \cap C$ .

Proof. First, we claim that for every $w',w"\in \widetilde {W}\cap C$ and $\widetilde {\alpha }\in \widetilde {\Phi }$ such that $w'=s_{\widetilde {\alpha }}w"$ , we have $w'<_C w"$ if and only if $w'< w"$ .

Replacing $\widetilde {\alpha }$ by $-\widetilde {\alpha }$ , if necessary, we may assume that $\widetilde {\alpha }=\alpha +n$ with $\alpha \in \Phi _C$ . Then $w'<_C w"$ holds if and only if $w^{\prime \prime -1}(\widetilde {\alpha })>0$ . However, since $w',w"\in C$ , we get that $(w")^{-1}(\alpha )>0$ and $(w')^{-1}(\alpha )>0$ . Since $s_{\widetilde {\alpha }}(\widetilde {\alpha })=-\widetilde {\alpha }$ , we get $s_{\widetilde {\alpha }}(\alpha )=-\alpha -2n$ ; therefore,

$$\begin{align*}(w')^{-1}(\alpha ) =(w")^{-1}s_{\widetilde {\alpha }}(\alpha )=-(w")^{-1}(\alpha )-2n>0. \end{align*}$$

This together with $(w")^{-1}(\alpha )>0$ implies that $n<0$ ; thus, $\widetilde {\alpha }<0$ . Therefore, $w'< w"$ holds if and only if $w^{\prime \prime -1}(\widetilde {\alpha })>0$ .

Now we are ready to show our assertion. Assume that $w'\leq _C w"$ , and we are going to show that for each sufficiently regular $\mu \in \Lambda \cap C$ , we have $\mu w'\leq \mu w"$ . By induction, we can assume that $w'=s_{\widetilde {\alpha }}w"$ for some $\widetilde {\alpha }\in \widetilde {\Phi }$ . Choose $\mu \in \Lambda \cap C$ sufficiently regular so that $\mu w',\mu w"\in C$ . Then $\mu w'\leq _C \mu w"$ (by Remark 1.2.4(a)(i)), and $\mu w'=s_{\mu (\widetilde {\alpha })}\mu w"$ . Hence, by what is shown above, $\mu w'\leq \mu w"$ .

Conversely, assume that for every sufficiently regular element $\mu \in \Lambda \cap C$ , we have $\mu w'\leq \mu w"$ , and we want to show that $w'\leq _C w"$ . Replacing $w'$ and $w"$ by $\mu w'$ and $\mu w"$ , respectively, and using Remark 1.2.4(a)(i), we may assume that $w',w"\in C$ and $w'\leq w"$ . Then using Lemma 1.1.5(b), we may assume in addition that $w'=s_{\widetilde {\alpha }}w"$ . Then, by what is shown above, $w'\leq _C w"$ .

Corollary 1.2.6. Let $w',w"\in \widetilde {W}$ , and let C be a Weyl chamber.

(a) If $w'\leq _C w"$ and $w'\in C$ , then $w'\leq w"$ .

(b) If $w'\leq w"$ and $w"\in C$ , then $w'\leq _C w"$ .

(c) If $w',w"\in C$ , then $w'\leq _C w"$ if and only if $w'\leq w"$ .

Proof. (a) By Proposition 1.2.5, there exists $\mu \in \Lambda \cap C$ such that $\mu w'\leq \mu w"$ . Since $\mu , w'\in C$ , the assertion follows from Lemma 1.1.5(c) and Section 1.1.4(c).

(b) Using Lemma 1.1.5(c) and Section 1.1.4(c), we conclude that $\mu w'\leq \mu w"$ for every $\mu \in \Lambda \cap C$ . Therefore, we get $w'\leq _C w"$ by Proposition 1.2.5.

(c) follows from parts (a) and (b).

Lemma 1.2.7. Let $\psi \in \Psi $ , $w',w"\in \widetilde {W}^{\psi }$ , $C\owns \psi $ and $w\in \widetilde {W}$ .

(a) We have $w"w\leq _{C} w'w$ if and only if $w"w\leq _{C^{\psi }} w'w$ .

(b) If $w\in \widetilde {W}_{\psi }$ , then $w"w\leq _{C} w'w$ if and only if $w"\leq _{C^{\psi }} w'$ .

Proof. (a) Since $(\Phi ^{\psi })_{C^{\psi }}\subseteq \Phi _C$ , the ‘if’ assertion is obvious. Conversely, assume that $w"w\leq _C w'w$ . Then there exist affine roots

$$\begin{align*}\widetilde{\beta}_1=(\beta_1,n_1),\ldots,\widetilde{\beta}_r=(\beta_r,n_r)\in\widetilde{\Phi}_C \end{align*}$$

such that $w"w=s_{\widetilde {\beta }_n}\ldots s_{\widetilde {\beta }_1}w'w$ , and $s_{\widetilde {\beta }_i}\ldots s_{\widetilde {\beta }_1}w'w<_{\widetilde {\beta }_i} s_{\widetilde {\beta }_{i-1}}\ldots s_{\widetilde {\beta }_1}w'w$ for all i. Then for every $x\in A_0$ , the difference $w'w(x)-w"w(x)$ is a positive linear combination of the $\check {\beta }_i$ ’s (by Lemma 1.2.2(a)).

Since $w"w\in \widetilde {W}^{\psi }w'w$ , we conclude that $w'w(x)-w"w(x)$ is a linear combination of coroots of $\Phi ^{\psi }$ . Therefore, each $\beta _i$ is a root of $\Phi ^{\psi }$ ; thus, $\beta _i\in (\Phi ^{\psi })_{C^{\psi }}$ . But this implies that $w"w\leq _{C^{\psi }} w'w$ .

(b) By part (a), we have to show that $w"w\leq _{C^{\psi }} w'w$ if and only if $w"\leq _{C^{\psi }} w'$ . Thus, we can assume that $w"=s_{\widetilde {\beta }}w'$ for some $\widetilde {\beta }\in \widetilde {\Phi }^{\psi }$ . In other words, we have to show that $w^{\prime -1}(\widetilde {\beta })\in \widetilde {\Phi }^{\psi }_{>0}$ if and only if $w^{-1}(w^{\prime -1}(\widetilde {\beta }))\in \widetilde {\Phi }_{>0}$ . But this follows from the assumption that $w\in \widetilde {W}_{\psi }$ .

1.3 Admissible tuples

Definition 1.3.1. (a) We say that a tuple $\overline {\mu }=\{\mu _C\}_{C\in \mathcal {C}}\in V^{\mathcal {C}}$ is admissible (resp. quasi-admissible, resp. strictly admissible) if for every $C\in \mathcal {C}$ and $\alpha \in \Delta _{C}$ , the difference $\mu _C-\mu _{s_{\alpha }(C)}$ belongs to $\mathbb R_{\geq 0}\check {\alpha }$ (resp. $\mathbb R\check {\alpha }$ , resp. $\mathbb R_{>0}\check {\alpha }$ ).

(b) A tuple $\overline {w}=\{w_C\}_C\in \widetilde {W}^{\mathcal {C}}$ is called admissible (resp. quasi-admissible, resp. strictly admissible) if for every $C\in \mathcal {C}$ and $\alpha \in \Delta _{C}$ , we have $w_{s_{\alpha }(C)}\leq _{\alpha }w_C$ (resp. $w_{s_{\alpha }(C)}\in \widetilde {W}_{\alpha }w_C$ , resp. $w_{s_{\alpha }(C)}<_{\alpha }w_C$ ).

Remarks 1.3.2. (a) It follows from Corollary 1.2.3(b) that if $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ is (quasi)-admissible, then the tuple $\pi (\overline {w})\in \Lambda ^{\mathcal {C}}\subseteq V^{\mathcal {C}}$ is (quasi)-admissible as well.

(b) Moreover, it follows from Corollary 1.2.3(c) and Section 1.2.4(b) that a tuple $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ is (quasi)-admissible as an element of $\widetilde {W}^{\mathcal {C}}$ if and only if it is such as an element of $V^{\mathcal {C}}$ .

(c) The notion of an admissible tuple in $V^{\mathcal {C}}$ is not new. For example, it is called complementary polyhedron in [Reference BehrendBe, Definition 2.1]. However, we do not know whether admissible tuples in $\widetilde {W}^{\mathcal {C}}$ were studied earlier.

Notation 1.3.3. (a) For $\overline {\mu },\overline {\mu }'\in V^{\mathcal {C}}$ (resp. $\overline {w},\overline {w}'\in \widetilde {W}^{\mathcal {C}}$ ), we will say that $\overline {\mu }\leq \overline {\mu }'$ (resp. $\overline {w}\leq \overline {w}'$ ) if $\mu _C\leq _C\mu ^{\prime }_C$ (resp. $w_C\leq _C w^{\prime }_C$ ) for all $C\in \mathcal {C}$ .

(b) For $\overline {\mu }\in V^{\mathcal {C}}$ , we define by $V^{\leq \overline {\mu }}$ the set of all $x\in V$ such that $x\leq _C\mu _C$ for all $C\in \mathcal {C}$ .

1.3.4. Quasi-admissible tuples in $V^{\mathcal {C}}$ . (a) The set of quasi-admissible tuples in $V^{\mathcal {C}}$ (resp. $\Lambda ^{\mathcal {C}}$ ) can be naturally identified with $\mathbb R^{\Psi }$ (resp. $\mathbb Z^{\Psi }$ ).

Indeed, for each quasi-admissible tuple $\overline {\mu }\in V^{\mathcal {C}}$ and every $\psi \in \Psi $ , the element $\overline {\mu }(\psi ):=\langle \psi ,\mu _C\rangle $ does not depend on $C\owns \psi $ . To see this, we observe that for every pair of Weyl chambers $C,C'\owns \psi $ , there exists $w\in W_{\Phi ^{\psi }}$ such that $C'=w(C)$ . Therefore, $\overline {\mu }$ defines a tuple $\{\overline {\mu }(\psi )\}_{\psi \in \Psi }\in \mathbb R^{\Psi }$ .

Conversely, every tuple $\{\overline {\mu }(\psi )\}\in \mathbb R^{\Psi }$ gives rise to a quasi-admissible tuple $\overline {\mu }\in V^{\mathcal {C}}$ defined by the rule $\mu _C:=\sum _{\alpha _i\in \Delta _C}\overline {\mu }(\psi _i)\check {\alpha }_i$ , where $\psi _i\in \Psi _C$ is the fundamental weight corresponding to $\alpha _i\in \Delta _C$ .

(b) The set of quasi-admissible tuples in $V^{\mathcal {C}}$ (resp. $\Lambda ^{\mathcal {C}}$ ) is a group with respect to the coordinatewise addition in V (resp. $\Lambda $ ). Moreover, the identification of part (a) identifies this group with $\mathbb R^{\Psi }$ (resp. $\mathbb Z^{\Psi }$ ). Also, the set of admissible tuples in $V^{\mathcal {C}}$ (resp. $\Lambda ^{\mathcal {C}}$ ) is a submonoid.

(c) The identification of part (a) preserves coordinatewise ordering. In other words, for every two quasi-admissible tuples $\overline {\mu },\overline {\mu }'\in V^{\mathcal {C}}$ , we have $\mu _C\leq _C\mu ^{\prime }_C$ for all $C\in \mathcal {C}$ if and only if $\overline {\mu }(\psi )\leq \overline {\mu }'(\psi )$ for all $\psi \in \Psi $ . In particular, for every quasi-admissible tuples $\overline {\mu }\in V^{\mathcal {C}}$ , the subset $V^{\leq \overline {\mu }}\subseteq V$ (see Section 1.3.3(b)) consists of all $x\in V$ such that $\langle \psi ,x\rangle \leq \overline {\mu }(\psi )$ for all $\psi \in \Psi $ .

(d) From now on, we will not distinguish between a quasi-admissible tuple $\{\mu _C\}_C$ in $V^{\mathcal {C}}$ (resp. $\Lambda ^{\mathcal {C}}$ ) and the corresponding tuple $\{\overline {\mu }(\psi )\}_{\psi }$ in $\mathbb R^{\Psi }$ (resp. $\mathbb Z^{\Psi }$ ). In particular, for every $\psi \in \Psi $ , we denote by $\overline {e}_{\psi }\in \Lambda ^{\mathcal {C}}$ the quasi-admissible tuple, corresponding to the standard vector $\overline {e}_{\psi }\in \mathbb Z^{\Psi }$ , given by the rule $\overline {e}_{\psi }(\psi ')=\delta _{\psi ,\psi '}$ .

Examples 1.3.5. (a) Every $\mu \in C_0\subseteq V$ gives rise to an admissible tuple $\overline {\mu }\in V^{\mathcal {C}}$ defined by the rule $\mu _{u(C_0)}:=u(\mu )$ for all $u\in W$ .

(b) Consider the tuple $\overline {w}_{\operatorname {st}}\in W^{\mathcal {C}}\subseteq \widetilde {W}^{\mathcal {C}}$ , defined by the rule $(w_{\operatorname {st}})_{u(C_0)}=u$ . Then $\overline {w}_{\operatorname {st}}$ is admissible. Indeed, by definition, we have to show that for every $u\in W$ and $\alpha \in \Phi _{u(C_0)}$ , we have $s_{\alpha }u<_{\alpha }u$ ; that is, $u^{-1}(\alpha )>0$ . Since $u^{-1}(\alpha )\in \Phi _{C_0}$ , we are done.

(c) Using Remark 1.2.4(a)(i) and Lemma 1.2.2(b), for every (quasi)-admissible tuples $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ and $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ , the tuple is (quasi)-admissible as well. In particular, for every $\mu \in \Lambda $ and (quasi)-admissible tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ , the tuple $\mu \overline {w}:=\{\mu w_C\}_C$ is (quasi)-admissible.

Notation 1.3.6. Arguing as in Section 1.3.4(a), for each quasi-admissible $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ and every $\psi \in \Psi $ , the class $[w_C]\in \widetilde {W}^{\psi }\backslash \widetilde {W}$ and hence also element $(w_C)_{\psi }\in \widetilde {W}_{\psi }$ (see Section 1.1.3(d)) does not depend on $C\owns \psi $ . We will denote this element by $\overline {w}_{\psi }$ .

The following characterization of admissible tuples will be crucial for the rest of the paper.

Lemma 1.3.7. A tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ (resp. $\overline {\mu }\in V^{\mathcal {C}}$ ) is admissible if and only if for all $C,C'\in \mathcal {C}$ , we have $w_{C}\leq _{C'} w_{C'}$ (resp. $\mu _{C}\leq _{C'}\mu _{C'}$ ).

Proof. We will only prove the assertion for $\overline {w}$ , while the other case is similar, but easier. Assume first that $\overline {w}$ is admissible, and we want to show that for every two Weyl chambers C and $C'$ , we have $w_{C}\leq _{C'} w_{C'}$ . Using Remark 1.2.4(a)(ii), we may assume that $C'=C_0$ . Let $u\in W$ be such that $C=u(C_0)$ , choose a reduced decomposition $u=s_1\ldots s_n$ of u, and for each $j=1,\ldots ,n$ , we set $u_j:=s_1\ldots s_j$ and $C_j:=u_j(C_0)$ . It is enough to show that $w_{C_{j+1}}\leq _{C_0} w_{C_j}$ for each $j=0,\ldots ,n-1$ .

Let $\alpha _{j+1}\in \Delta _{C_0}$ be such that $s_{j+1}=s_{\alpha _{j+1}}$ . By construction, we obtain that $u_{j+1}=u_j s_{j+1}>u_j$ ; hence, $u_j(\alpha _{j+1})\in \Phi _{C_0}$ . Also since $\alpha _{j+1}\in \Delta _{C_0}$ , we get that $u_j(\alpha _{j+1})\in \Delta _{C_j}$ . Since $C_{j+1}=s_{u_j(\alpha _{j+1})}(C_j)$ , the admissibility assumption implies that $w_{C_{j+1}}\leq _{u_j(\alpha _{j+1})}w_{C_j}$ ; thus, we have $w_{C_{j+1}}\leq _{C_0} w_{C_j}$ because $u_j(\alpha _{j+1})\in \Phi _{C_0}$ .

Conversely, assume that $w_{C}\leq _{C'} w_{C'}$ for all $C,C'\in \mathcal {C}$ . Choose $C\in \mathcal {C}$ , $\alpha \in \Delta _C$ , and set $C'=s_{\alpha }(C)$ . Since $w_{C'}\leq _C w_C$ , there exist a tuple of affine roots $\widetilde {\beta }_1=(\beta _i,n_i),\ldots ,\widetilde {\beta }_r=(\beta _r,n_r)\in \widetilde {\Phi }_{C}$ such that $w_{C'}=s_{\widetilde {\beta }_r}\ldots s_{\widetilde {\beta }_1} w_C$ , and $s_{\widetilde {\beta }_i}\ldots s_{\widetilde {\beta }_1}w_C<_{\widetilde {\beta }_i} s_{\widetilde {\beta }_{i-1}}\ldots s_{\widetilde {\beta }_1}w_C$ for all i. Therefore, for each $x\in A_0$ , the difference $w_C(x)-w_{C'}(x)$ is a positive linear combination of the $\check {\beta }_i$ ’s (by Lemma 1.2.2(a)), and hence a positive linear combination of C-simple coroots.

However, since $w_C\leq _{C'}w_{C'}$ , the difference $w_C(x)-w_{C'}(x)$ is also a negative linear combination of $C'$ -simple coroots. Combining these two statements, we conclude that $w_C(x)-w_{C'}(x)$ has to be a positive multiple of $\check {\alpha }$ . Hence, all the $\beta _i$ ’s have to be $\alpha $ ; thus, $w_{C'}\leq _{\alpha } w_C$ .

The following corollary seems to be known to specialists.

Corollary 1.3.8. Let $\overline {\mu }$ be an admissible tuple in $V^{\mathcal {C}}$ , and let $\psi \in \Psi $ .

(a) The subset $V^{\leq \overline {\mu }}\subseteq V$ equals the convex hull of $\{\mu _C\}_{C\in \mathcal {C}}$ .

(b) If $\overline {\mu }$ is strictly admissible, then for every $C\not \ni \psi $ , we have $\langle \psi ,\mu _C\rangle <\overline {\mu }(\psi )$ .

(c) If $\overline {\mu }$ is strictly admissible, then the intersection of $V^{\leq \overline {\mu }}$ and the set of $x\in V$ such that $\langle \psi, x \rangle =\overline {\mu }(\psi )$ equals the convex hull of $\{\mu _C\}_{C\ni \psi }$ .

Proof. (a) For every $C\in \mathcal {C}$ , we have $\mu _C\leq _{C'}\mu _{C'}$ for every $C'\in \mathcal {C}$ (by Lemma 1.3.7); thus, $\mu _C\in V^{\leq \overline {\mu }}$ . Since subset $V^{\leq \overline {\mu }}\subseteq V$ is convex, this implies that the convex hull of $\{\mu _C\}_{C\in \mathcal {C}}$ is contained in $V^{\leq \overline {\mu }}$ .

To show the opposite inclusion, it suffices to show that for every affine function l on V such that $l(\mu _{C'})\leq 0$ for all $C'\in \mathcal {C}$ and every $x\in V^{\leq \overline {\mu }}$ , we have $l(x)\leq 0$ . Let $\lambda \in V^*$ be the vector part of l and choose $C\in \mathcal {C}$ such that $\alpha \in \overline {C}$ . Since $x\leq _C\mu _C$ , we get $l(\mu _C)-l(x)=\langle \lambda ,\mu _C\rangle -\langle \lambda ,x\rangle \geq 0$ ; therefore, $l(x)\leq l(\mu _C)\leq 0$ .

(b) Since $\langle \psi ,\mu _C\rangle \leq \overline {\mu }(\psi )$ for every $C\in \mathcal {C}$ , it suffices to show that for every $C\in \mathcal {C}$ such that $\langle \psi ,\mu _C\rangle =\overline {\mu }(\psi )$ , we have $\psi \in \Psi _C$ . To show the result, we essentially repeat the first part of the proof of Lemma 1.3.7.

Using Remark 1.2.4(a)(ii), we may assume that $\psi \in \Psi _{C_0}$ , and let $u\in W$ be such that $C=u(C_0)$ . It suffices to show that $u\in W^{\psi }$ . Let $u_j$ , $C_j$ and $\alpha _{j+1}$ be as in the proof of Lemma 1.3.7. Since $\overline {\mu }$ is strictly admissible, we get $\mu _{C_{j+1}}<_{u_j(\alpha _{j+1})}\mu _{C_j}$ for every $j=0,\ldots ,n-1$ . Moreover, since $\psi \in \Psi _{C_0}$ and $u_j(\alpha _{j+1})\in \Phi _{C_0}$ , we conclude that $\langle \psi ,u_j(\alpha _{j+1})\rangle \geq 0$ . So the assumption that $\langle \psi ,\mu _C\rangle =\overline {\mu }(\psi )=\langle \psi ,\mu _{C_0}\rangle $ implies that for every j, we have $\langle \psi ,u_j(\alpha _{j+1})\rangle =0$ ; hence, $u_j(\alpha _{j+1})\in \Phi ^{\psi }$ and thus $s_{u_j(\alpha _{j+1})}\in W^{\psi }$ . Therefore, , as claimed.

(c) is an immediate consequence of parts (a) and (b).

Notation 1.3.9. (a) Let $m\in \mathbb R$ and $C\in \mathcal {C}$ . We say that $\mu \in V$ is $(C,m)$ -regular if $\langle \alpha ,\mu \rangle \geq m$ for every $\alpha \in \Phi _{C}$ . We say that $w\in \widetilde {W}$ is $(C,m)$ -regular if $\pi (w)=w(0)\in \Lambda $ is $(C,m)$ -regular.

(b) Let $m\in \mathbb R$ . We say that a tuple $\overline {\mu }\in V^{\mathcal {C}}$ is m-regular if $\mu _C$ is $(C,m)$ -regular for every $C\in \mathcal {C}$ . We say that a tuple $\overline {\mu }\in V^{\mathcal {C}}$ is regular if it is m-regular for some $m>0$ . A tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ is called m-regular (resp. regular) if $\pi (\overline {w})\in \Lambda ^{\mathcal {C}}\subseteq V^{\mathcal {C}}$ is m-regular (resp. regular).

(c) For every $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ and every $\psi \in \Psi $ , we define $\overline {w}^{\psi }\in (\widetilde {W}^{\psi })^{\mathcal {C}^{\psi }}$ by the rule $(w^{\psi })_{C^{\psi }}=(w_C)^{\psi }$ for each $C\owns \psi $ (see Section 1.1.3).

Lemma 1.3.10. (a) If $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ (resp. $\overline {\mu }\in V^{\mathcal {C}}$ ) is quasi-admissible and regular, then it is strictly admissible.

(b) If $\overline {\mu }\in V^{\mathcal {C}}$ is quasi-admissible and regular, then for every $\psi \in \Psi $ , we have $\overline {\mu }(\psi )>0$ (see Section 1.3.4(a)).

(c) If the tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ is admissible, then the tuple $\overline {w}^{\psi }$ is admissible as well.

(d) If $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ is $(m+1)$ -regular, then $\overline {w}^{\psi }$ is m-regular.

Proof. (a) We will only show the assertion for $\overline {w}$ . Fix $C\in \mathcal {C}$ , let $\alpha \in \Phi _C$ , and set $C'=s_{\alpha }(C)$ . We want to show that $w_{C'}\leq _{\alpha } w_C$ . Since $\overline {w}$ is quasi-admissible, we get $w_{C'}\in \widetilde {W}_{\alpha }w_{C}$ . Therefore, for every $x\in A_0$ , we have $w_{C'}(x)=w_C(x)-a\check {\alpha }$ for some $a\in \mathbb R$ . Since $\overline {w}$ is regular, we conclude $\langle \alpha ,w_C(x)\rangle>0$ and $\langle \alpha ,w_{C'}(x)\rangle <0$ . Thus, $a>0$ , and hence, $w_{C'}<_{\alpha } w_C$ (by Corollary 1.2.3(a)).

(b) Since $\overline {\mu }(\psi )=\langle \psi ,\mu _C\rangle $ for every Weyl chamber $C\owns \psi $ (by definition), we have $\langle \alpha ,\mu _C\rangle>0$ for every $\alpha \in \Delta _C$ (since $\overline {\mu }$ is regular), and $\psi =\sum _{\alpha \in \Delta _C} c_{\alpha }\alpha $ with $c_{\alpha }\geq 0$ for all $\alpha \in \Delta _C$ , the assertion follows.

(c) follows from Lemma 1.2.7(b) and Lemma 1.3.7.

(d) Let $C\owns \psi $ be a Weyl chamber. We have to show that if w is $(C,m+1)$ -regular, and $\psi \in C$ , then $w^{\psi }$ is $(C^{\psi },m)$ -regular.

Notice that if w is $(C,m+1)$ -regular, then for all $\alpha \in \Phi _C$ and $x\in A_0$ , we have $\langle w^{-1}(\alpha ),x\rangle =\langle \alpha ,w(x)\rangle>m$ , or equivalently, $w^{-1}(\alpha )-m\in \widetilde {\Phi }_{>0}$ . Conversely, if $\langle \alpha ,w(x)\rangle>m$ for all $\alpha \in \Phi _C$ , then $\langle \alpha ,w(0)\rangle \geq m$ for all $\alpha \in \Phi _C$ ; thus, w is $(C,m)$ -regular.

Thus, it suffices to show that for every $\alpha \in (\Phi ^{\psi })_{C^{\psi }}$ , we have $w^{-1}(\alpha )-m\in \widetilde {\Phi }_{>0}$ if and only if $(w^{\psi })^{-1}(\alpha )-m\in \widetilde {\Phi }^{\psi }_{>0}$ . Since $w=w^{\psi }w_{\psi }$ , the assertion follows from the fact that $w_{\psi }\in \widetilde {W}_{\psi }$ .

The following lemma will be used in Lemma 3.2.10.

Lemma 1.3.11. Let $\overline {\mu }\in V^{\mathcal {C}}$ be regular and quasi-admissible. Then for every $x\in V^{\leq \overline {\mu }}$ , $\psi \in \Psi $ and $\alpha \in \Phi $ such that $\langle \alpha ,\check {\psi }\rangle>0$ and $\langle \psi ,x\rangle =\overline {\mu }(\psi )$ , we have $\langle \alpha ,x\rangle>0$ .

Proof. By Lemma 1.3.10(a), the tuple $\overline {\mu }$ is strictly admissible. Then, by Corollary 1.3.8(c), the intersection of $V^{\leq \overline {\mu }}$ with the set of $x\in V$ such that $\langle \psi ,x\rangle =\overline {\mu }(\psi )$ is equal to the convex hull of $\{\mu _C\}_{C\owns \psi }$ .

Therefore, it is enough to show that for every Weyl chamber $C\owns \psi $ , we have $\langle \alpha ,\mu _C\rangle>0$ . Since tuple $\overline {\mu }$ is regular, it is enough to show that $\langle \alpha ,y\rangle>0$ for some $y\in C\subseteq V^*$ . But this follows from our assumption $\langle \alpha ,\check {\psi }\rangle>0$ together with observation that $\check {\psi }\in \overline {C}$ (see Section 1.1.3(b)).

The following very important technical result will be used in Proposition 3.1.8.

Lemma 1.3.12. Let $\overline {u}\in \widetilde {W}^{\mathcal {C}}$ be admissible, and $\psi \in \Psi $ . Then there exists $m\in \mathbb N$ such that for every m-regular admissible tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ and every $\mu \in \Lambda $ such that $\mu u_C\leq _{C^{\psi }} w_C$ for each $C\owns \psi $ , we have $\mu u_C\leq _C w_C$ for each C.

Proof. First, we claim that there exists an admissible tuple $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ such that $\mu _C^{-1}u_C\leq _C \mu ^{-1}_{C'}u_{C'}$ for every $C,C'\in \mathcal {C}$ . Indeed, $\overline {u}$ is admissible; hence, for each $C\in \mathcal {C}$ , $\alpha \in \Delta _C$ and $x\in A_0$ , we have $u_C(x)-u_{s_{\alpha }(C)}(x)=m_{C,\alpha ,x}\check {\alpha }$ for some constant $m_{C,\alpha ,x}\geq 0$ (use Lemma 1.2.2(a)). Let $m'$ be the supremum of the $m_{C,\alpha ,x}$ ’s, choose $\mu \in C_0\cap \Lambda $ such that $\langle \alpha ,\mu \rangle \geq m'$ for all $\alpha \in \Delta _{C_0}$ , and let $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ be the tuple, corresponding to $\mu $ as in Section 1.3.5(a).

We claim that $\mu _C^{-1}u_C\leq _C \mu ^{-1}_{C'}u_{C'}$ for every $C,C'\in \mathcal {C}$ . Indeed, arguing as in Lemma 1.3.7 word-by-word, it is enough to check that $\mu _C^{-1}u_C\leq _{\alpha } \mu ^{-1}_{C'}u_{C'}$ for all $C\in \mathcal {C},\alpha \in \Delta _C$ and $C'=s_{\alpha }(C)$ . Then by Corollary 1.2.3(a), it is enough to check that $\mu _C^{-1}u_C(x)\leq _{\alpha } \mu ^{-1}_{C'}u_{C'}(x)$ for each $x\in A_0$ . By construction, we have $\mu ^{-1}_{C'}u_{C'}(x)-\mu _C^{-1}u_C(x)= (\langle \alpha ,\mu _C\rangle -m_{C,\alpha ,x})\check {\alpha }$ , so the assertion follows from the fact that $m_{C,\alpha ,x}<m'\leq \langle \alpha ,\mu _C\rangle $ .

Denote m to be the maximum of the $\langle \alpha ,\mu _C\rangle +1$ ’s, taken over all $C\in \mathcal {C}$ and $\alpha \in \Delta _{C}$ . We claim that such an m satisfies the required property.

To see this, we choose any m-regular admissible tuple $\overline {w}$ , and we claim that tuple is admissible. By Section 1.3.5(c), it is quasi-admissible, so by Lemma 1.3.10(a), it is enough to show that it is regular. For every $C\in \mathcal {C}$ , $\alpha \in \Delta _C$ , we have $\langle \alpha ,\mu _C^{-1}\pi (w_C)\rangle = \langle \alpha ,\pi (w_C)\rangle -\langle \alpha ,\mu _C\rangle>0$ because $\langle \alpha ,\pi (w_C)\rangle \geq m$ by m-regularity of $\overline {w}$ , and $\langle \alpha ,\mu _C\rangle \leq m-1$ , by construction.

Let $\mu \in \Lambda $ be such that $\mu u_C\leq _{C^{\psi }} w_C$ for each $C\owns \psi $ , and let $C'\in \mathcal {C}$ be arbitrary. We want to show that $\mu u_{C'}\leq _{C'} w_{C'}$ . Using Remark 1.2.4(a)(ii), it is enough to do it in the case $C'=C_0$ , so using Remark 1.2.4(a)(i), we have to show that $\mu _{C_0}^{-1}\mu u_{C_0}\leq _{C_0}\mu _{C_0}^{-1}w_{C_0}$ .

Choose $u\in W$ of minimal length such that $\psi _0:=u^{-1}(\psi )$ belongs to $\Psi _{C_0}$ , and set $C:=u(C_0)$ . Since is admissible, we conclude from Lemma 1.3.7 that $\mu _{C}^{-1}w_{C}\leq _{C_0}\mu _{C_0}^{-1}w_{C_0}$ , while by our construction, we get $\mu _{C_0}^{-1}u_{C_0}\leq _{C_0} \mu _{C}^{-1}u_{C}$ ; hence, $\mu _{C_0}^{-1}\mu u_{C_0}\leq _{C_0} \mu _{C}^{-1}\mu u_{C}$ (by Remark 1.2.4(a)(i)). Thus, it is enough to show that $\mu _C^{-1}\mu u_C\leq _{C_0} \mu _C^{-1}w_{C}$ , or, equivalently, that $\mu u_C\leq _{C_0} w_{C}$ .

Since $\psi _0\in C_0$ , we get that $\psi \in C$ . Hence, by our assumption, $\mu u_C\leq _{C^{\psi }} w_{C}$ . Therefore, to show that $\mu u_C\leq _{C_0} w_{C}$ , it suffices to check that $(\Phi ^{\psi })_{C^{\psi }}\subseteq \Phi _{C_0}$ .

If $\beta \in (\Phi ^{\psi })_{C^{\psi }}$ , then $u^{-1}(\beta )\in (\Phi ^{\psi _0})_{C_0^{\psi _0}}$ . Since $u\in W$ is an element of minimal length such that $\psi =u(\psi _0)$ , we get that $u((\Phi ^{\psi _0})_{C_0^{\psi _0}})\subseteq \Phi _{C_0}$ . In particular, we have $\beta =u(u^{-1}(\beta ))\in \Phi _{C_0}$ .

2 Semi-infinite orbits in affine flag varieties

2.1 Definitions and basic properties

Notation 2.1.1. (a) Let k be an algebraically closed field, $K:=k((t))$ the field of Laurent power series over k, and $\mathcal {O}=\mathcal {O}_K=k[[t]]$ the ring of integers of K. For every affine scheme X over $\mathcal {O}$ (resp. K), we denote by $L^+X$ (resp. $LX$ ) the corresponding arc- (resp. loop-) space.

(b) Let G be a semi-simple and simply connected group over k. Fix a maximal torus $T\subseteq G$ , let $\Phi =\Phi (G,T)$ be the root system of $(G,T)$ , let $W=W_{G}$ be the Weyl group of G, and $\widetilde {W}=N_{LG}(LT)/L^+T$ the affine Weyl group of G. Then, in the notation of Section 1.1.1, we have natural isomorphisms $\Lambda \overset {\thicksim }{\to } X_*(T)$ and $W_{\Phi }\overset {\thicksim }{\to } W$ . Moreover, the map $\mu \mapsto \mu (t)$ defines an embedding $\Lambda \hookrightarrow LT$ , which in turn induces isomorphisms of groups $\Lambda \overset {\thicksim }{\to } LT/L^+T$ and $\widetilde {W}_{\Phi }\overset {\thicksim }{\to }\widetilde {W}$ .

Notation 2.1.2. (a) For every $C\in \mathcal {C}$ , let $B_C\subseteq G$ be the Borel subgroup containing T such that $\Phi (B_C,T)=\Phi _C$ , and let $U_C\subseteq B_C$ be the unipotent radical.

(b) Choose $C_0\in \mathcal {C}_{\Phi }$ as in Section 1.1.2, let $T\subseteq B_0=B_{C_0}\subseteq G$ be the corresponding Borel subgroup, let $B_0^{-}\supseteq T$ be the opposite Borel subgroup, and let $I\subseteq L^+G$ be the Iwahori subgroup, defined as the preimage of $B_0^{-}\subseteq G$ under the projection $L^+G\to G$ .

(c) For every $\alpha \in \Phi $ , we have a natural isomorphism $\exp _{\alpha }:\operatorname {Lie} U_{\alpha }\overset {\thicksim }{\to } U_{\alpha }$ . For $\widetilde {\alpha }=(\alpha ,n)\in \widetilde {\Phi }$ , we set $U_{\widetilde {\alpha }}:=\exp _{\alpha }(t^n \operatorname {Lie} U_{\alpha })\subseteq L(U_{\alpha })$ , and $\widetilde {\alpha }':=(-\alpha ,n)$ .

(d) In the conventions of parts (b), (c), we get the equality .

2.1.3. Affine flag varieties

(a) Denote by $\operatorname {Fl}=\operatorname {Fl}_G$ the affine flag variety $LG/I$ of G over k, and by $\operatorname {Gr}=\operatorname {Gr}_G$ the affine Grassmannian $LG/L^+G$ . We have a natural projection $\operatorname {pr}:\operatorname {Fl}\to \operatorname {Gr}$ . Note that both $\operatorname {Fl}$ and $\operatorname {Gr}$ are equipped with an action of the ind-group scheme $LG$ , and that projection $\operatorname {pr}$ is $LG$ -equivariant.

(b) The embedding $N_{LG}(LT)\hookrightarrow LG$ induces embeddings $\widetilde {W}\hookrightarrow \operatorname {Fl}$ and $\Lambda \hookrightarrow \operatorname {Gr}$ , and we identify $\widetilde {W}$ (resp. $\Lambda $ ) with its image in $\operatorname {Fl}$ (resp. $\operatorname {Gr}$ ). Furthermore, both $\operatorname {Fl}$ and $\operatorname {Gr}$ are equipped with the action of $T\subseteq L^+(T)\subseteq LG$ , and these identifications identify $\widetilde {W}$ (resp. $\Lambda $ ) with the locus of T-fixed points $\operatorname {Fl}^T$ (resp. $\operatorname {Gr}^T$ ).

(c) Note that $\operatorname {Fl}$ decompose as a union $\operatorname {Fl}=\bigcup _{w\in \widetilde {W}}Iw$ of I-orbits, and for every $w\in \widetilde {W}$ , we denote by $\operatorname {Fl}^{\leq w}\subseteq \operatorname {Fl}$ the closure of the I-orbit $Iw\subseteq \operatorname {Fl}$ . Then $\operatorname {Fl}^{\leq w}$ is a reduced projective subscheme of $\operatorname {Fl}$ called the affine Schubert variety.

(d) Fix any $C\in \mathcal {C}$ . Then we have decompositions $\operatorname {Fl}=\bigcup _{w\in \widetilde {W}}L(U_C)w$ and $\operatorname {Gr}=\bigcup _{\mu \in \Lambda }L(U_C)\mu $ by $L(U_C)$ -orbits. For every $w\in \widetilde {W}$ (resp. $\mu \in \Lambda $ ), we denote by $\operatorname {Fl}^{\leq _{C}w}\subseteq \operatorname {Fl}$ (resp. $\operatorname {Gr}^{\leq _{C}\mu }\subseteq \operatorname {Gr}$ ) the closure of the $L(U_C)$ -orbit $L(U_C)w\subseteq \operatorname {Fl}$ (resp. $L(U_C)\mu \subseteq \operatorname {Gr}$ ). We also set $\operatorname {Fl}^{\leq ^{\prime }_{C}\mu }:=\operatorname {pr}^{-1}( \operatorname {Gr}^{\leq _{C}\mu })\subseteq \operatorname {Fl}$ . Notice that $\operatorname {Fl}^{\leq _{C}w}$ , $\operatorname {Gr}^{\leq _{C}\mu }$ and $\operatorname {Fl}^{\leq ^{\prime }_{C}w}$ are closed reduced ind-subschemes.

(e) For every tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ (resp. $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ ), we denote by $\operatorname {Fl}^{\leq \overline {w}}$ (resp. $\operatorname {Gr}^{\leq \overline {\mu }}$ ) the reduced intersection $\bigcap _C \operatorname {Fl}^{\leq _C w_C}$ (resp. $\bigcap _C \operatorname {Gr}^{\leq _C \mu _C}$ ), and set $\operatorname {Fl}^{\leq ' \overline {\mu }}:=\operatorname {pr}^{-1}(\operatorname {Gr}^{\leq \overline {\mu }})$ .

The following simple lemma will play a central role later.

Lemma 2.1.4. Let $Z\subseteq \operatorname {Fl}$ (resp. $Z\subseteq \operatorname {Gr}$ ) be a closed reduced T-invariant ind-subscheme, C a Weyl chamber, and $w\in \widetilde {W}$ (resp. $\mu \in \Lambda $ ). Then $Z\cap L(U_C)w\neq \emptyset $ if and only if $w\in Z$ (resp. $\mu \in Z$ ).

Proof. We will show the assertion for $Z\subseteq \operatorname {Fl}$ and $w\in \widetilde {W}$ , while the proof of the second assertion is identical.

Clearly, if $w\in Z$ , then $Z\cap L(U_C)w\neq \emptyset $ . Conversely, let z be an element of $Z\cap L(U_C)w$ , and pick $u\in L(U_C)$ such that $z=uw$ . For any $\nu \in \Lambda =\operatorname {Hom}(\mathbb G_m,T)$ and $a\in \mathbb G_m$ , we have $\nu (a)(z)=(\nu (a)u\nu (a)^{-1})(w)$ because $w\in \operatorname {Fl}$ is T-invariant; hence, $(\nu (a)u\nu (a)^{-1})(w)\in Z$ because Z is T-invariant. Next, for $\nu \in \Lambda \cap C$ , the morphism $a\mapsto (\nu (a)u\nu (a)^{-1})(w):\mathbb G_m\to Z\subseteq \operatorname {Fl}$ extends to the morphism $\mathbb A^1\to \operatorname {Fl}$ , which sends $0$ to w. Since $Z\subseteq \operatorname {Fl}$ is closed, we conclude that $w\in Z$ .

Lemma 2.1.5. Let $w,w'\in \widetilde {W}$ , and let C be a Weyl chamber.

(a) We have $w'\in \operatorname {Fl}^{\leq w}$ if and only if $w'\leq w$ .

(b) If $w\in C$ , then $I w\subseteq \operatorname {Fl}$ is contained in $L(U_C)w\subseteq \operatorname {Fl}$ .

(c) If $Iw\cap L(U_C)w'\neq \emptyset $ , then $w'\leq w$ .

Proof. (a) is a standard.

(b) In the notation of Section 2.1.2(c), for every $\widetilde {\alpha }\in \widetilde {\Phi }$ and $w\in \widetilde {W}$ , we have $wU_{\widetilde {\alpha }}w^{-1}=U_{w(\widetilde {\alpha })}$ and $w(\widetilde {\alpha }')=w(\widetilde {\alpha })'$ . Combining this with Section 2.1.2(d), we see that for every $w\in \widetilde {W}$ , we have

(2.1) $$ \begin{align} Iw=\left(\prod_{\widetilde{\alpha}>0,w^{-1}(\widetilde{\alpha})<0}U_{\widetilde{\alpha}'}\right)w. \end{align} $$

Using formula (2.1), it remains to check that every $\widetilde {\alpha }=(\alpha ,n)>0$ such that $w^{-1}(\widetilde {\alpha })<0$ satisfies $U_{\widetilde {\alpha }'}\subseteq L(U_C)$ ; that is, $-\alpha \in \Phi _C$ . However, $n\geq 0$ because $\widetilde {\alpha }>0$ . Therefore, $w^{-1}(\alpha )=w^{-1}(\widetilde {\alpha })-n<0$ . Thus, $w^{-1}(-\alpha )>0$ ; hence, $-\alpha \in \Phi _C$ because $w\in C$ .

(c) If $Iw\cap L(U_C)w'\neq \emptyset $ , then $\operatorname {Fl}^{\leq w}\cap L(U_C)w'\neq \emptyset $ . Since $\operatorname {Fl}^{\leq w}\subseteq \operatorname {Fl}$ is closed and T-invariant, we get $w'\in \operatorname {Fl}^{\leq w}$ (by Lemma 2.1.4); thus, $w'\leq w$ (by part (a)).

The following proposition gives a geometric interpretation of the ordering $\leq _C$ , generalizing the well-known result (see, for example, [Reference Mirkovic and VilonenMV, Proposition 3.1]) for the affine Grassmannian.

Proposition 2.1.6. For each $w',w"\in \widetilde {W}$ and every Weyl chamber $C\in \mathcal {C}$ , we have $w'\leq _C w"$ if and only if $w'\in \operatorname {Fl}^{\leq _C w"}$ .

Proof. Assume that $w'\leq _C w"$ . Then by Proposition 1.2.5, there exists $\mu \in \Lambda \cap C$ such that $\mu w'\leq \mu w"$ and $\mu w"\in C$ . Then $\mu w'\in \operatorname {Fl}$ lies in the closure of $I\mu w"\subseteq \operatorname {Fl}$ (by Lemma 2.1.5(a)), and thus in the closure of $L(U_C)\mu w"\subseteq \operatorname {Fl}$ (by Lemma 2.1.5(b)). Since $U_C$ is normalized by T, this implies that $w'\in \operatorname {Fl}$ lies in the closure of $\mu ^{-1} L(U_C)\mu w" =L(U_C)w"\subseteq \operatorname {Fl}$ ; that is, $w'\in \operatorname {Fl}^{\leq _C w"}$ .

Conversely, assume that $w'\in \operatorname {Fl}$ lies in the closure of $L(U_C) w"\subseteq \operatorname {Fl}$ . Then there exists a closed subgroup scheme $U'\subseteq L(U_C)$ such that $w'\in \operatorname {Fl}$ lies in the closure of $U' w"\subseteq \operatorname {Fl}$ . Then $\mu w'\in \operatorname {Fl}$ lies in the closure of $\mu U' w"=(\mu U'\mu ^{-1})\mu w"$ for every $\mu \in \Lambda $ . However, if $\mu \in \Lambda \cap C$ is sufficiently regular, then $\mu U'\mu ^{-1}\subseteq I$ ; thus, $\mu w'\in \operatorname {Fl}$ lies in the closure of $I\mu w"\subseteq \operatorname {Fl}$ . This implies that $\mu w'\leq \mu w"$ (by Lemma 2.1.5(a)); thus, $w'\leq _C w"$ (by Proposition 1.2.5).

Corollary 2.1.7. (a) A tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ is admissible if and only if for every $C\in \mathcal {C}$ the intersection $L(U_C)w_C\cap \operatorname {Fl}^{\leq \overline {w}}$ is nonempty.

(b) For a tuple $\overline {u}$ and an admissible tuple $\overline {w}$ , we have $\operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}^{\leq \overline {u}}$ if and only if $\overline {w}\leq \overline {u}$ .

(c) For a tuple $\overline {w}$ , we have an inclusion $\operatorname {Fl}^{\leq \overline {w}}\subseteq \bigcup _C \operatorname {Fl}^{\leq w_C}$ . In particular, each $\operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}$ is a closed subscheme of finite type.

(d) Let $Z\subseteq \operatorname {Fl}$ be a closed T-invariant ind-subscheme. For every $z\in Z$ , consider tuple $\overline {u}=\overline {u}(z)\in \widetilde {W}^{\mathcal {C}}$ defined by the rule that $z\in L(U_C)u_C$ for all $C\in \mathcal {C}$ . Then the tuple $\overline {u}$ is admissible, and $u_C\in \widetilde {W}\cap Z$ for all $C\in \mathcal {C}$ .

(e) In the situation of part (d), we have an inclusion $Z\subseteq \bigcap _C(\bigcup _{w\in \widetilde {W}\cap Z}\operatorname {Fl}^{\leq _C w})$ .

(f) For every tuple $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ , we have an equality (compare Sections 1.3.5(b),(c)).

Proof. (a) By Lemma 1.3.7 and Proposition 2.1.6, a tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ is admissible if and only if $w_{C}\in \operatorname {Fl}^{\leq \overline {w}}=\bigcap _{C'\in \mathcal {C}}\operatorname {Fl}^{\leq _{C'} w_{C'}}$ for each $C\in \mathcal {C}$ . Since $\operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}$ is closed and T-invariant, the assertion now follows from Lemma 2.1.4.

(b) The ‘if’ assertion follows from Proposition 2.1.6. Conversely, if $\operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}^{\leq \overline {u}}$ , then $w_C\in \operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}^{\leq \overline {u}}$ (as in part (a)); hence, $w_C\in \operatorname {Fl}^{\leq _C u_C}$ for every C. Therefore, $w_C\leq _C u_C$ by Proposition 2.1.6.

(c) Let z be any element of $\operatorname {Fl}^{\leq \overline {w}}$ , let $u\in \widetilde {W}$ be such that $z\in Iu$ , and let $C\in \mathcal {C}$ be such that $u\in C$ . We want to show that $u\leq w_C$ , and thus $z\in \operatorname {Fl}^{\leq w_C}$ .

By Lemma 2.1.5(b), we get $z\in Iu\subseteq L(U_C)u$ . However, we have $z\in \operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}^{\leq _C w_C}$ . Therefore, by Proposition 2.1.6, we get that $u\leq _C w_C$ , which by Corollary 1.2.6(a) implies that $u\leq w_C$ .

(d) By construction, $z\in \operatorname {Fl}^{\leq \overline {u}}\cap L(U_C)u_C$ for all $C\in \mathcal {C}$ ; hence, $\overline {u}$ is admissible by part (a). Since $z\in L(U_C)u_C\cap Z$ , we get $u_C\in Z$ by Lemma 2.1.4.

(e) follows immediately from part (d).

(f) It is enough to show that for every $C\in \mathcal {C}$ , the preimage $\operatorname {pr}^{-1}(\operatorname {Gr}^{\leq _C\mu _C})$ equals $\operatorname {Fl}^{\leq _C (\mu _C (w_{\operatorname {st}})_C)}$ . Using Proposition 2.1.6, we have to check that for every $\mu \in \Lambda $ and $u\in W$ , we have $\mu \leq _C \mu _C$ if and only if $\mu u\leq _C\mu _C (w_{\operatorname {st}})_C$ .

The ‘only if’ assertion follows from Corollary 1.2.3(b). Conversely, if $\mu \leq _C \mu _C$ , then $\mu u\leq _C \mu _C u$ by Lemma 1.2.2(b). So by Remark 1.2.4(a)(i), it is enough to show that $u\leq _C (w_{\operatorname {st}})_C$ . Since $\overline {w}_{\operatorname {st}}$ is admissible and $u=(w_{\operatorname {st}})_{u(C_0)}$ , the assertion follows from Lemma 1.3.7.

2.2 Proof of Theorem 0.2

2.2.1. Let $m\in \mathbb N$ . Recall that $w\in \widetilde {W}$ is called m-regular if $\pi (w)\in \Lambda $ is m-regular; that is, we have $|\langle \alpha ,\pi (w)\rangle |\geq m$ for all $\alpha \in \Phi $ . For each $w\in \widetilde {W}$ , we denote by $\widetilde {W}^{\leq w}$ the set of $w'\in \widetilde {W}$ such that $w'\leq w$ .

The following result is a more precise version of Theorem 0.2.

Theorem 2.2.2. (a) For each $w\in \widetilde {W}$ , there exists a unique admissible tuple $\overline {w}$ such that the Schubert variety $\operatorname {Fl}^{\leq w}$ equals $\operatorname {Fl}^{\leq \overline {w}}$ .

Moreover, $\overline {w}=\{w_C\}_C$ is characterized by the condition that $w_C$ is a unique maximal element of $\widetilde {W}^{\leq w}$ with respect to the ordering $\leq _C$ .

(b) Furthermore, there exists $r\in \mathbb N$ such that for every $m\in \mathbb N$ and every $(m+r)$ -regular $w\in \widetilde {W}$ , the tuple $\overline {w}$ is m-regular.

Proof. (a) Denote by $X(w)$ the closed ind-subscheme $\bigcap _C(\bigcup _{w'\leq w} \operatorname {Fl}^{\leq _C w'})\subseteq \operatorname {Fl}$ (compare Corollary 2.1.7(c)), and we claim that $X(w)$ equals $\operatorname {Fl}^{\leq w}$ . Indeed, the inclusion $\operatorname {Fl}^{\leq w}\subseteq X(w)$ follows from Corollary 2.1.7(e), while the opposite inclusion $X(w)\subseteq \operatorname {Fl}^{\leq w}$ follows from identity $X(w)=\bigcup _{\overline {w}'\in (\widetilde {W}^{\leq w})^{\mathcal {C}}}\operatorname {Fl}^{\leq \overline {w}'}$ and Corollary 2.1.7(c).

Next, since $\operatorname {Fl}^{\leq w}=\bigcup _{\overline {w}'\in (\widetilde {W}^{\leq w})^{\mathcal {C}}}\operatorname {Fl}^{\leq \overline {w}'}$ is irreducible, there exists a tuple $\overline {w}=\{w_C\}_C\in (\widetilde {W}^{\leq w})^{\mathcal {C}}$ such that $\operatorname {Fl}^{\leq w}=\operatorname {Fl}^{\leq \overline {w}}$ .

Then for each $w'\leq w$ and $C\in \mathcal {C}$ , we have $w'\in \operatorname {Fl}^{\leq w}\subseteq \operatorname {Fl}^{\leq _C w_C}$ . Thus, by Proposition 2.1.6, we have $w'\leq _C w_C$ ; that is, $w_C$ is the biggest element of $\widetilde {W}^{\leq w}$ with respect to ordering $\leq _C$ . In particular, for every other Weyl chamber $C'$ , we have $w_{C'}\leq _C w_C$ . Thus, by Lemma 1.3.7, we conclude that $\overline {w}$ is admissible.

The uniqueness of $\overline {w}$ follows immediately from Corollary 2.1.7(b).

(b) Choose any $\mu \in \Lambda \cap C_0$ , and let r be the maximum of the $2\langle \psi ,\mu \rangle $ ’s, taken over $\psi \in \Psi _{C_0}$ . We claim this r satisfies the required property; that is, for every $m\in \mathbb N$ and every $(m+r)$ -regular $w\in \widetilde {W}$ , the tuple $\overline {w}$ is m-regular. In other words, we claim that $w_{u(C_0)}$ is $(u(C_0),m)$ -regular or, equivalently, that $u^{-1}w_{u(C_0)}$ is $(C_0,m)$ -regular for all $u\in W$ .

Claim 2.2.3. Let $w\in \widetilde {W}$ , and let $\overline {w}:=\{w_C\}_{C\in \mathcal {C}}$ be the tuple from Theorem 2.2.2(a).

(a) If $w=w_0w_+$ , where $w_0\in W$ is the longest element, and $w_+\in \widetilde {W}\cap C_0$ , then $w_{u(C_0)}=uw_+$ for all $u\in W$ .

(b) If $w\in Ww_+$ with $w_+\in \widetilde {W}\cap C_0$ , then for all $u\in W$ , we have inequalities

$$\begin{align*}\mu^{-1}w_+\leq_{C_0}u^{-1}w_{u(C_0)}\leq_{C_0}w_+. \end{align*}$$

Proof. (a) Fix $u\in W$ . We will show that $w\leq w_0u^{-1} w_{u(C_0)}\leq w$ , which will imply that $w_0u^{-1} w_{u(C_0)}=w_0w_+$ , and thus $w_{u(C_0)}=uw_+$ .

Since $u\leq w_0$ , we get $uw_+\leq w_0w_+=w$ (use Section 1.1.4(e)). Therefore, by the characterization of $\overline {w}$ , given Theorem 2.2.2(a), we get $uw_+\leq _{u(C_0)} w_{u(C_0)}$ . Hence, $w=w_0w_+\leq _{w_0(C_0)}w_0u^{-1} w_{u(C_0)}$ (by Remark 1.2.4(a)(ii)); thus, $w\leq w_0u^{-1} w_{u(C_0)}$ (by Corollary 1.2.6(a)). However, $w_{u(C_0)}\leq w=w_0w_+$ ; thus, using Section 1.1.4(e), we conclude that $w_0u^{-1} w_{u(C_0)}\leq w$ .

(b) By Remark 1.2.4(a)(ii), it is enough to show that

$$\begin{align*}u\mu^{-1}w_+\leq_{u(C_0)}w_{u(C_0)}\leq_{u(C_0)}uw_+. \end{align*}$$

Consider element $w':=w_0w_+$ . Then $w\leq w'$ (use Section 1.1.4(e)), and thus, we have $w_{u(C_0)}\leq w'$ . Hence, $w_{u(C_0)}\leq _{u(C_0)} w^{\prime }_{u(C_0)}$ (by the characterization of $w^{\prime }_{u(C_0)}$ , given in Theorem 2.2.2(a)); thus, $w_{u(C_0)}\leq _{u(C_0)}uw_+$ (by part (a)). To show the other inequality, it is enough to show that $u\mu ^{-1}w_+\leq w$ . Since w and hence also $w_+$ is $(m+r)$ -regular, our definition of r implies that $\mu ^{-1}w_+\in \widetilde {W}\cap C_0$ . Since $u\leq \mu $ (by Section 1.1.4(g)), and $l(w_+)=l(\mu )+l(\mu ^{-1}w_+)$ (by Lemma 1.1.5(c)), we conclude from Section 1.1.4(c) and part (e) that $u(\mu ^{-1}w_+)\leq w_+\leq w$ .

Let us come back to the proof of the Theorem. By Claim 2.2.3(b) and Corollary 1.2.3(b), we have

$$\begin{align*}\mu^{-1}\pi(w_+)\leq_{C_0}\pi(u^{-1}w_{u(C_0)})\leq_{C_0}\pi(w_+). \end{align*}$$

Hence, we have $\pi (u^{-1}w_{u(C_0)})=\pi (w_+)- \sum _{\alpha \in \Delta _{C_0}}m_{\alpha }\check {\alpha }$ , such that $0\leq m_{\alpha }\leq \langle \psi _{\alpha },\mu \rangle $ , where $\psi _{\alpha }\in \Psi _{C_0}$ is the fundamental weight corresponding to $\alpha $ for each $\alpha \in \Delta _{C_0}$ . In particular, for each $\alpha \in \Delta _{C_0}$ , we have

$$\begin{align*}\langle\alpha,\pi(u^{-1}w_{u(C_0)})\rangle\geq \langle\alpha,\pi(w_+)\rangle-2m_{\alpha}\geq (m+r)-r=m \end{align*}$$

because $w_+$ is $(m+r)$ -regular, and $2m_{\alpha }\leq 2\langle \psi _{\alpha },\mu \rangle \leq r$ .

2.3 Technical lemmas

Notation 2.3.1. Fix $\psi \in \Psi $ .

(a) Denote by $P_{\psi }\supseteq T$ the parabolic subgroup of G such that $\Phi (P_{\psi },T)=\Phi (\psi )$ (see Section 1.1.3(c)), by $M_{\psi }\supseteq T$ the Levi subgroup of $P_{\psi }$ , by $U_{\psi }\subseteq P_{\psi }$ the unipotent radical, by $M^{\operatorname {sc}}_{\psi }$ the simply connected covering of the derived (=commutator) group of $M_{\psi }$ . Let $P_{\psi }\to M_{\psi }$ be the natural projection, and set $P^{\operatorname {sc}}_{\psi }:=P_{\psi }\times _{M_{\psi }}M^{\operatorname {sc}}_{\psi }$ .

(b) Note that we have a natural homomorphism $P^{\operatorname {sc}}_{\psi }\to P_{\psi }\subseteq G$ ; thus, the loop group $L(P^{\operatorname {sc}}_{\psi })$ acts on $\operatorname {Fl}$ . For every $w\in \widetilde {W}$ , we denote by $\operatorname {Fl}^{\leq _{\psi }w}\subseteq \operatorname {Fl}$ the closure of the $L(P^{\operatorname {sc}}_{\psi })$ -orbit $L(P^{\operatorname {sc}}_{\psi })w\subseteq \operatorname {Fl}$ . For every $\mu \in \Lambda $ , we denote by $\operatorname {Gr}^{\leq _{\psi }\mu }\subseteq \operatorname {Gr}$ the closure of the $L(P^{\operatorname {sc}}_{\psi })$ -orbit $L(P^{\operatorname {sc}}_{\psi })\mu \subseteq \operatorname {Gr}$ .

Lemma 2.3.2. (a) For $w',w"\in \widetilde {W}$ and $\psi \in \Psi $ , we have $w'\leq _{\psi } w"$ if and only if $w'\in \operatorname {Fl}^{\leq _{\psi } w"}$ .

(b) For $u\in \widetilde {W}$ , $\psi \in \Psi $ and an admissible tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ , we have $\operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}^{\leq _{\psi } u}$ if and only if $\overline {w}_{\psi }\leq _{\psi } u$ (compare Section 1.3.6).

Proof. (a) Assume first that $w'\leq _{\psi } w"$ , and we want to prove that $L(P^{\operatorname {sc}}_{\psi })w'\subseteq \operatorname {Fl}$ is contained in the closure of $L(P^{\operatorname {sc}}_{\psi })w"\subseteq \operatorname {Fl}$ . By definition, we can assume that $w'=s_{\widetilde {\beta }}w"<_{\widetilde {\beta }}w"$ , where $\widetilde {\beta }=(\beta ,m)$ , and $\langle \beta ,\psi \rangle \geq 0$ . Then there exists a Weyl chamber $C\owns \psi $ such that $\beta \in \Phi _{C}$ . Then $w'<_C w"$ ; hence, by Proposition 2.1.6, $w'$ lies in the closure of $L(U_C)w"\subseteq \operatorname {Fl}$ . Since $L(U_C)\subseteq L(P^{\operatorname {sc}}_{\psi })$ , the assertion follows.

Conversely, assume that $w'$ belongs to the closure of $L(P^{\operatorname {sc}}_{\psi })w"\subseteq \operatorname {Fl}$ . Choose any Weyl chamber $C\owns \psi $ . Then $L(P^{\operatorname {sc}}_{\psi })w"$ is a union of orbits $\bigcup _{w\in \widetilde {W}^{\psi }}L(U_C)ww"$ . Therefore, $w'$ belongs to the closure of $L(U_C)ww"\subseteq \operatorname {Fl}$ for some $w\in \widetilde {W}^{\psi }$ . Hence, by Proposition 2.1.6, we get $w'\leq _C ww"$ , and thus $w'\leq _{\psi }ww"$ . However, since $w\in \widetilde {W}^{\psi }$ , we also get $ww"\leq _{\psi } w"$ .

(b) Choose any Weyl chamber $C\owns \psi $ . Then $w_C\in \widetilde {W}^{\psi }\overline {w}_{\psi }$ ; hence, we have $\overline {w}_{\psi }\leq _{\psi } u$ if and only if $w_C\leq _{\psi } u$ .

Assume first that $w_C\leq _{\psi } u$ . Then by part (a) we have $\operatorname {Fl}^{\leq _{\psi } w_C}\subseteq \operatorname {Fl}^{\leq _{\psi } u}$ . However, we always have inclusions $\operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}^{\leq _C w_C}\subseteq \operatorname {Fl}^{\leq _{\psi } w_C}$ , which imply that $\operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}^{\leq _{\psi } u}$ . Conversely, since $\overline {w}$ is admissible, we get $w_C\in \operatorname {Fl}^{\leq \overline {w}}$ by Lemma 1.3.7. Therefore, if $\operatorname {Fl}^{\leq \overline {w}}\subseteq \operatorname {Fl}^{\leq _{\psi } u}$ , we get $w_C\in \operatorname {Fl}^{\leq _{\psi } u}$ . Hence, by part (a), we have $w_C\leq _{\psi } u$ .

The remaining results of this subsection will be only used in Section 4.3.

Corollary 2.3.3. (a) For $\mu ',\mu "\in \Lambda $ and $\psi \in \Psi $ , we have $\mu '\in \operatorname {Gr}^{\leq _{\psi } \mu "}$ if and only if $\langle \psi ,\mu '\rangle \leq \langle \psi ,\mu "\rangle $ .

(b) For $m\in \mathbb Z$ and $\psi \in \Psi $ , there exists a unique closed reduced ind-subscheme $\operatorname {Gr}^{\leq _{\psi } m}\subseteq \operatorname {Gr}$ such that $\operatorname {Gr}^{\leq _{\psi } m}=\operatorname {Gr}^{\leq _{\psi } \mu }$ for every $\mu \in \Lambda $ and $\psi \in \Psi $ such that $\langle \psi ,\mu \rangle =m$ .

(c) For every admissible tuple $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ , we have an equality of reduced subschemes $\operatorname {Gr}^{\leq \overline {\mu }}=\bigcap _{\psi \in \Psi }\operatorname {Gr}^{\leq _{\psi }\overline {\mu }(\psi )}\subseteq \operatorname {Gr}$ (compare Section 1.3.4(a)).

Proof. (a) Using equality $\operatorname {pr}^{-1}(\operatorname {Gr}^{\leq _{\psi }\mu "})=\bigcup _{w\in W} \operatorname {Fl}^{\leq _{\psi }\mu "w}$ , we see that $\mu '\in \operatorname {Gr}^{\leq _{\psi } \mu "}$ if and only if $\mu '\in \operatorname {Fl}^{\leq _{\psi } \mu " w}$ for some $w\in W$ . Hence, by Lemma 2.3.2(a), this happens if and only if we have $\mu '\leq _{\psi }\mu "w$ for some $w\in W$ . Since $\pi (\mu "w)=\mu "$ , it thus follows from Corollary 1.2.3(b),(c) and Section 1.2.4(c) that this happens if and only if $\mu '\leq _{\psi }\mu "$ in the sense of Section 1.2.1(c). Now the assertion follows from Lemma 1.2.2(c).

(b) follows immediately from part (a).

(c) Notice that for every $C\in \mathcal {C}$ and $\psi \in \Psi _C$ , the inclusion $U_C\subseteq P^{\operatorname {sc}}_{\psi }$ implies the inclusion $\operatorname {Gr}^{\leq _{C}\mu _C}\subseteq \operatorname {Gr}^{\leq _{\psi }\mu _C}=\operatorname {Gr}^{\leq _{\psi }\overline {\mu }(\psi )}$ , from which the inclusion ‘ $\subseteq $ ’ follows.

Conversely, for every $y\in \bigcap _{\psi \in \Psi }\operatorname {Gr}^{\leq _{\psi }\overline {\mu }(\psi )}$ and $C\in \mathcal {C}$ , let $\nu \in \Lambda $ be such that $y\in L(U_C)\nu $ , and we want to show that $\nu \leq _C\mu _C$ . Since the ind-subscheme $\bigcap _{\psi \in \Psi }\operatorname {Gr}^{\leq _{\psi }\overline {\mu }(\psi )}\subseteq \operatorname {Gr}$ is closed and T-invariant, it follows from Lemma 2.1.4 that $\nu \in \bigcap _{\psi \in \Psi }\operatorname {Gr}^{\leq _{\psi }\overline {\mu }(\psi )}$ . Hence, by part (a), we have $\langle \psi ,\nu \rangle \leq \overline {\mu }(\psi )$ for each $\psi \in \Psi $ , from which inequality $\nu \leq _C\mu _C$ follows from Section 1.3.4(c).

Lemma 2.3.4. (a) For all $\overline {w}',\overline {w}"\in \widetilde {W}^{\mathcal {C}}$ , there exist admissible tuples $\overline {w}_1\ldots ,\overline {w}_n$ from $\widetilde {W}^{\mathcal {C}} $ such that the reduced intersection $\operatorname {Fl}^{\leq \overline {w}'}\cap \operatorname {Fl}^{\leq \overline {w}"}$ equals $\bigcup _{t=1}^n \operatorname {Fl}^{\leq \overline {w}_t}$ .

(b) For all $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ , $\psi \in \Psi $ and $u\in \widetilde {W}$ , there exist admissible tuples $\overline {w}_1\ldots ,\overline {w}_n$ from $\widetilde {W}^{\mathcal {C}}$ such that the reduced intersection $\operatorname {Fl}^{\leq \overline {w}}\cap \operatorname {Fl}^{\leq _{\psi } u}$ equals $\bigcup _{t=1}^n \operatorname {Fl}^{\leq \overline {w}_t}$ .

Proof. We denote by Z the reduced intersection $\operatorname {Fl}^{\leq \overline {w}'}\cap \operatorname {Fl}^{\leq \overline {w}"}$ in the case (a), and $\operatorname {Fl}^{\leq \overline {w}}\cap \operatorname {Fl}^{\leq _{\psi } u}$ in the case (b). Then, by Corollary 2.1.7(c), in both cases, Z is a closed T-invariant subscheme of $\operatorname {Fl}$ of finite type; thus, the intersection $\widetilde {W}\cap Z$ is finite.

By Corollary 2.1.7(d), each $z\in Z$ defines an admissible tuple $\overline {u}=\overline {u}(z)\in \widetilde {W}^{\mathcal {C}}$ satisfying $u_C\in \widetilde {W}\cap Z$ for each $C\in \mathcal {C}$ . It follows that the set of tuples $\{\overline {u}(z)\}_{z\in Z}$ is finite, so it will suffice to show the equality

$$ \begin{align*} Z=\bigcup_{z\in Z} \operatorname{Fl}^{\leq \overline{u}(z)}. \end{align*} $$

One inclusion follows from the fact that $z\in \operatorname {Fl}^{\leq \overline {u}(z)}$ for every $z\in Z$ . To show the converse, it is enough to show that if $\overline {u}\in \widetilde {W}^{\mathcal {C}}$ satisfies $u_C\in Z$ for all $C\in \mathcal {C}$ , then $\operatorname {Fl}^{\leq \overline {u}}\subseteq Z$ . Using definition of Z, it remains to show the corresponding assertion in the cases $Z=\operatorname {Fl}^{\leq \overline {w}}$ and $Z=\operatorname {Fl}^{\leq _{\psi }u}$ . In the first case, we have $u_C\in \operatorname {Fl}^{\leq _C w_C}$ ; hence, $\operatorname {Fl}^{\leq _C u_C}\subseteq \operatorname {Fl}^{\leq _C w_C}$ for all $C\in \mathcal {C}$ , and thus, $\operatorname {Fl}^{\leq \overline {u}}\subseteq \operatorname {Fl}^{\leq \overline {w}} $ . In the second case, the assertion follows from Lemma 2.3.2(b).

We will need the following ‘effective’ version of Lemma 2.3.4.

Lemma 2.3.5. (a) There exists $r'\in \mathbb N$ such that for every $m\in \mathbb N$ and every two $(m+r')$ -regular admissible tuples $\overline {w}',\overline {w}"\in \widetilde {W}^{\mathcal {C}}$ , there exist m-regular admissible tuples $\overline {w}_1\ldots ,\overline {w}_n\in \widetilde {W}^{\mathcal {C}} $ such that $\operatorname {Fl}^{\leq \overline {w}'}\cap \operatorname {Fl}^{\leq \overline {w}"}=\bigcup _{t=1}^n \operatorname {Fl}^{\leq \overline {w}_t}$ .

(b) There exists $r'\in \mathbb N$ such that for every $m,d\in \mathbb N$ , every $(m+2d+r')$ -regular admissible tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ and every $u\in \widetilde {W}$ , satisfying $\langle \psi ,\pi (u)\rangle =\pi (\overline {w})(\psi )-d$ , there exist m-regular admissible tuples $\overline {w}_1\ldots ,\overline {w}_n\in \widetilde {W}^{\mathcal {C}} $ such that

$$\begin{align*}\operatorname{Fl}^{\leq\overline{w}}\cap \operatorname{Fl}^{\leq_{\psi} u}=\bigcup_{t=1}^n \operatorname{Fl}^{\leq\overline{w}_t}. \end{align*}$$

The proof is based on the following two claims:

Claim 2.3.6. (a) For every two quasi-admissible tuples $\overline {\mu }',\overline {\mu }"\in \Lambda ^{\mathcal {C}}$ , there exists a unique maximal quasi-admissible tuple $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ such that $\overline {\mu }\leq \overline {\mu }'$ and $\overline {\mu }\leq \overline {\mu }"$ . Moreover, $\overline {\mu }$ is m-regular if both $\overline {\mu }'$ and $\overline {\mu }"$ are m-regular.

(b) For every $\psi \in \Psi $ , $m,d\in \mathbb N$ and every $(m+2d)$ -regular quasi-admissible tuple $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ , the tuple $\overline {\nu }:=\overline {\mu }-d\overline {e}_{\psi }$ is m-regular.

Proof. (a) Notice that $\overline {\mu }\leq \overline {\mu }'$ if and only if $\overline {\mu }(\psi )\leq \overline {\mu }'(\psi )$ for all $\psi \in \Psi $ . Thus, a maximal $\overline {\mu }$ satisfies $\overline {\mu }(\psi )=\min \{\overline {\mu }'(\psi ),\overline {\mu }"(\psi )\}$ for all $\psi \in \Psi $ . This shows the first assertion.

For the second one, choose $C\in \mathcal {C}$ , let $\alpha _1,\ldots ,\alpha _r$ be the simple roots of C, and let $\psi _1,\ldots ,\psi _r$ be the corresponding fundamental weights. We want to show that $\langle \alpha _j, \mu _C\rangle \geq m$ for all j. Without loss of generality, we may assume that $\overline {\mu }(\psi _j)=\overline {\mu }'(\psi _j)$ . Recall that we have $\mu _C=\sum _{i=1}^r\overline {\mu }(\psi _i)\check {\alpha }_i$ and $\mu ^{\prime }_C=\sum _{i=1}^r\overline {\mu }'(\psi _i)\check {\alpha }_i$ . Since $\langle \alpha _j,\check {\alpha }_j\rangle =2>0, \overline {\mu }(\psi _j)=\overline {\mu }'(\psi _j)$ and $\langle \alpha _j,\check {\alpha }_i\rangle \leq 0, \overline {\mu }(\psi _i)\leq \overline {\mu }'(\psi _i)$ for all $i\neq j$ , we conclude that $\langle \alpha _j,\mu _C\rangle \geq \langle \alpha _j,\mu ^{\prime }_C\rangle \geq m$ .

(b) Let $C, \alpha _i$ and $\psi _i$ be as in the proof of part (a). Then for every j, the pairing $\langle \alpha _j, \mu _C\rangle $ equals $\langle \alpha _j, \mu _C\rangle -d\langle \alpha _j,\check {\alpha }_i\rangle \geq (m+2d)-2d=m$ , if $\psi =\psi _i$ , and equals $\langle \alpha _j, \mu _C\rangle \geq m+2d\geq m$ , otherwise.

Claim 2.3.7. (a) There exists $r\in \mathbb N$ such that for every $C\in \mathcal {C}$ , every root $\alpha \in \Phi _C$ with corresponding fundamental weight $\psi \in \Psi _C$ , and every elements $w,w'\in \widetilde {W}$ with $w\leq _C w'$ , we have either $\check {\alpha }w\leq _{C}w'$ or $\langle \psi ,\pi (w')-\pi (w)\rangle \leq r$ .

(b) There exists $r\in \mathbb N$ such that for every $\psi \in \Psi $ , $\alpha \in \Phi $ and $w,w'\in \widetilde {W}$ such that $w\leq _{\psi } w'$ and $\langle \psi ,\alpha \rangle =1$ , we have either $\check {\alpha }w\leq _{\psi }w'$ or $\langle \psi ,\pi (w')-\pi (w)\rangle \leq r$ .

Proof. Since W is finite, in both cases (a) and (b), it will be enough to find r to satisfy the condition for $w\in \Lambda u$ and $w'\in \Lambda u'$ , where $u,u'\in W$ are fixed. Moreover, using Remark 1.2.4(a)(ii), we may assume that $w'=u'$ . Similarly, we fix $C\in \mathcal {C}$ , and $\alpha \in \Phi _C$ with corresponding $\psi \in \Psi _C$ .

In the case (a), we consider the set $S_C$ of all $\mu \in \Lambda $ such that $\mu u\leq _C u'$ . Then, by Corollary 1.2.3(b), every $\mu \in S_C$ satisfies $\mu =\pi (\mu u)\leq _C \pi (u')=0$ ; hence, the set $S_C^{\max }$ of all maximal elements of $S_C$ with respect to the ordering $\leq _C$ is finite and nonempty. We take $r\in \mathbb N$ to be the maximum of all $-\langle \psi ,\mu \rangle $ taken over all $\mu \in S_{C}^{\max }$ .

In the case (b), we consider the set $S_{\psi }$ of all $\mu '\in \Lambda $ such that $\mu ' u\leq _{\psi } u'$ . Then every $\mu '\in S_{\psi }$ satisfies $\mu '\leq _{\psi }0$ ; hence, the set $S_{\psi }^{\max }$ of all maximal elements of $S_{\psi }$ with respect to the ordering $\leq _{\psi }$ is a finite and nonempty union of cosets of $\Lambda ^{\psi }:=\{\mu \in \Lambda \,|\,\langle \psi ,\mu \rangle =0\}$ . We take $r\in \mathbb N$ to be the maximum of all $-\langle \psi ,\mu '\rangle $ , taken over all $\mu '\in S^{\max }_{\psi }$ .

Then in both cases, r satisfies the required property. Indeed, assume that $\mu \in S_C$ (resp. $\mu \in S_{\psi }$ ) while $\check {\alpha }\mu \notin S_C$ , (resp. $\check {\alpha }\mu \notin S_C$ ), and we want to check that $\langle \psi ,\mu \rangle \geq -r$ . Choose any $\mu '\in S_C^{\max }$ (resp. $\mu '\in S_{\psi }^{\max }$ ) to be such that $\mu '\geq _C\mu $ (resp. $\mu '\geq _{\psi }\mu $ .) Then $\mu '-\mu =\sum _{\beta \in \Delta _C}m_{\beta }\check {\beta }$ and $m_{\alpha }\geq 0$ . Since $\check {\alpha }\mu \notin S_C$ (resp. $\check {\alpha }\mu \notin S_{\psi }$ ), we have $m_{\alpha }=0$ ; thus, $\langle \psi ,\mu \rangle =\langle \psi ,\mu '\rangle \geq -r$ .

Now we are ready to prove Lemma 2.3.5.

2.3.8.

Proof of Lemma 2.3.5.

(a) Let $r\in \mathbb N$ be as in Claim 2.3.7(a). We will show that $r':=2r$ satisfies the required property. Let $\overline {w}',\overline {w}"\in \widetilde {W}^{\mathcal {C}}$ be $(m+r')$ -regular admissible tuples. Then, by Lemma 2.3.4, there exist admissible tuples $\overline {w}_1\ldots ,\overline {w}_n\in \widetilde {W}^{\mathcal {C}} $ such that $\operatorname {Fl}^{\leq \overline {w}'}\cap \operatorname {Fl}^{\leq \overline {w}"}=\bigcup _{t=1}^n \operatorname {Fl}^{\leq \overline {w}_t}$ .

Using Corollary 2.1.7(b), one can assume that each $\overline {w}_t$ is a maximal admissible tuple, satisfying $\overline {w}_t\leq \overline {w}',\overline {w}"$ , and we have to show that each $\overline {w}_t$ is m-regular.

Let $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ be a maximal quasi-admissible tuple, satisfying $\overline {w}\leq \overline {w}',\overline {w}"$ . It is enough to show that such a $\overline {w}$ is m-regular. Indeed, Lemma 1.3.10(a) then would imply that $\overline {w}$ is admissible.

Set $\overline {\mu }':=\pi (\overline {w}')$ , and $\overline {\mu }":=\pi (\overline {w}")$ , and let $\overline {\mu }$ be the maximal tuple such that $\overline {\mu }\leq \overline {\mu }'$ and $\overline {\mu }\leq \overline {\mu }"$ . Then $\overline {\mu }$ is $(m+r')$ -regular by Claim 2.3.6(a), and $\pi (\overline {w})\leq \overline {\mu }$ by Corollary 1.2.3(b).

It is enough to show that $\pi (\overline {w})(\psi )\geq \overline {\mu }(\psi )-r$ for every $\psi \in \Psi $ . Indeed, if this is shown, then for every $C\in \mathcal {C}$ with simple roots $\alpha _1,\ldots ,\alpha _r$ , we have $\pi (w_C)=\mu _C-\sum _i r_i\check {\alpha }_i$ and $0\leq r_i\leq r$ for all i. Then $\langle \alpha _i,\pi (w_C)\rangle \geq \langle \alpha _i,\mu _C\rangle -2r_i\geq (m+2r)-2r=m$ . Thus, $\overline {w}$ is m-regular.

Assume that there exists $\psi \in \Psi $ such that $\pi (\overline {w})(\psi )<\overline {\mu }(\psi )-r$ . Consider the quasi-admissible tuple $\overline {e}_{\psi }$ defined by $\overline {e}_{\psi }(\psi '):=\delta _{\psi ,\psi '}$ (see Section 1.3.4(d)). Then the quasi-admissible tuple $\overline {e}_{\psi }\overline {w}$ (see Section 1.3.5(c)) satisfies identities $(\overline {e}_{\psi }\overline {w})_C=w_C$ if $\psi \notin \Psi _C$ , and $(\overline {e}_{\psi }\overline {w})_C=\check {\alpha }\overline {w}_C$ if $\psi \in \Psi _C$ and $\alpha \in \Delta _C$ corresponds to $\psi $ .

Since $\overline {w}\leq \overline {w}'$ and $\overline {w}\leq \overline {w}"$ , the assumption $\pi (\overline {w})(\psi )<\overline {\mu }(\psi )-r$ together with Claim 2.3.7(a) implies that $\overline {e}_{\psi }\overline {w}\leq \overline {w}'$ and $\overline {e}_{\psi }\overline {w}\leq \overline {w}"$ . Since $\overline {w}<\overline {e}_{\psi }\overline {w}$ , this contradicts the maximality of $\overline {w}$ .

(b) The proof is similar to that of part (a). Let $r\in \mathbb N$ to satisfy both Claim 2.3.7(a),(b), and set $r':=2r$ . Assume that $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ is $(m+2d+r')$ -regular, $u\in \widetilde {W}$ satisfies $\langle \psi ,\pi (u)\rangle =\pi (\overline {w})(\psi )-d$ , and let $\overline {w}'$ be a maximal quasi-admissible tuple satisfying $\overline {w}'\leq \overline {w}$ and $\overline {w}^{\prime }_{\psi }\leq _{\psi }u$ .

Using Lemma 2.3.4(b) and Lemma 2.3.2(b), and arguing as in part (a), it is enough to show that $\pi (\overline {w})(\psi ')\geq \overline {\mu }(\psi ')-r$ for every $\psi '\in \Psi $ .

Assume that there exists $\psi '\in \Psi $ such that $\pi (\overline {w})(\psi ')<\overline {\mu }(\psi ')-r$ , and let $\overline {e}_{\psi '}\overline {w}$ be as in part (a). Again, to get a contradiction, it is enough to show that $\overline {e}_{\psi '}\overline {w}\leq \overline {w}'$ and $(\overline {e}_{\psi '}\overline {w})_{\psi }\leq _{\psi } u$ . The proof of the first inequality is identical to that of part (a). Next, if $\psi '\neq \psi $ , then $(\overline {e}_{\psi '}\overline {w})_{\psi }=\overline {w}_{\psi }\leq _{\psi } u$ by assumption. Finally, if $\psi '=\psi $ , the inequality $(\overline {e}_{\psi '}\overline {w})_{\psi }\leq _{\psi } u$ follows from Claim 2.3.7(b).

Lemma 2.3.9. There exists $r\in \mathbb N$ such that for every $m\in \mathbb N$ and every $(m+r)$ -regular $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ , there exists an m-regular $\overline {x}\in \Lambda ^{\mathcal {C}}$ such that $\operatorname {Fl}^{\leq '\overline {x}}\subseteq \operatorname {Fl}^{\leq \overline {w}}$ .

Proof. Choose any $\mu \in \Lambda \cap C_0$ , let $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ be the admissible tuple defined by $\mu _{u(C_0)}:=u(\mu )$ (see Section 1.3.5(a)), and let r be the maximum of the $\langle \alpha ,\mu \rangle $ ’s, where $\alpha $ runs over all of $\Delta _{C_0}$ . We claim that this r satisfies the required property.

Namely, to every $(m+r)$ -regular admissible tuple $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ , we associate a quasi-admissible tuple $\overline {x}:=\overline {\mu }^{-1}\pi (\overline {w})$ (see Section 1.3.4(b)). We claim that $\overline {x}$ is m-regular, and $\operatorname {Fl}^{\leq '\overline {x}}\subseteq \operatorname {Fl}^{\leq \overline {w}}$ .

To show that $\overline {x}$ is m-regular, we note that for every $u\in W$ , $C=u(C_0)\in \mathcal {C}$ and $\alpha \in \Delta _C$ , we have $\langle \alpha ,x_C\rangle =\langle \alpha ,\pi (w_C)\rangle -\langle \alpha ,u(\mu )\rangle \geq (m+r)-r=m$ .

Next, we observe that (use Corollary 2.1.7(f)). So it remains to show that or, what is the same, $x_C u\leq _C w_C$ for each $C=u(C_0)\in \mathcal {C}$ . Unwinding the definitions and using Section 1.2.4(a), it is enough to show that for every $u\in W$ , we have $1\leq _{C_0}\mu u$ . By Corollary 1.2.6, it remains to show that $\mu u\in \widetilde {W}\cap C_0$ ; that is, for every $\alpha \in \Phi _{C_0}$ we have $(\mu u)^{-1}(\alpha )>0$ . But $(\mu u)^{-1}(\alpha )=u^{-1}(\mu ^{-1}(\alpha ))=(u^{-1}(\alpha ),\langle \alpha ,\mu \rangle )>0$ because $\langle \alpha ,\mu \rangle>0$ .

Lemma 2.3.10. There exists $r\in \mathbb N$ such that for every $m\in \mathbb Z$ and every $(m+r)$ -regular tuple $\overline {x}\in \Lambda ^{\mathcal {C}}$ , there exists a sequence $\overline {x}=\overline {x}_0\leq \overline {x}_1\leq \ldots $ in $\Lambda ^{\mathcal {C}}$ such that sequence $\{\overline {x}_i(\psi )\}_i$ tends to infinity for all $\psi \in \Psi $ , each $\overline {x}_i$ is m-regular, and $\overline {x}_i=\overline {x}_{i-1}+\overline {e}_{\psi _{i}}$ for some $\psi _i\in \Psi $ and all i.

Proof. Choose $\mu \in \Lambda \cap C_0$ , and let $\overline {\mu }\in \Lambda ^{\mathcal {C}}$ be the tuple $\mu _{u(C_0)}:=u(\mu )$ from Section 1.3.5(a). Then $\overline {\mu }$ is regular and admissible. Let $\overline {y}\in \mathbb N^{\Psi }$ be the corresponding tuple (see Section 1.3.4(a) and Lemma 1.3.10(b)). Choose a sequence $\overline {y}_0=0,\overline {y}_1,\ldots ,\overline {y}_n=\overline {y}$ in $\mathbb N^{\Psi }$ such that $\overline {y}_i-\overline {y}_{i-1}=\overline {e}_{\psi _i}$ for all i and some $\psi _i\in \Psi $ , and continue it to all i by the rule $ \overline {y}_{i+n}:=\overline {y}_i+\overline {y}$ .

Define r to be the maximum of the $-\langle (y_i)_C,\alpha \rangle $ ’s, taken over $i=1,\ldots ,n$ , $C\in \mathcal {C}$ and $\alpha \in \Delta _C$ . Then the sequence $\overline {x}_i:=\overline {x}+\overline {y}_i$ satisfies the required property.

2.4 Stratification of the affine flag variety

Notation 2.4.1. (a) Let k, K and $\mathcal {O}$ be as in Section 2.1.1, let G be a connected reductive group over k, and let $T\subseteq G$ be a maximal torus.

(b) Let $G^{\operatorname {sc}}$ be the simply connected covering of the derived group of G, and let $T_{G^{\operatorname {sc}}}\subseteq G^{\operatorname {sc}}$ be the corresponding maximal torus – that is, the pullback of $T\subseteq G$ . Let $\Phi $ be the root system $\Phi (G,T)=\Phi (G^{\operatorname {sc}},T_{G^{\operatorname {sc}}})$ of $G^{\operatorname {sc}}$ , let $\Psi $ be the set of fundamental weights of $G^{\operatorname {sc}}$ , and let $\widetilde {W}$ be the affine Weyl group of $G^{\operatorname {sc}}$ .

(c) Choose an Iwahori subgroup scheme $I\subseteq LG$ as in Section 2.1.2, set $I^{\operatorname {sc}}:=I\cap L(G^{\operatorname {sc}})\subseteq L(G^{\operatorname {sc}})$ , and let $\operatorname {Fl}=\operatorname {Fl}_{G^{\operatorname {sc}}}:=L(G^{\operatorname {sc}})/I^{\operatorname {sc}}$ be the affine flag variety of $G^{\operatorname {sc}}$ .

Notation 2.4.2. In the situation of Section 2.4.1, fix $\psi \in \Psi \subseteq X^*(T_{G^{\operatorname {sc}}})$ .

(a) Let $P_{\psi }, M_{\psi }, U_{\psi }, M^{\operatorname {sc}}_{\psi }$ and $P^{\operatorname {sc}}_{\psi }$ be as in Section 2.3.1(b). Notice that groups $M^{\operatorname {sc}}_{\psi }, U_{\psi }$ and $P^{\operatorname {sc}}_{\psi }$ would not change if we replace group G by $G^{\operatorname {sc}}$ .

(b) Note that $I_{M_{\psi }}:=I\cap L(M_{\psi })\subseteq L(M_{\psi })$ is an Iwahori subgroup scheme, let $I_{M^{\operatorname {sc}}_{\psi }}\subseteq L(M^{\operatorname {sc}}_{\psi })$ be the preimage of $I_{M_{\psi }}\subseteq L(M_{\psi })$ , and set $\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}:=L(M^{\operatorname {sc}}_{\psi })/I_{M^{\operatorname {sc}}_{\psi }}$ .

(c) As in Section 2.3.1(b), we have a natural homomorphism $P^{\operatorname {sc}}_{\psi }\to G^{\operatorname {sc}}$ ; thus, the loop group $L(P^{\operatorname {sc}}_{\psi })$ acts on $\operatorname {Fl}$ . For every $w\in \widetilde {W}$ , we denote by $\operatorname {Fl}^{\leq _{\psi }w}\subseteq \operatorname {Fl}$ the closure of the $L(P^{\operatorname {sc}}_{\psi })$ -orbit $L(P^{\operatorname {sc}}_{\psi })w\subseteq \operatorname {Fl}$ .

(d) As in Section 2.1.1, we have an equality $\Lambda =X_*(T_{G^{\operatorname {sc}}})$ . As in Section 1.1.3(b), the coweight $\check {\psi }$ belongs to $\Lambda _{\mathbb Q}$ . We denote by $T_{\psi }\subseteq T_{G^{\operatorname {sc}}}$ the one-dimensional subtorus such that $X_*(T_{\psi })\subseteq \Lambda $ equals $(\mathbb Z\check {\psi })\cap \Lambda \subseteq \Lambda _{\mathbb Q}$ .

(e) Alternatively, $T_{\psi }$ can be defined as the connected center of the Levi subgroup $(M_{\psi })_{G^{\operatorname {sc}}}$ of $G^{\operatorname {sc}}$ , where $(M_{\psi })_{G^{\operatorname {sc}}}\subseteq G^{\operatorname {sc}}$ is the pullback of $M_{\psi }\subseteq G$ .

2.4.3. Stratification

(a) For each $\nu \in \widetilde {W}_{\psi }$ , we set $Z_{\nu }:=\operatorname {Fl}^{\leq _{\psi }\nu }\smallsetminus \bigcup _{\nu '<_{\psi }\nu }\operatorname {Fl}^{\leq _{\psi }\nu '}$ . Then each $Z_{\nu }\subseteq \operatorname {Fl}$ is a reduced locally closed $L(P^{\operatorname {sc}}_{\psi })$ -invariant ind-subscheme. Moreover, since $\widetilde {W}_{\psi }$ is a set of representatives of the set of cosets $\widetilde {W}^{\psi }\backslash \widetilde {W}$ (see Section 1.1.3(d)), the set $\{Z_{\nu }\}_{\nu \in \widetilde {W}_{\psi }}$ forms a stratification of $\operatorname {Fl}$ .

(b) For each $\nu \in \widetilde {W}_{\psi }$ , we consider $I_{\nu }:=\nu I\nu ^{-1}\subseteq LG$ , $I_{P_{\psi },\nu }:=I_{\nu }\cap L(P_{\psi })\subseteq L(P_{\psi })$ and $I_{U_{\psi },\nu }:=I_{\nu }\cap L(U_{\psi })\subseteq L(U_{\psi })$ . Let $I_{P^{\operatorname {sc}}_{\psi },\nu }\subseteq L(P^{\operatorname {sc}}_{\psi })$ be the preimage of $I_{P_{\psi },\nu }\subseteq L(P_{\psi })$ , and set $\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }:=L(P^{\operatorname {sc}}_{\psi })/I_{P^{\operatorname {sc}}_{\psi },\nu }$ .

(c) Note that for each $\nu \in \widetilde {W}_{\psi }$ , we have an equality $I_{M_{\psi }}=I_{\nu }\cap L(M_{\psi })\subseteq L(M_{\psi })$ . Therefore, isomorphism $U_{\psi }\times M_{\psi }\overset {\thicksim }{\to } P_{\psi }:(u,m)\mapsto um$ induces isomorphisms

$$\begin{align*}I_{U_{\psi },\nu }\times I_{M_{\psi }}\overset {\thicksim }{\to } I_{P_{\psi },\nu }, U_{\psi }\times M^{\operatorname {sc}}_{\psi }\overset {\thicksim }{\to } P^{\operatorname {sc}}_{\psi } \text{ and } I_{U_{\psi },\nu }\times I_{M^{\operatorname {sc}}_{\psi }}\overset {\thicksim }{\to } I_{P^{\operatorname {sc}}_{\psi },\nu }.\end{align*}$$

Moreover, the embedding and the projection $M^{\operatorname {sc}}_{\psi }\to P^{\operatorname {sc}}_{\psi }\to M^{\operatorname {sc}}_{\psi }$ induce morphisms

$$\begin{align*}\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}\overset {i_{\psi ,\nu }}{\longrightarrow } \operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }\overset {p_{\psi ,\nu }}{\longrightarrow }\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}.\end{align*}$$

(d) By Lemma 2.3.2(a), each $Z_{\nu }\subseteq \operatorname {Fl}$ is an $L(P^{\operatorname {sc}}_{\psi })$ -orbit of $\nu \in \operatorname {Fl}$ . Moreover, the group ind-scheme $L(P^{\operatorname {sc}}_{\psi })\simeq L(M^{\operatorname {sc}}_{\psi })\times L(U_{\psi })$ is reduced (see [Reference Beilinson and DrinfeldBD] if k is of characteristic zero, and [Reference FaltingsFa] in general), so the morphism $[h]\mapsto h\nu $ induces an isomorphism $\iota _{\nu }:\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }\overset {\thicksim }{\to } Z_{\nu }$ .

(e) Since $T_{G^{\operatorname {sc}}}$ normalizes $P^{\operatorname {sc}}_{\psi }$ and fixes $\nu \in \operatorname {Fl}$ , the orbit $Z_{\nu }\subseteq \operatorname {Fl}$ is $T_{G^{\operatorname {sc}}}$ -invariant; hence, $Z_{\nu}$ is $T_{\psi }$ -equivariant. Furthermore, the isomorphism $\iota _{\nu }$ of part (d) identifies the $T_{\psi }$ -action on $Z_{\nu }$ with the $T_{\psi }$ -action on $\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }$ given by the formula $t[um]=[tut^{-1}m]$ for $u\in L(U_{\psi })$ and $m\in L(M^{\operatorname {sc}}_{\psi })$ . In particular, the isomorphism $\iota _{\nu }$ induces an isomorphism $\iota ^{T_{\psi }}_{\nu }:\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}\overset {\thicksim }{\to } Z^{T_{\psi }}_{\nu }:[m]\mapsto m\nu $ , where $Z_{\nu }^{T_{\psi }}$ denotes the locus of $T_{\psi }$ -fixed points.

(f) Since $\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}$ is ind-proper, we conclude that $\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}\subseteq \operatorname {Fl}$ is closed. So it follows from part (e) that each ind-subscheme $Z^{T_{\psi }}_{\nu }\subseteq \operatorname {Fl}^{T_{\psi }}$ is closed. Moreover, $\operatorname {Fl}^{T_{\psi }}$ is reduced because $\operatorname {Fl}$ is such. Since set-theoretically $\operatorname {Fl}^{T_{\psi }}$ decomposes as a disjoint union $\bigsqcup _{\nu \in \widetilde {W}_{\psi }}Z^{T_{\psi }}_{\nu }$ , we conclude that each $Z^{T_{\psi }}_{\nu }\subseteq \operatorname {Fl}^{T_{\psi }}$ is open and closed.

2.4.4. Retraction. Let Y be an ind-scheme, and let $Z\subseteq Y$ be a locally closed ind-subscheme. A morphism $p:Y\to Z$ is called a retraction if the restriction $p|_Z$ is the identity.

Lemma 2.4.5. For every $\nu \in \widetilde {W}_{\psi }$ , there is a unique $T_{\psi }$ -equivariant retraction $p_{\nu }:Z_{\nu }\to Z_{\nu }^{T_{\psi }}$ . Moreover, under an isomorphisms of Sections 2.4.3(d)–(f), the retraction $p_{\nu }$ corresponds to the projection $p_{\psi ,\nu }:\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }\to \operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}:[um]\mapsto [m]$ .

Proof. To see the existence of a retraction and its relation to $p_{\psi ,\nu }$ , we note that $\iota _{\nu }$ induces an isomorphism $\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi },\nu }=\operatorname {Fl}^{T_{\psi }}_{P^{\operatorname {sc}}_{\psi },\nu }\overset {\thicksim }{\to } Z^{T_{\psi }}_{\nu }$ , and that $p_{\psi ,\nu }:\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }\to \operatorname {Fl}_{M^{\operatorname {sc}}_{\psi },\nu }$ is a $T_{\psi }$ -equivariant retract. To see the uniqueness, we note that for every S-point $\eta :S\to \operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }$ , the morphism $\eta _{\mathbb G_m}: \mathbb G_m\times S\to \operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }$ , defined by $(a,x)\mapsto \psi (a)\eta (s)$ , extends uniquely to the morphism $\eta _{\mathbb A^1}:\mathbb A^1\times S\to \operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }$ , and we have an equality $p_{\psi ,\nu }(\eta )=\eta _{\mathbb A^1}|_{\{0\}\times S}$ .

3 Affine Springer fibers

3.1 Geometric properties

Assume that we are in the situation Section 2.4.1.

3.1.1. Set-up. (a) Let $\gamma \in G(K)$ be a compact regular semi-simple element, and let $G^{\operatorname {sc}}_{\gamma }\subseteq G^{\operatorname {sc}}$ be the centralizer of $\gamma $ inside $G^{\operatorname {sc}}$ . In particular, $(G^{\operatorname {sc}}_{\gamma })^0\subseteq G^{\operatorname {sc}}$ is a maximal torus defined over K.

(b) Let $S_{\gamma }\subseteq G^{\operatorname {sc}}_{\gamma }$ be the maximal K-split torus of $G^{\operatorname {sc}}_{\gamma }$ , and let $\Lambda _{\gamma }:=X_*(S_{\gamma })$ be the group of cocharacters. The map $\mu \mapsto \mu (t)$ identifies $\Lambda _{\gamma }$ with a subgroup of $S_{\gamma }(K)$ .

(c) Let $\operatorname {Fl}_{\gamma }\subseteq \operatorname {Fl}$ be the affine Springer fiber. Explicitly, $\operatorname {Fl}_{\gamma }$ consists of cosets $gI^{\operatorname {sc}}\in L(G^{\operatorname {sc}})/I^{\operatorname {sc}}$ such that $g^{-1}\gamma g\in I$ . Then the group $\Lambda _{\gamma }$ acts on $\operatorname {Fl}_{\gamma }$ . Moreover, it is known that the reduced ind-scheme $\operatorname {Fl}_{\gamma ,\operatorname {red}}$ is a scheme of finite type over k, and there exists a closed reduced subscheme $Y\subseteq \operatorname {Fl}_{\gamma }$ of finite type over k such that $\operatorname {Fl}_{\gamma ,\operatorname {red}}=\Lambda _{\gamma }(Y)$ .

(d) For every ind-subscheme $Z\subseteq \operatorname {Fl}$ , we set $Z_{\gamma }:=Z\cap \operatorname {Fl}_{\gamma }$ .

(e) Main assumption: We always assume that we have an inclusion $S_{\gamma }\subseteq T_{G^{\operatorname {sc}}}$ , and hence an inclusion $\Lambda _{\gamma }\subseteq \Lambda =X_*(T_{G^{\operatorname {sc}}})$ .

Remark 3.1.2. Note that it follows from [Reference SteinbergSt, Theorem 8.2] (or its particular case [Reference SteinbergSt, Corollary 8.5]) that the centralizer $G^{\operatorname {sc}}_{\gamma }$ is connected. However, we do not need this fact.

Lemma 3.1.3. Suppose that we are in the situation of Section 3.1.1. Then the centralizer $G^{\operatorname {sc}}_{S_{\gamma }}\subseteq G^{\operatorname {sc}}$ is a Levi subgroup, and $S_{\gamma }$ is the connected center of $G^{\operatorname {sc}}_{S_{\gamma }}$ .

Proof. Indeed, the centralizer $G^{\operatorname {sc}}_{S_{\gamma }}$ is split over K because $G^{\operatorname {sc}}$ and $S_{\gamma }$ are split over K; therefore, the connected center $Z(G^{\operatorname {sc}}_{S_{\gamma }})^0$ of $G^{\operatorname {sc}}_{S_{\gamma }}$ is split over K as well. Moreover, since $(G^{\operatorname {sc}}_{\gamma })^0$ is a maximal torus of $G^{\operatorname {sc}}$ , it is a maximal torus of $G^{\operatorname {sc}}_{S_{\gamma }}$ , and hence contains $Z(G^{\operatorname {sc}}_{S_{\gamma }})^0$ . Therefore, the assertion follows from the assumption that $S_{\gamma }\subseteq (G^{\operatorname {sc}}_{\gamma })^0$ is the maximal K-split torus.

3.1.4. Observations. Fix $\psi \in \Psi $ .

(a) An inclusion $(G_{\gamma })^0\subseteq M_{\psi }$ is equivalent to the inclusion $(G^{\operatorname {sc}}_{\gamma })^0\subseteq (M_{\psi })_{G^{\operatorname {sc}}}$ , hence to the inclusion $T_{\psi }\subseteq (G^{\operatorname {sc}}_{\gamma })^0$ (by Section 2.4.2(e)), and thus to the inclusion $T_{\psi }\subseteq S_{\gamma }$ .

(b) Set $(\Lambda _{\gamma })_{\mathbb Q}:=\Lambda _{\gamma }\otimes _{\mathbb Z}\mathbb Q$ . By Section 2.4.2(d), an inclusion $T_{\psi }\subseteq S_{\gamma }$ holds if and only if $\check {\psi }\in (\Lambda _{\gamma })_{\mathbb Q}$ .

(c) It follows from parts (a) and (b) that if $\check {\psi }\in (\Lambda _{\gamma })_{\mathbb Q}$ , then element $\gamma $ belongs to

$$\begin{align*}(G_{\gamma })^0(K)\subseteq M_{\psi }(K)\subseteq P_{\psi }(K).\end{align*}$$

(d) It follows from Lemma 3.1.3 that if $\check {\psi }\notin (\Lambda _{\gamma })_{\mathbb Q}$ , then there exists a root $\alpha \in \Phi $ such that $\alpha \in (\Lambda _{\gamma })^{\perp }$ , but $\langle \alpha ,\check {\psi }\rangle \neq 0$ .

Notation 3.1.5. Assume that $\psi \in \Psi $ satisfies $\check {\psi }\in (\Lambda _{\gamma })_{\mathbb Q}$ .

(a) By Section 3.1.4(c), we have $\gamma \in M_{\psi }(K)\subseteq P_{\psi }(K)$ , and thus, we can consider the affine Springer fibers $\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu ,\gamma }\subseteq \operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }$ and $\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi },\gamma }\subseteq \operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}$ . Explicitly, $\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu ,\gamma }$ (resp. $\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi },\gamma }$ ) consists of all elements $gI_{P^{\operatorname {sc}}_{\psi },\nu }\in L(P^{\operatorname {sc}}_{\psi })/I_{P^{\operatorname {sc}}_{\psi },\nu }$ (resp. $gI_{M^{\operatorname {sc}}_{\psi }}\in L(M^{\operatorname {sc}}_{\psi })/I_{M^{\operatorname {sc}}_{\psi }}$ ) such that $g^{-1}\gamma g\in I_{P_{\psi },\nu }$ (resp. $g^{-1}\gamma g\in I_{M_{\psi }}$ ).

(b) By construction, the isomorphism $\iota _{\nu }:\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }\overset {\thicksim }{\to } Z_{\nu }$ from Section 2.4.3(e) restricts to isomorphisms $\iota _{\nu ,\gamma }:\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu ,\gamma }\overset {\thicksim }{\to } Z_{\nu ,\gamma }$ and $\iota ^{T_{\psi }}_{\nu ,\gamma }:\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}\overset {\thicksim }{\to } Z^{T_{\psi }}_{\nu ,\gamma }$ .

3.1.6. Affine bundle. A morphism $f:X\to Y$ of (ind-)schemes is called an affine bundle if locally étale on Y it is isomorphic to the projection $Y\times \mathbb A^n\to Y$ and all transition maps are affine.

Proposition 3.1.7. Assume that we are in the situation of Section 3.1.5. Then for every $\nu \in \widetilde {W}_{\psi }$ , the $T_{\psi }$ -equivariant retraction $p_{\nu }:Z_{\nu }\to Z_{\nu }^{T_{\psi }}$ of Lemma 2.4.5 induces a retraction $p_{\nu ,\gamma }:Z_{\nu ,\gamma }\to Z_{\nu ,\gamma }^{T_{\psi }}$ . Furthermore, $p_{\nu ,\gamma }$ is a composition of affine bundles.

Proof. To make the argument more structural, we will divide it into steps.

Step 1. By Lemma 2.4.5 and the observations of Section 3.1.5, it suffices to show that the projection $p_{\psi ,\nu }:\operatorname {Fl}_{P^{\operatorname {sc}}_{\psi },\nu }\to \operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}$ restricts to the projection

$$\begin{align*}p_{\psi,\nu,\gamma}:\operatorname{Fl}_{P^{\operatorname{sc}}_{\psi},\nu,\gamma}\to\operatorname{Fl}_{M^{\operatorname{sc}}_{\psi},\gamma}, \end{align*}$$

and that $p_{\psi ,\nu ,\gamma }$ is a composition of affine bundles.

Step 2. Let $U_{\psi }=U_0\supseteq U_1\supseteq \ldots \supseteq U_{n-1}\supseteq U_n=\{1\}$ be the lower central series of $U_{\psi }$ . Then each $U_i$ is a normal subgroup of $P_{\psi }$ , and we set $P_i:=P_{\psi }/U_i$ and $P^{\operatorname {sc}}_i:=P^{\operatorname {sc}}_{\psi }/U_i$ . In particular, $P_0=M_{\psi }$ and $P_n=P_{\psi }$ .

For every $i=0,\ldots ,n$ , let $\gamma _i\in L(P_i)$ be the image of $\gamma \in L(P_{\psi })$ , and denote by $I_{P_i,\nu }\subseteq L(P_i)$ (resp. $I_{P^{\operatorname {sc}}_i,\nu }\subseteq L(P^{\operatorname {sc}}_i)$ ) the image of $I_{P_{\psi },\nu }$ (resp. $I_{P^{\operatorname {sc}}_{\psi },\nu }$ ). We set $\operatorname {Fl}_{P^{\operatorname {sc}}_i,\nu }:=L(P^{\operatorname {sc}}_i)/I_{P^{\operatorname {sc}}_i,\nu }$ , and denote by $\operatorname {Fl}_{P^{\operatorname {sc}}_{i},\nu ,\gamma }\subseteq \operatorname {Fl}_{P^{\operatorname {sc}}_i,\nu }$ the corresponding affine Springer fiber – that is, the collection of all $g\in L(P^{\operatorname {sc}}_i)/I_{P^{\operatorname {sc}}_i,\nu }$ such that $g^{-1}\gamma _i g\in I_{P_i,\nu }$ .

For every $i=0,\ldots ,n-1$ , we have a natural projection

$$\begin{align*}p_{i,\gamma}:\operatorname{Fl}_{P^{\operatorname{sc}}_{i+1},\nu,\gamma_{i+1}}\to\operatorname{Fl}_{P^{\operatorname{sc}}_{i},\nu,\gamma_i}, \end{align*}$$

and it remains to show that each $p_{i,\gamma }$ is an affine bundle.

Step 3. Let $\widetilde {\operatorname {Fl}}_{P^{\operatorname {sc}}_{i},\nu ,\gamma _i}\subseteq L(P^{\operatorname {sc}}_i)$ be the preimage of $\operatorname {Fl}_{P^{\operatorname {sc}}_{i},\nu ,\gamma _i}\subseteq \operatorname {Fl}_{P^{\operatorname {sc}}_{i},\nu }$ under the natural projection $L(P^{\operatorname {sc}}_i)\to L(P^{\operatorname {sc}}_i)/I_{P^{\operatorname {sc}}_i,\nu }$ , and set

$$\begin{align*}\widetilde{\operatorname{Fl}}^{\prime}_{P^{\operatorname{sc}}_{i+1},\nu,\gamma_{i+1}}:=\widetilde{\operatorname{Fl}}_{P^{\operatorname{sc}}_{i},\nu,\gamma_i} \times_{\operatorname{Fl}_{P^{\operatorname{sc}}_{i},\nu,\gamma_i}} \operatorname{Fl}_{P^{\operatorname{sc}}_{i+1},\nu,\gamma_{i+1}}. \end{align*}$$

It is enough to show that each projection $\widetilde {\operatorname {Fl}}^{\prime }_{P^{\operatorname {sc}}_{i+1},\nu ,\gamma _{i+1}}\to \widetilde {\operatorname {Fl}}_{P^{\operatorname {sc}}_{i},\nu ,\gamma _{i}}$ is an affine bundle.

We set $\overline {U}_{i}:=U_{i}/U_{i+1}$ . Then $\overline {U}_i\subseteq P_{i+1}=P_{\psi }/U_{i+1}$ is a normal subgroup, and we have $P_i\cong P_{i+1}/\overline {U}_i$ . Set $I_{\overline {U}_i,\nu }:=I_{P_{i+1},\nu }\cap L(\overline {U}_i)$ . Then $\widetilde {\operatorname {Fl}}^{\prime }_{P^{\operatorname {sc}}_{i+1},\nu ,\gamma _{i+1}}$ can be identified with the locus of all $g\in L(P^{\operatorname {sc}}_{i+1})/I_{\overline {U}_i,\nu }$ such that $g^{-1}\gamma _{i+1} g\in I_{P_{i+1},\nu }$ .

Step 4. Recall that the projection $p_i:P_{i+1}\to P_i$ , viewed as a morphism of algebraic varieties, has a section s. Indeed, the isomorphism $P_{\psi }\overset {\thicksim }{\to } M_{\psi }\times U_{\psi }$ from Section 2.4.3(c) induces an isomorphism $P_i\overset {\thicksim }{\to } M_{\psi }\times (U_0/U_i)$ . Choose an ordering of the all roots of G lying in $\operatorname {Lie} U_0/\operatorname {Lie} U_i$ . Then the map $(x_{\alpha })_{\alpha }\mapsto \prod _{\alpha }x_{\alpha }$ defines an isomorphism $\prod _{\alpha } U_{\alpha }\overset {\thicksim }{\to } U_0/U_i$ , where $U_{\alpha }$ is the root space of $\alpha $ . We define s to be the composition

$$\begin{align*}P_i\overset {\thicksim}{\to} M_{\psi}\times (U_0/U_i)\overset {\thicksim}{\to} M_{\psi}\times\prod_{\alpha} U_{\alpha}\hookrightarrow M_{\psi}\times (U_0/U_{i+1})\overset {\thicksim}{\to} P_{i+1}. \end{align*}$$

By construction, we have $s(P^{\operatorname {sc}}_i)\subseteq P^{\operatorname {sc}}_{i+1}$ , so using s, we identify $\widetilde {\operatorname {Fl}}^{\prime }_{P^{\operatorname {sc}}_{i+1},\nu ,\gamma _{i+1}}$ with the space of pairs $(g,u)$ , where $g\in L(P^{\operatorname {sc}}_i)$ and $u\in L(\overline {U}_{i})/I_{\overline {U}_i,\nu }$ , satisfying

(3.1) $$ \begin{align} (s(g)u)^{-1}\gamma_{i+1} (s(g)u)\in I_{P_{i+1},\nu}. \end{align} $$

Moreover, equation (3.1) implies that $g^{-1}\gamma _i g\in I_{P_i,\nu }$ , and thus $g\in \widetilde {\operatorname {Fl}}_{P^{\operatorname {sc}}_{i},\nu ,\gamma _i}\subseteq L(P^{\operatorname {sc}}_i)$ .

Step 5. For each $g\in \widetilde {\operatorname {Fl}}_{P^{\operatorname {sc}}_{i},\nu ,\gamma _i}$ , we set $\widetilde {g}:=s(g)^{-1}\gamma _{i+1}s(g)\in L(P^{\operatorname {sc}}_{i+1})$ . Then $p_i(\widetilde {g})=g^{-1}\gamma _i g\in I_{P_i,\nu }$ , so there exists a unique $u_g\in L(\overline {U}_i)$ such that $\widetilde {g}=u^{-1}_g s(g^{-1}\gamma _{i}g)$ . Hence, we have an equality

$$\begin{align*}(s(g)u)^{-1}\gamma_{i+1}(s(g)u)=u^{-1}\widetilde{g}u= u^{-1}(\widetilde{g}u\widetilde{g}^{-1})u^{-1}_g s(g^{-1}\gamma_{i}g). \end{align*}$$

Let $\widetilde {m}\in I_{M_{\psi },\nu }\subseteq L(M_{\psi })$ be the image of $g^{-1}\gamma _i g\in I_{P_i,\nu }$ . Since $\overline {U}_{i}$ lies in the center of $U_0/U_{i+1}$ , we have $\widetilde {g}u\widetilde {g}^{-1}=\widetilde {m}u\widetilde {m}^{-1}$ . Moreover, since $g\in \widetilde {\operatorname {Fl}}_{P^{\operatorname {sc}}_{i},\nu ,\gamma _i}$ , we get that $g^{-1}\gamma _i g\in I_{P_i,\nu }$ . Hence, by our construction of s, we have $s(g^{-1}\gamma _i g)\in I_{P_{i+1},\nu }$ , and thus, our condition (3.1) can be rewritten as

$$\begin{align*}u^{-1}(\widetilde{m}u\widetilde{m}^{-1})\in u_g I_{\overline{U}_i,\nu}. \end{align*}$$

Step 6. Since $\overline {U}_i$ is abelian, we have a canonical isomorphism $\overline {U}_i\overset {\thicksim }{\to } \operatorname {Lie}\overline {U}_i$ . Therefore, each $u_g\in L(\overline {U}_i)$ gives rise to an element $n_g\in \operatorname {Lie} L(\overline {U}_i)$ , and $\widetilde {\operatorname {Fl}}^{\prime }_{P^{\operatorname {sc}}_{i+1},\nu ,\gamma _{i+1}}$ is identified with the moduli space of pairs $(g,n)$ , consisting of $g\in \widetilde {\operatorname {Fl}}_{P^{\operatorname {sc}}_{i},\nu ,\gamma _i}$ and $n\in \operatorname {Lie} L(\overline {U}_{i})/\operatorname {Lie} I_{\overline {U}_i,\nu }$ such that

(3.2) $$ \begin{align} (\operatorname{Ad}\widetilde{m}-1)(n)\in n_g+\operatorname{Lie} I_{\overline{U}_i,\nu}. \end{align} $$

Step 7. Since $\gamma \in M_{\psi }(K)\subseteq G(K)$ is regular semisimple, the operator $\operatorname {Ad}\gamma -1$ is invertible on $\operatorname {Lie}\overline {U}_{i}(K)$ , and we set $d:=\operatorname {val}\det (\operatorname {Ad}\gamma -1,\operatorname {Lie}\overline {U}_{i}(K))$ . Since each $\widetilde {m}$ is an $M_{\psi }(K)$ -conjugate of $\gamma $ , we conclude that the valuation of determinant of $\operatorname {Ad}\widetilde {m}-1$ on $\operatorname {Lie}\overline {U}_{i}(K)$ is d; thus, the linear transformation of $\operatorname {Lie} L(\overline {U}_{i})/ \operatorname {Lie}{I}_{\overline {U}_i,\nu }$ , induced by $\operatorname {Ad}\widetilde {m}-1$ , has a kernel of dimension d. Hence, equation (3.2) implies that $\widetilde {\operatorname {Fl}}^{\prime }_{P^{\operatorname {sc}}_{i+1},\nu ,\gamma _{i+1}}$ is an affine subbundle of $\widetilde {\operatorname {Fl}}_{P^{\operatorname {sc}}_{i},\nu ,\gamma _i}\times (\operatorname {Lie} L(\overline {U}_{i})/\operatorname {Lie} {I}_{\overline {U}_i,\nu })$ of dimension d.

Proposition 3.1.8. Assume that we are in the situation of Section 3.1.5. Let $\overline {w}\in \widetilde {W}^{\mathcal {C}}$ be an admissible tuple, $\psi \in \Psi $ , $\nu :=\overline {w}_{\psi }\in \widetilde {W}_{\psi }$ , and let $Z_{\nu }\subseteq \operatorname {Fl}$ as in Section 2.4.3(a). Then exists $m\in \mathbb N$ such that if $\overline {w}$ is m-regular, then

(a) the reduced intersections $Z_{\nu }\cap \operatorname {Fl}_{\gamma }^{\leq \overline {w}}$ and $Z_{\nu }\cap \left (\bigcap _{\psi \in C}\operatorname {Fl}_{\gamma }^{\leq _{C}w_{C}}\right )$ are equal;

(b) the isomorphism $Z_{\nu }^{T_{\psi }}\overset {\thicksim }{\to } \operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}$ from Sections 2.4.3(e),(f) induces an isomorphism between the reduced intersection $Z^{T_{\psi }}_{\nu }\cap \operatorname {Fl}_{\gamma }^{\leq \overline {w}}$ and $\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi },\gamma }^{\leq \overline {w}^{\psi }}$ (see Section 1.3.9(e));

(c) we have an inclusion of sets $p_{\nu }^{-1}(p_{\nu }(\operatorname {Fl}^{\leq \overline {w}}\cap Z_{\nu ,\gamma })) \subseteq \operatorname {Fl}^{\leq \overline {w}}$ .

Proof. (a) Let $Y\subseteq \operatorname {Fl}_{\gamma }$ be a closed subscheme of finite type such that $\operatorname {Fl}_{\gamma }=\Lambda _{\gamma }(Y)$ (see Section 3.1.1(c)). Then using, for example, Corollary 2.1.7(d),(e), there exists a finite stratification $Y=\bigcup _{j} Y_{j}$ such that for every j, there exists a tuple $\overline {u}\in \widetilde {W}^{\mathcal {C}}$ such that $Y_j\subseteq L(U_C)u_C$ for each $C\in \mathcal {C}$ .

Thus, it is enough to show that $Z_{\nu }\cap (\Lambda _{\gamma }(Y_j))^{\leq \overline {w}}$ equals $Z_{\nu }\cap \left (\bigcap _{C\owns \psi }\Lambda _{\gamma }(Y_j)^{\leq _C w_C}\right )$ for each j. In other words, we have to show that for every $\mu \in \Lambda _{\gamma }\subseteq \Lambda $ and $y\in Y_j$ such that $\mu (y)\in \operatorname {Fl}^{\leq _{C} w_C}$ for every $C\owns \psi $ and $\mu (y)\in Z_{\nu }$ , we have $\mu (y)\in \operatorname {Fl}^{\leq _{C} w_C}$ for every $C\in \mathcal {C}$ .

Let $\overline {u}$ be a tuple of elements of $\widetilde {W}$ such that $y\in L(U_C)u_C$ for every C. Then $y\in \operatorname {Fl}^{\leq \overline {u}}$ , and it follows from Corollary 2.1.7(d) that $\overline {u}$ is admissible. By the assumption, for every $C\owns \psi $ , we have $\mu u_C\leq _C w_C$ and also $(\mu \overline {u})_{\psi }=\nu =\overline {w}_{\psi }$ .

By Lemma 1.2.7(a), this implies that $\mu u_C\leq _{C^{\psi }} w_C$ for every $C\owns \psi $ . Hence, it follows from Lemma 1.3.12 that if $\overline {w}$ is sufficiently regular, then $\mu u_C\leq _{C} w_C$ for every $C\in \mathcal {C}$ ; thus, $\mu (y)\in \bigcap _{C\in \mathcal {C}}\operatorname {Fl}^{\leq _{C} w_C}$ , as claimed.

(b) By part (a), the reduced intersections $Z^{T_{\psi }}_{\nu }\cap \operatorname {Fl}_{\gamma }^{\leq \overline {w}}$ and $Z^{T_{\psi }}_{\nu }\cap \left (\bigcap _{C\owns \psi }\operatorname {Fl}_{\gamma }^{\leq _{C}w_{C}}\right )$ are equal. Therefore, it suffices to show that the isomorphism $Z_{\nu }^{T_{\psi }}\overset {\thicksim }{\to } \operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}$ induces an isomorphism between the reduced intersection $Z^{T_{\psi }}_{\nu }\cap \operatorname {Fl}^{\leq _{C}w_{C}}$ and $\operatorname {Fl}^{\leq _{C^{\psi }}w_{C^{\psi }}}_{M^{\operatorname {sc}}_{\psi }}$ for all $C\owns \psi $ . Since $\operatorname {Fl}^{\leq _{C} w_C}$ is a closed $L(U_C)$ -invariant ind-subscheme of $\operatorname {Fl}$ , we conclude that a closed ind-subscheme $Z^{T_{\psi }}_{\nu }\cap \operatorname {Fl}^{\leq _{C}w_{C}}$ of $Z_{\nu}^{T_{\psi}}$ corresponds to a closed $L(U_C)\cap L(M^{\operatorname {sc}}_{\psi })=L(U_{C^{\psi }})$ -invariant ind-subscheme of $\operatorname {Fl}_{M^{\operatorname {sc}}_{\psi }}$ . Using Proposition 2.1.6, the question is equivalent to the assertion that if $w'\in \widetilde {W}^{\psi }$ , then $w'w_{\psi }\leq _C w^{\psi }w_{\psi }$ if and only if $w'\leq _{C^{\psi }} w^{\psi }$ . But this was shown in Lemma 1.2.7(b).

(c) By part (a), it is enough to show that $p_{\nu }^{-1}(p_{\nu }(\operatorname {Fl}^{\leq _C w_C}\cap Z_{\nu ,\gamma }))\subseteq \operatorname {Fl}^{\leq _C w_C}$ for each $C\owns \psi $ . Since every fiber of $p_{\nu }$ lies in a single $L(U_{\psi })$ -orbit, the assertion follows from the inclusion $U_{\psi }\subseteq U_C$ .

3.2 Finiteness of homology

3.2.1. Homology. We fix a prime number $\ell $ different from the characteristic of k.

(a) For a scheme Y of finite type over k and $\mathcal {F}\in D_c^b(Y,\overline {\mathbb Q}_{\ell })$ , one can form the homology groups $H_i(Y,\mathcal {F}):=(H^i(Y,\mathcal {F}))^*$ . We also set $H_i(Y):=H_i(Y,\overline {\mathbb Q}_{\ell })$ .

(b) A closed embedding $\iota :X\hookrightarrow Y$ induces a morphism

$$\begin{align*}\iota^*:H^i(Y,\mathcal{F})\to H^i(Y,\iota_*\iota^*\mathcal{F})=H^i(X,\iota^*\mathcal{F})=H^i(X,\mathcal{F}|_X), \end{align*}$$

and hence a morphism $\iota _*:H_i(X,\mathcal {F}|_X)\to H_i(Y,\mathcal {F})$ .

(c) By part (b), a closed embedding $\iota :X\hookrightarrow Y$ induces a morphism $\iota _*:H_i(X)\to H_i(Y)$ . Therefore, for every ind-scheme $Y=\operatorname {colim}_i Y_i$ over k, one can form a homology $H_i(Y):=\operatorname {colim}_i H_i(Y_i)$ .

The main goal of this section is to show the following finiteness property of homology of affine Springer fibers:

Proposition 3.2.2. In the situation of Section 3.1.1(e), there exists an integer r such that for every tuple $\overline {x}\in \mathbb Z^{\Psi }$ and every $\psi \in \Psi $ , we have an equality of kernels

(3.3) $$ \begin{align} \operatorname{Ker}\left(H_i(\operatorname{Fl}^{\leq'\overline{x}}_{\gamma})\to H_i(\operatorname{Fl}^{\leq'\overline{x}+r\overline{e}_{\psi}}_{\gamma})\right)=\operatorname{Ker} \left(H_i(\operatorname{Fl}^{\leq'\overline{x}}_{\gamma})\to H_i(\operatorname{Fl}^{\leq'\overline{x}+(r+1)\overline{e}_{\psi}}_{\gamma})\right). \end{align} $$

In order to prove this, we need to introduce certain notation, generalizing [Reference Bezrukavnikov and VarshavskyBV, Sections A.4.2 and 3.1.2].

3.2.3. Filtrations. Let $\Gamma $ be an ordered monoid – that is, a monoid and a partially ordered set such that $\sigma \tau \leq \sigma '\tau '$ for each $\sigma \leq \sigma '$ and $\tau \leq \tau '$ .

(a) By a $\Gamma $ -filtered set (or a set with a $\Gamma $ -filtration), we mean a set X together with collections of subsets $\{X_{\sigma }\}_{\sigma \in \Gamma }$ such that $X_{\sigma }\subseteq X_{\tau }$ for all $\sigma \leq \tau $ , and $X=\bigcup _{\sigma } X_{\sigma }$ .

(b) By a $\Gamma $ -filtered group we mean a group A with a $\Gamma $ -filtration such that $1\in A_1$ and .

(c) Let A be a $\Gamma $ -filtered group, and X is a set equipped with an A-action and a $\Gamma $ -filtration. We say that $\Gamma $ -filtration on X is compatible with a filtration of A if for every $\sigma ,\tau \in \Gamma $ we have $A_{\sigma }(X_{\tau })\subseteq X_{\sigma \tau }$ .

(d) In the situation of (c), we will say that the $\Gamma $ -filtration on X is finitely generated over A if there exists a finite subset $\Gamma _0\subseteq \Gamma $ such that $\{X_{\sigma }\}_{\sigma \in \Gamma }$ is generated by $\{X_{\sigma }\}_{\sigma \in \Gamma _0}$ ; that is, for every $\sigma \in \Gamma $ , we have $X_{\sigma }=\bigcup _{\{(\tau ,\sigma ')\in \Gamma \times \Gamma _0\,|\,\tau \sigma '=\sigma \}} A_{\tau }(X_{\sigma '})$ .

3.2.4. Rees algebras and modules. Let L be a field, and assume that we are in the situation of Section 3.2.3.

(a) For a $\Gamma $ -filtered group A, the group algebra $L[A]$ is also equipped with a $\Gamma $ -filtration $L[A]_{\sigma }:=\operatorname {Span}_L(A_{\sigma })$ , and we denote by $R(L[A]):=\bigoplus _{\sigma \in \Gamma } L[A]_{\sigma }$ the corresponding Rees algebra. Note that $R(L[A])$ is the monoid algebra of the monoid $R(A):=\{(a,\sigma )\in A\times \Gamma \,|\, a\in A_{\sigma }\}$ .

(b) Let X be a scheme locally of finite type over k equipped with an action of A. Assume that A is a $\Gamma $ -filtered group, and that X is equipped with a $\Gamma $ -filtration compatible with $\Gamma $ -filtration on A and such that $X_{\sigma }\subseteq X$ is a closed subscheme of finite type over k for each $\sigma \in \Gamma $ .

(c) For every A-equivariant element $\mathcal {F}\in D_c^b(X,\overline {\mathbb Q}_{\ell })$ , we can form a $\Gamma $ -graded $R(\overline {\mathbb Q}_{\ell }[A])$ -module $R(H_i(X,\mathcal {F})):=\bigoplus _{\sigma } H_i(X_{\sigma },\mathcal {F}\,|_{X_{\sigma }})$ for every $i\in \mathbb Z$ . Explicitly, the action of $a\in A_{\tau }$ on X defines a closed embedding $a:X_{\sigma }\hookrightarrow X_{\tau \sigma }$ , and hence a homomorphism $H_i(X_{\sigma },\mathcal {F}\,|_{X_{\sigma }})\to H_i(X_{\tau \sigma },\mathcal {F}\,|_{X_{\tau \sigma }})$ (see Section 3.2.1(b)).

In particular, we form a $\Gamma $ -graded $R(\overline {\mathbb Q}_{\ell }[A])$ -module $R(H_i(X)):=R(H_i(X,\overline {\mathbb Q}_{\ell }))$ .

Lemma 3.2.5. In the situation of Section 3.2.4(b), assume that

$\mathrm{(i)} $ the group A acts on the set of irreducible components of X with finite stabilizers;

$\mathrm{(ii)} $ the filtration $\{X_{\sigma }\}_{\sigma }$ is finitely generated over A;

$\mathrm{(iii)} $ the Rees algebra $R(\overline {\mathbb Q}_{\ell }[A])$ is Noetherian.

Then for every A-equivariant object $\mathcal {F}\in D_c^b(X,\overline {\mathbb Q}_{\ell })$ and $i\in \mathbb Z$ , the $R(\overline {\mathbb Q}_{\ell }[A])$ -module $R(H_i(X,\mathcal {F}))$ is finitely generated.

Proof. The argument is identical to that of [Reference Bezrukavnikov and VarshavskyBV, Lemma 3.1.3], where the case of $\Gamma =\mathbb Z_{\geq 0}$ is treated.

Example 3.2.6. (a) Let $\Gamma $ be an ordered monoid $\mathbb Z_{\geq 0}^{\Psi }$ , which we identify with a corresponding submonoid of the group of quasi-admissible tuples in $\Lambda $ via the correspondence of Section 1.3.4(a),(b).

(b) Let $\Lambda '\subseteq \Lambda $ be a subgroup. Consider a $\Gamma $ -filtration on $\Lambda '$ , where for every $\overline {x}\in \Gamma $ , we set $\Lambda ^{\prime }_{\overline {x}}:=\Lambda '\cap V^{\leq \overline {x}}$ , where $V^{\leq \overline {x}}$ is defined in Section 1.3.9(d). Then $\{\Lambda ^{\prime }_{\overline {x}}\}_{\overline {x}}$ is a $\Gamma $ -filtered semigroup.

(c) Note that $R(\Lambda ')=\{(\mu ,\overline {x})\in \Lambda '\times \mathbb Z_{\geq 0}^{\Psi }\,|\,\langle \psi ,\mu \rangle \leq \overline {x}(\psi )\text { for every }\psi \in \Psi \}$ . Therefore, by Gordan’s lemma (see, for example, [Reference EwaldEw, Lemma 3.4, page 154]), $R(\Lambda ')$ is a finitely generated commutative monoid. Therefore, the Rees algebra $R(\overline {\mathbb Q}_{\ell }[\Lambda '])=\overline {\mathbb Q}_{\ell }[R(\Lambda ')]$ is a finitely generated commutative algebra over $\overline {\mathbb Q}_{\ell }$ ; hence, it is Noetherian.

(d) We apply the construction of part (b) to $\Lambda ':=\Lambda _{\gamma }$ , and equip the ind-scheme $X=\operatorname {Fl}_{\gamma }$ (resp. $X=\operatorname {Gr}_{\gamma }$ ) with a $\Gamma $ -filtration $\operatorname {Fl}^{\leq '\overline {x}}_{\gamma }$ (resp. $\operatorname {Gr}^{\leq \overline {x}}_{\gamma }$ ). Then it follows from definitions that this filtration is compatible with a $\Gamma $ -filtration on $\Lambda _{\gamma }$ .

Lemma 3.2.7. The $\Gamma $ -filtrations $\{\operatorname {Gr}^{\leq \overline {x}}_{\gamma }\}_{\overline {x}}$ on $\operatorname {Gr}_{\gamma }$ and $\{\operatorname {Fl}^{\leq '\overline {x}}_{\gamma }\}_{\overline {x}}$ on $\operatorname {Fl}_{\gamma }$ are finitely generated over $\Lambda _{\gamma }$ .

Proof. Since the filtration $\{\operatorname {Fl}^{\leq '\overline {x}}_{\gamma }\}_{\overline {x}}$ on $\operatorname {Fl}_{\gamma }$ is defined to be the preimage of the filtration $\{\operatorname {Gr}^{\leq \overline {x}}_{\gamma }\}_{\overline {x}}$ on $\operatorname {Gr}_{\gamma }$ , it will suffice to show the assertion for $\{\operatorname {Gr}^{\leq \overline {x}}_{\gamma }\}_{\overline {x}}$ .

Notice that for every $\Lambda _{\gamma }$ -invariant subset of $X\subseteq \operatorname {Gr}_{\gamma }$ , the $\Gamma $ -filtration on $\operatorname {Gr}_{\gamma }$ induces a $\Gamma $ -filtration on X. Moreover, if $\operatorname {Gr}_{\gamma }$ is a finite union $\bigcup _j X_j$ of $\Lambda _{\gamma }$ -invariant subsets, then the filtration on $\operatorname {Gr}_{\gamma }$ is finitely generated if and only if the corresponding filtration on each $X_j$ is finitely generated.

Recall that there exists a closed subscheme of finite type $Y\subseteq \operatorname {Gr}_{\gamma }$ such that $\operatorname {Gr}_{\gamma }=\Lambda _{\gamma }(Y)$ . Moreover, using Corollary 2.1.7(d), there exists a finite decomposition $Y=\bigcup _j Y_j$ such that for each j, there exists a tuple $\overline {y}=\overline {y}_j$ such that $Y_j\subseteq L(U_C)y_C$ for all $C\in \mathcal {C}$ . Then $\operatorname {Gr}_{\gamma }=\bigcup _j \Lambda _{\gamma }(Y_j)$ , and it suffices to show that the filtration $\{\Lambda _{\gamma }(Y_j)^{\leq \overline {x}}\}_{\overline {x}}$ on each $\Lambda _{\gamma }(Y_j)$ is finitely generated over $\Lambda _{\gamma }$ .

Note that for every $\overline {x}\in \Gamma $ , we have an equality $\Lambda _{\gamma }(Y_j)^{\leq \overline {x}}=\Lambda _{\gamma }^{\leq \overline {x}-\overline {y}_j}(Y_j)$ . Indeed, it follows from [Reference Mirkovic and VilonenMV, Proposition 3.1] (or can be deduced from Proposition 2.1.6) that for every $\mu \in \Lambda _{\gamma }$ and $z\in Y_j$ , we have $\mu z\in \Lambda _{\gamma }(Y_j)^{\leq \overline {x}}$ if and only if $\mu y_C\leq _C x_C$ for all $C\in \mathcal {C}$ . Hence, $\mu z\in \Lambda _{\gamma }(Y_j)^{\leq \overline {x}}$ if and only if $\mu \in \Lambda _{\gamma }^{\leq \overline {x}-\overline {y}_j}$ , as claimed.

Therefore, it is enough to show that the $\Gamma $ -filtration $\{(\Lambda _{\gamma })_{\overline {x}-\overline {y}_j}\}_{\overline {x}}$ is finitely generated over $\Lambda _{\gamma }$ . Since $R(\overline {\mathbb Q}_{\ell }[\Lambda _{\gamma }])$ is a finitely generated $\overline {\mathbb Q}_{\ell }$ -algebra (by Section 3.2.6(c)), the assertion follows.

Corollary 3.2.8. The Rees module $R(H_i(\operatorname {Fl}_{\gamma }))$ is a finitely generated $R(\overline {\mathbb Q}_{\ell }[\Lambda _{\gamma }])$ -module.

Proof. Since Rees algebra $R(\overline {\mathbb Q}_{\ell }[\Lambda _{\gamma }])$ is Noetherian (see Section 3.2.6(c)), the assertion follows from Lemmas 3.2.5 and 3.2.7.

Now we are ready to prove Proposition 3.2.2.

3.2.9.

Proof of Proposition 3.2.2.

Since $\Psi $ is finite, it will suffice to show the existence of r for a fixed $\psi $ . For every $r\in \mathbb N$ , the embeddings $\operatorname {Fl}^{\leq '\overline {x}}\hookrightarrow \operatorname {Fl}^{\leq '\overline {x}+r\overline {e}_{\psi }}$ for all $\overline {x}$ induce a homomorphism of $R(\overline {\mathbb Q}_{\ell }[\Lambda _{\gamma }])$ -modules $\iota _{r\overline {e}_{\psi }}:R(H_i(\operatorname {Fl}_{\gamma }))\to R(H_i(\operatorname {Fl}_{\gamma }))$ , and Proposition 3.2.2 asserts that $\operatorname {Ker}\iota _{r\overline {e}_{\psi }}=\operatorname {Ker}\iota _{(r+1)\overline {e}_{\psi }}$ for some r.

Since $\{\operatorname {Ker}\iota _{r\overline {e}_{\psi }}\}_r$ is an increasing sequence of $R(\overline {\mathbb Q}_{\ell }[\Lambda _{\gamma }])$ -submodules of $R(H_i(\operatorname {Fl}_{\gamma }))$ , the Rees algebra $R(\overline {\mathbb Q}_{\ell }[\Lambda _{\gamma }])$ is Noetherian (by Section 3.2.6(c)), while $R(H_i(\operatorname {Fl}_{\gamma }))$ is finitely generated (by Corollary 3.2.8), this sequence stabilizes.

The following lemma will be used in the proof of Theorem 0.3.

Lemma 3.2.10. There exists $m\in \mathbb N$ such that for every m-regular tuple $\overline {x}\in \mathbb Z^{\Psi }$ and every $\psi \in \Psi $ such that $\check {\psi }\notin (\Lambda _{\gamma })_{\mathbb Q}$ , we have $\operatorname {Fl}_{\gamma }^{\leq '\overline {x}}=\operatorname {Fl}_{\gamma }^{\leq '\overline {x}+\overline {e}_{\psi }}$ .

Proof. Our argument is similar to that of Lemma 3.2.7. It is enough to show that $\operatorname {Gr}_{\gamma }^{\leq \overline {x}}=\operatorname {Gr}_{\gamma }^{\leq \overline {x}+\overline {e}_{\psi }}$ . Let $Y, Y_j$ and $\overline {y}_j$ be as in the proof of Lemma 3.2.7, and choose $m\in \mathbb N$ such that for every m-regular $\overline {x}$ , the tuples $\overline {x}-\overline {y}_j+\overline {e}_{\psi }$ is regular. We claim that this m satisfies the required property.

It suffices to show that $\Lambda _{\gamma }(Y_j)^{\leq \overline {x}}=\Lambda _{\gamma }(Y_j)^{\leq \overline {x}+\overline {e}_{\psi }}$ for each j. For this, it suffices to show that $\Lambda _{\gamma }^{\leq \overline {x}-\overline {y}_j}= \Lambda _{\gamma }^{\leq \overline {x}-\overline {y}_j+\overline {e}_{\psi }}$ . In other words, we have to show that every $\mu \in \Lambda ^{\leq \overline {x}-\overline {y}_j+\overline {e}_{\psi }}\smallsetminus \Lambda ^{\leq \overline {x}-\overline {y}_j}$ does not belong to $\Lambda _{\gamma }$ .

We are going to deduce the assertion from Lemma 1.3.11(b). Since $\check {\psi }\notin (\Lambda _{\gamma })_{\mathbb Q}$ , it follows from Section 3.1.4(d) that there exists a root $\alpha \in \Phi $ such that $\alpha \in (\Lambda _{\gamma })^{\perp }$ and $\langle \alpha ,\check {\psi }\rangle>0$ . Since $\langle \psi ,\mu \rangle =(\overline {x}-\overline {y}_j+\overline {e}_{\psi })_{\psi }$ , and the tuple $\overline {x}-\overline {y}_j+\overline {e}_{\psi }$ is regular by assumption, we conclude from Lemma 1.3.11(b) that $\langle \alpha ,\mu \rangle>0$ . Therefore, $\mu \notin \Lambda _{\gamma }$ because $\alpha \in (\Lambda _{\gamma })^{\perp }$ .

4 Proof of Theorem 0.3

4.1 Localization theorem for equivariant cohomology

In this section we will review basic facts about equivariant cohomology (with compact support), including a version of a localization theorem.

4.1.1. Total cohomology of Artin stacks. For an Artin stack $\mathcal {X}$ of finite type over k and $\mathcal {F}\in D^b_c(\mathcal {X},\overline {\mathbb Q}_{\ell })$ , we denote by $H^{\bullet }(\mathcal {X},\mathcal {F}):=\bigoplus _i H^i(\mathcal {X},\mathcal {F})$ its total cohomology, and set $H^{\bullet }(\mathcal {X}):= H^{\bullet }(\mathcal {X},\overline {\mathbb Q}_{\ell })$ .

(a) Note that $H^{\bullet }(\mathcal {X})=\operatorname {Ext}^{\bullet }_{\mathcal {X}}(\overline {\mathbb Q}_{\ell },\overline {\mathbb Q}_{\ell })$ is a graded $\overline {\mathbb Q}_{\ell }$ -algebra, and identification $\mathcal {F}[\bullet ]=\overline {\mathbb Q}_{\ell }[\bullet ]\otimes _{\overline {\mathbb Q}_{\ell }}\mathcal {F}$ give to $H^{\bullet }(\mathcal {X},\mathcal {F})$ a natural structure of a graded $H^{\bullet }(\mathcal {X})$ -module.

(b) Every morphism $\mathcal {F}_1\to \mathcal {F}_2$ in $D^b_c(\mathcal {X},\overline {\mathbb Q}_{\ell })$ induces a homomorphism $H^{\bullet }(\mathcal {X},\mathcal {F}_1)\to H^{\bullet }(\mathcal {X},\mathcal {F}_2)$ of graded $H^{\bullet }(\mathcal {X})$ -modules.

(c) For every homomorphism $f:\mathcal {X}\to \mathcal {Y}$ of Artin stacks of finite type over k, the pullback $f^*:H^{\bullet }(\mathcal {Y})\to H^{\bullet }(\mathcal {X})$ is a homomorphism of graded $\overline {\mathbb Q}_{\ell }$ -algebras. Moreover, for every $\mathcal {F}\in D^b_c(\mathcal {Y},\overline {\mathbb Q}_{\ell })$ the pullback $f^*$ gives rise to a homomorphism

$$\begin{align*}H^{\bullet}(\mathcal{X})\otimes_{H^{\bullet}(\mathcal{Y})}H^{\bullet}(\mathcal{Y},\mathcal{F})\to H^{\bullet}(\mathcal{X},f^*\mathcal{F}) \end{align*}$$

of graded $H^{\bullet }(\mathcal {X})$ -modules.

4.1.2. Equivariant cohomology (compare [Reference Bernstein and LuntsBL, Reference Goresky, Kottwitz and MacPhersonGKM, Reference AcharAc, Reference Anderson and FultonAF]). Let G be an algebraic group over k, let X be a separated scheme of finite type over k equipped with a G-action, set $\operatorname {pt}:=\operatorname {Spec} k$ , let $[\operatorname {pt}/G]$ be the classifying stack of G, and let $\operatorname {pr}_X:[X/G]\to [\operatorname {pt}/G]$ be the natural projection.

(a) For every $\mathcal {F}\in D^b_c([X/G],\overline {\mathbb Q}_{\ell })$ , we define its equivariant cohomology

$$\begin{align*}H^{\bullet}_{G}(X,\mathcal{F}):=H^{\bullet}([X/G],\mathcal{F}))=H^{\bullet}([\operatorname{pt}/G],R(\operatorname{pr}_X)_*(\mathcal{F})), \end{align*}$$

equivariant cohomology with compact support

$$\begin{align*}H^{\bullet}_{c,G}(X,\mathcal{F}):=H^{\bullet}([\operatorname{pt}/G],R(\operatorname{pr}_X)_!(\mathcal{F})), \end{align*}$$

and set $H^{\bullet }_{G}(X):=H^{\bullet }_{G}(X,\overline {\mathbb Q}_{\ell })$ and $H^{\bullet }_{c,G}(X):=H^{\bullet }_{c,G}(X,\overline {\mathbb Q}_{\ell })$ .

(b) By Section 4.1.1(a), $H^{\bullet }_G(\operatorname {pt})$ is a graded $\overline {\mathbb Q}_{\ell }$ -algebra, while both $H^{\bullet }_{G}(X,\mathcal {F})$ and $H^{\bullet }_{c,G}(X,\mathcal {F})$ have natural structures of graded $H^{\bullet }_G(\operatorname {pt})$ -modules.

(c) Note that $H^{\bullet }_G(X)=\operatorname {Ext}^{\bullet }_{[X/G]}(\overline {\mathbb Q}_{\ell },\overline {\mathbb Q}_{\ell })$ is a graded $\overline {\mathbb Q}_{\ell }$ -algebra; hence, both $H^{\bullet }_{G}(X,\mathcal {F})$ and $H^{\bullet }_{c,G}(X,\mathcal {F})$ have natural structures of graded $H^{\bullet }_G(X)$ -modules.

(d) Note that the structures of $H^{\bullet }_{G}(X,\mathcal {F})$ and $H^{\bullet }_{c,G}(X,\mathcal {F})$ of graded $H^{\bullet }_G(\operatorname {pt})$ -modules from part (b) are obtained from structures of graded $H^{\bullet }_G(X)$ -modules from part (c) by the homomorphism

$$\begin{align*}(p_X)^*:H^{\bullet}_G(\operatorname{pt})=H^{\bullet}([\operatorname{pt}/G])\to H^{\bullet}([X/G])=H^{\bullet}_G(X) \end{align*}$$

of graded $\overline {\mathbb Q}_{\ell }$ -algebras from Section 4.1.1(c).

4.1.3. Simple properties. Let G, X and $\mathcal {F}$ be as in Section 4.1.2.

(a) Using Section 4.1.1(b), for each closed G-invariant subscheme $Z\subseteq X$ , the long exact sequence for cohomology with compact support naturally upgrades to an exact sequence

$$\begin{align*}H^{\bullet}_{c,G}(Z)[-1]\overset{\delta}{\to} H^{\bullet}_{c,G}(X\smallsetminus Z)\to H^{\bullet}_{c,G}(X)\to H^{\bullet}_{c,G}(Z)\overset{\delta}{\to} H^{\bullet}_{c,G}(X\smallsetminus Z)[1] \end{align*}$$

of graded $H^{\bullet }_G(\operatorname {pt})$ -modules, functorial in $(X,Z)$ .

(b) If G acts trivially on X, then we have canonical isomorphism

$$\begin{align*}H^{\bullet}_{c,G}(X)\simeq H^{\bullet}_G(\operatorname{pt})\otimes_{\overline{\mathbb Q}_{\ell}} H_c^{\bullet}(X) \end{align*}$$

of graded $H^{\bullet }_G(\operatorname {pt})$ -modules, functorial in X. Indeed, since $[X/G]\simeq X\times [\operatorname {pt}/G]$ , the assertion follows from Künneth formula. Alternatively, choose a compactification $j:X\hookrightarrow \overline {X}$ of X, and apply [Reference AcharAc, Proposition 6.7.5] for $H^{\bullet }_{\{1\}\times G}(\overline {X}\times \operatorname {pt},(j_!\overline {\mathbb Q}_{\ell })\boxtimes \overline {\mathbb Q}_{\ell })$ .

(c) Using observation of Section 4.1.1(c) applied to the projection $\pi :\operatorname {pt}\to [\operatorname {pt}/G]$ and an object $R(p_X)_!(\mathcal {F})\in D^b_c([\operatorname {pt}/G],\overline {\mathbb Q}_{\ell })$ , we have a homomorphism $\pi ^*:H^{\bullet }_G(\operatorname {pt})\to H^{\bullet }(\operatorname {pt})=\overline {\mathbb Q}_{\ell }$ of graded $\overline {\mathbb Q}_{\ell }$ -algebras and a homomorphism

(4.1) $$ \begin{align} \overline{\mathbb Q}_{\ell}\otimes_{H^{\bullet}_G(\operatorname{pt})} H_{c,G}^{\bullet}(X,\mathcal{F})\to H_{c}^{\bullet}(X,\mathcal{F}) \end{align} $$

of graded vector spaces (compare [Reference AcharAc, equation (6.7.2)]).

Moreover, if $H^{\bullet }_{c,S}(X,\mathcal {F})$ is a free graded $H^{\bullet }_S(\operatorname {pt})$ -module, then morphism (4.1) is an isomorphism. Indeed, as in the proof of [Reference AcharAc, Lemma 6.7.4], one first reduces to the case $X=\operatorname {pt}$ in which case the assertion follows from [Reference AcharAc, Lemma 6.7.3].

4.1.4. Localization theorem (compare [Reference Goresky, Kottwitz and MacPhersonGKM, Reference Anderson and FultonAF]). Let S be an algebraic torus acting on a separated scheme X of finite type over k.

(a) Recall that graded $\overline {\mathbb Q}_{\ell }$ -algebra $H^{\bullet }_S(\operatorname {pt})$ is canonically isomorphic with the symmetric algebra $\operatorname {Sym}^{\bullet }_{\overline {\mathbb Q}_{\ell }}(X^*(S)\otimes _{\mathbb Z}\overline {\mathbb Q}_{\ell }(-1)[-2])$ , where $X^*(S)$ denote the group of characters of S, while $[-2]$ indicates that the vector space $X^*(S)\otimes _{\mathbb Z}\overline {\mathbb Q}_{\ell }(-1)$ is placed in degree $2$ (see, for example, [Reference AcharAc, Theorem 6.7.7]).

We fix an isomorphism of $\overline {\mathbb Q}_{\ell }$ -vector spaces $\overline {\mathbb Q}_{\ell }(-1)\simeq \overline {\mathbb Q}_{\ell }$ ; thus, we can view $X^*(S)$ as a subset of $\operatorname {Sym}^{\bullet }_{\overline {\mathbb Q}_{\ell }}(X^*(S)\otimes _{\mathbb Z}\overline {\mathbb Q}_{\ell })\simeq \operatorname {Sym}^{\bullet }_{\overline {\mathbb Q}_{\ell }}(X^*(S)\otimes _{\mathbb Z}\overline {\mathbb Q}_{\ell }(-1))\simeq H^{\bullet }_S(\operatorname {pt})$ .

(b) By Section 4.1.2(b), both $H_{c,S}^{\bullet }(X,\mathcal {F})$ and $H_{S}^{\bullet }(X,\mathcal {F})$ are graded $H^{\bullet }_S(\operatorname {pt})$ -modules for every $\mathcal {F}\in D^b_c([X/S],\overline {\mathbb Q}_{\ell })$ . We claim that if $X^S=\emptyset $ , then there exists $\lambda \in X^*(S)\subseteq H^{\bullet }_S(\operatorname {pt})$ , which acts on each $H_{c,S}^{\bullet }(X,\mathcal {F})$ and $H_{S}^{\bullet }(X,\mathcal {F})$ as zero.

Indeed, by a particular case of the localization theorem (see, for example, [Reference Anderson and FultonAF, Chapter 7, Theorem 1.1]), there exists $\lambda \in X^*(S)$ such that the image of $\lambda $ under the pullback $(p_X)^*:H^{\bullet }_S(\operatorname {pt})\to H_S^{\bullet }(X)$ is zero, so the assertion follows by the observation of Section 4.1.2(d).

(c) The pullback $H^{\bullet }_{c,S}(X,\mathcal {F})\to H^{\bullet }_{c,S}(X^S,\mathcal {F}|_{X^S})$ induces an isomorphism of localizations

$$\begin{align*}(X^*(S))^{-1} H^{\bullet}_{c,S}(X,\mathcal{F})\overset {\thicksim}{\to} (X^*(S))^{-1} H^{\bullet}_{c,S}(X^S,\mathcal{F}|_{X^S}). \end{align*}$$

Indeed, by part (b), we have $(X^*(S))^{-1} H^{\bullet }_{c,S}(X\smallsetminus X^S,\mathcal {F})=0$ , so the assertion follows from the exact sequence of Section 4.1.3(a).

(d) If $H^{\bullet }_{c,S}(X,\mathcal {F})$ is a free (or, more generally, torsion free) $H^{\bullet }_S(\operatorname {pt})$ -module, then the restriction map $H^{\bullet }_{c,S}(X,\mathcal {F})\to H^{\bullet }_{c,S}(X^S,\mathcal {F}|_{X^S})$ is injective. Indeed, our assumption implies that the canonical map $H^{\bullet }_{c,S}(X,\mathcal {F})\to (X^*(S))^{-1} H^{\bullet }_{c,S}(X,\mathcal {F})$ is injective, so the assertion follows from part (c) and Section 4.1.3(b).

4.2 Criterion of injectivity

4.2.1. Borel–Moore homology. To every scheme X of finite type over k, one associates the Borel-Moore homology groups $H_{i,BM}(X):=H^i_c(X,\overline {\mathbb Q}_{\ell })^*$ . In particular, we have $H_{i,BM}(X)=H_i(X)$ if X is proper over k. Also for every closed subscheme $Z\subseteq X$ , we have a long exact sequence

$$\begin{align*}\to H_{i,BM}(Z)\to H_{i,BM}(X)\to H_{i,BM}(X\smallsetminus Z)\to H_{i-1,BM}(Z)\to. \end{align*}$$

Lemma 4.2.2. Let X be a closed subscheme of Y, and let $\iota :H_{i,BM}(X)\to H_{i,BM}(Y)$ be the natural map.

(a) The map $\iota $ is injective if there exists a closed subscheme $Z\subseteq X$ such that

$$\begin{align*}\operatorname{Ker}\left(H_{i,BM}(Z)\to H_{i,BM}(X)\right)=\operatorname{Ker}\left(H_{i,BM}(Z)\to H_{i,BM}(X)\to H_{i,BM}(Y)\right), \end{align*}$$

and the map $H_{i,BM}(X\smallsetminus Z)\to H_{i,BM}(Y\smallsetminus Z)$ is injective.

(b) The map $\iota $ is injective if there exists a closed subscheme $Z\subseteq Y$ containing $Y\smallsetminus X$ such that the natural map $H_{i,BM}(Z\cap X)\to H_{i,BM}(Z)$ is injective.

Proof. Both assertions follow from a straightforward diagram chase. Namely, assertion (a) follows from the commutative diagram

with an exact first row, while assertion (b) follows from the commutative diagram with exact rows

4.2.3. Acyclic morphisms. (a) We say that a scheme X of finite type over k is acyclic if the canonical morphism $\overline {\mathbb Q}_{\ell }\to R\Gamma (X,\overline {\mathbb Q}_{\ell })$ is an isomorphism.

(b) We say that a morphism $f:X\to Y$ between schemes of finite type over k is acyclic if it is smooth and all geometric fibers of f are acyclic.Footnote 1

(c) Note that if $f:X\to Y$ is acyclic, then for every connected component $Y'$ of Y, the restriction $f|_{Y'}:f^{-1}(Y')\to Y'$ is smooth of some relative dimension N, and we have $Rf_!(\overline {\mathbb Q}_{\ell })|_{Y'}\simeq \overline {\mathbb Q}_{\ell }[2N](N)$ (use, for example, [Reference Bezrukavnikov, Kazhdan and VarshavskyBKV, Lemma 1.1.3]).

The following result uses notation of Section 4.1.

Lemma 4.2.4. (a) Let S be a torus, let Y be an S-equivariant scheme of finite type over k, and let $X\subseteq Y$ be a closed S-invariant subscheme. Assume that

(i) the restriction map $H^{\bullet }_c(Y^S)\to H^{\bullet }_c(X^S)$ is surjective and

(ii) both $H^{\bullet }_{c,S}(X)$ and $H^{\bullet }_{c,S}(Y\smallsetminus X)$ are free graded $H^{\bullet }_S(\operatorname {pt})$ -modules.

Then $H^{\bullet }_{c,S}(Y)$ is a free graded $H^{\bullet }_S(\operatorname {pt})$ -module, and the restriction map $H^{\bullet }_c(Y)\to H^{\bullet }_c(X)$ is surjective.

(b) Assume that Y has a finite S-invariant filtration $\emptyset =Y_0\subseteq Y_1\subseteq \ldots \subseteq Y_n=Y$ by closed reduced subschemes such that for each $j=1,\ldots ,n-1$ ,

(i) the restriction map $H^{\bullet }_c(Y_j^S)\to H^{\bullet }_c(Y_{j-1}^S)$ is surjective and

(ii) there exists an S-equivariant acyclic morphism $\pi _j:Y_j\smallsetminus Y_{j-1}\to (Y_j\smallsetminus Y_{j-1})^S$ .

Then $H^{\bullet }_{c,S}(Y)$ is a free graded $H^{\bullet }_S(\operatorname {pt})$ -module.

Proof. (a) By Section 4.1.3(a), we have a commutative diagram

of graded $H^{\bullet }_S(\operatorname {pt})$ -modules with exact bottom row, where vertical arrows are induced by the inclusion $Y^S\hookrightarrow Y$ . By Section 4.1.3(b), we have canonical isomorphisms

$$\begin{align*}H^{\bullet}_{c,S}(Y^S)\cong H^{\bullet}_S(\operatorname{pt})\otimes_{\overline{\mathbb Q}_{\ell}} H^{\bullet}_c(Y^S)\text{ and } H^{\bullet}_{c,S}(X^S)\cong H^{\bullet}_S(\operatorname{pt})\otimes_{\overline{\mathbb Q}_{\ell}}H^{\bullet}_c(X^S) \end{align*}$$

of $H^{\bullet }_S(\operatorname {pt})$ -modules. Hence, by assumption (i), the map $H^{\bullet }_{c,S}(Y^S)\to H^{\bullet }_{c,S}(X^S)$ is surjective; therefore, the connecting homomorphism $\delta _2$ is zero.

By assumption (ii) and the localization theorem (see Section 4.1.4(d)), the right vertical map is injective; hence, the connecting homomorphism $\delta _1$ is zero as well. Thus, by Section 4.1.3(a), we get a short exact sequence

$$\begin{align*}0\to H^{\bullet}_{c,S}(Y\smallsetminus X)\to H^{\bullet}_{c,S}(Y)\to H^{\bullet}_{c,S}(X)\to 0 \end{align*}$$

of graded $H^{\bullet }_S(\operatorname {pt})$ -modules; hence, $H^{\bullet }_{c,S}(Y)$ is a free graded $H^{\bullet }_S(\operatorname {pt})$ -module by assumption (ii). In this case, we have canonical isomorphisms

$$\begin{align*}H^{\bullet}_c(Y)\cong \overline{\mathbb Q}_{\ell}\otimes_{H^{\bullet}_S(\operatorname{pt})} H^{\bullet}_{c,S}(Y)\text{ and }H^{\bullet}_c(X)\cong \overline{\mathbb Q}_{\ell}\otimes_{H^{\bullet}_S(\operatorname{pt})}H^{\bullet}_{c,S}(X) \end{align*}$$

of graded vector spaces (see Section 4.1.3(c)); therefore, surjectivity of the map $H^{\bullet }_{c}(Y)\to H^{\bullet }_{c}(X)$ follows from the surjectivity of $H^{\bullet }_{c,S}(Y)\to H^{\bullet }_{c,S}(X)$ .

(b) We are going to show the assertion by induction on n. Assume first that $n=1$ . Then $\pi :=\pi _1:Y\to Y^S$ is an S-equivariant acyclic morphism, so we conclude from Sections 4.1.3(b) and 4.2.3(c) that $H^{\bullet }_{c,S}(Y,\overline {\mathbb Q}_{\ell })\cong H^{\bullet }_{c,S}(Y^S,R\pi _!\overline {\mathbb Q}_{\ell })$ is a free graded $H^{\bullet }_S(\operatorname {pt})$ -module.

Now assume that $n>1$ , and set $X:=Y_{n-1}$ . By the induction hypothesis, both $H^{\bullet }_{c,S}(X)$ and $H^{\bullet }_{c,S}(Y\smallsetminus X)$ are free graded $H^{\bullet }_S(\operatorname {pt})$ -modules. Therefore, by assumption (i), all assumptions of part (a) are satisfied; thus, $H^{\bullet }_{c,S}(Y)$ is a free graded $H^{\bullet }_S(\operatorname {pt})$ -module.

Lemma 4.2.5. Let Y be an ind-scheme of ind-finite type over k equipped with an action of a torus S, let $p:Y\to Y^S$ be an S-equivariant acyclic morphism such that its restriction $p|_{Y^S}$ is the identity, and let $X\subseteq Y$ be a reduced locally closed ind-subscheme such that we have an inclusion of sets $p^{-1}(p(X))\subseteq X$ .

Then X is equal to the schematic preimage $p^{-1}(X^S)\subseteq Y$ . In particular, X is S-invariant, and p induces an S-equivariant acyclic morphism $p_X:X\to X^S$ such that $p_X|_{X^S}$ is the identity.

Proof. Notice that since the inclusion $p^{-1}(p(X))\supseteq X$ always holds, we have an equality of sets $p^{-1}(p(X))=X$ ; thus, the ind-subscheme $X\subseteq Y$ is S-invariant.

Next, we claim that we have an equality of sets $p(X)=X^S$ . Indeed, $p|_{Y^S}$ is the identity, we get $p(X^S)=X^S$ and $p(X)\subseteq p^{-1}(p(X))$ . Therefore, we have inclusions

$$\begin{align*}X^S=p(X^S)\subseteq p(X)\subseteq p^{-1}(p(X))\cap Y^S\subseteq X\cap Y^S=X^S. \end{align*}$$

By the proven above, we have an equality of sets $p^{-1}(X^S)=p^{-1}(p(X))=X$ , and from this, the assertion follows: Indeed, since X is reduced and S is a torus, we conclude that $X^S$ is reduced. Since p is smooth, the schematic preimage $p^{-1}(X^S)$ is reduced, so the equality of reduced ind-subschemes $p^{-1}(X^S)=X$ follows from the corresponding equality of the underlying sets.

Corollary 4.2.6. Let Z be an S-equivariant ind-scheme of ind-finite type over k, $\{Z_{\nu }\}_{\nu \in \Xi }$ an S-invariant stratification of Z, $Y\subseteq Z$ an S-invariant locally closed subscheme of finite type over k, and $X\subseteq Y$ an S-invariant closed subscheme.

Assume that for each $\nu \in \Xi $ ,

(a) the stratum $Z_{\nu }^S$ is an open and closed ind-subscheme of $Z^S$ ;

(b) the map $H_{i,BM}(X\cap Z_{\nu }^S)\to H_{i,BM}(Y\cap Z_{\nu }^S)$ is injective for all i;

(c) there exists an S-equivariant acyclic morphism $p_{\nu }:Y\cap Z_{\nu }\to Y\cap Z_{\nu }^S$ between reduced intersections such that $p_{\nu }|_{Y\cap Z_{\nu }^S}$ is the identity, and we have an inclusion of sets $p_{\nu }^{-1}(p_{\nu }(X\cap Z_{\nu }))\subseteq X$ .

Then the map $H_{i,BM}(X)\to H_{i,BM}(Y)$ is injective for all i.

Proof. We are going to apply the criterion of Lemma 4.2.4(a).

It follows from assumption (a) that $Y^S$ (resp. $X^S$ ) is a disjoint union of the $Y\cap Z_{\nu }^S$ ’s (resp. $X\cap Z_{\nu }^S$ ’s). This observation together with assumption (b) implies that the map $H_{i,BM}(X^S)\to H_{i,BM}(Y^S)$ is injective for all i, which by duality implies that the map $H^{\bullet }_c(Y^S)\to H^{\bullet }_c(X^S)$ is surjective.

It thus suffices to show that both $H^{\bullet }_{c,S}(X)$ and $H^{\bullet }_{c,S}(Y\smallsetminus X)$ are free graded $H^{\bullet }(S)$ -modules. Indeed, Lemma 4.2.4(a) then would imply that the restriction map $H^{\bullet }_c(Y)\to H^{\bullet }_c(X)$ is surjective, from which our assertion would follow by duality.

We are going to apply the criterion of Lemma 4.2.4(b):

By assumption (a), the disjoint union $Y^S=\coprod _{\nu }(Y\cap Z^S_{\nu })$ is of finite type; hence, the set $\Xi _0:=\{\nu \in \Xi \,|\,Y\cap Z_{\nu }^S\neq \emptyset \}$ is finite. However, by assumption (c), we have $\Xi _0=\{\nu \in \Xi \,|\,Y\cap Z_{\nu }\neq \emptyset \}$ . Define a standard partial order on $\Xi _0$ requiring that $\alpha \leq \beta $ if and only if $Z_{\alpha }\subseteq \overline {Z}_{\beta }$ . Denote the cardinality of $\Xi _0$ by n, and write $\Xi _0$ in the form $\Xi _0=\{\nu _1,\ldots ,\nu _n\}$ such that $\nu _j$ is a minimal element of the set $\{\nu _j,\ldots ,\nu _n\}$ for all $j=1,\ldots ,n$ .

For each $j=1,\ldots , n$ , we denote by $Y_j$ the reduced intersection $Y\cap (\bigcup _{t=1}^j Z_{\nu _t})$ . Then by construction, each $Y_j\subseteq Y$ is closed, $Y_n=Y$ , and $Y_j\smallsetminus Y_{j-1}=Y\cap Z_{\nu _j}$ . It suffices to show that the induced filtrations $X_j:=X\cap Y_j$ of X and $(Y\smallsetminus X)_j:=Y_j\cap (Y\smallsetminus X)$ of $Y\setminus X$ satisfy the assumptions of Lemma 4.2.4(b).

Since $Y^S$ is a disjoint union of the $(Y_j\smallsetminus Y_{j-1})^S$ ’s (by assumption (a)), assumption (i) of Lemma 4.2.4(b) follows. Next, since $Y_j\smallsetminus Y_{j-1}=Y\cap Z_{\nu _j}$ , we get $X_j\smallsetminus X_{j-1}=X\cap Z_{\nu _j}$ and $(Y\smallsetminus X)_j\smallsetminus (Y\smallsetminus X)_{j-1}=(Y\smallsetminus X)\cap Z_{\nu _j}$ . Hence, it remains to construct S-equivariant acyclic morphisms $X\cap Z_{\nu _j}\to X\cap Z^S_{\nu _j}$ and $(Y\smallsetminus X)\cap Z_{\nu _j}\to (Y\smallsetminus X)\cap Z^S_{\nu _j}$ . But both morphisms are induced from acyclic morphism $p_{\nu _j}:Y\cap Z_{\nu _j}\to Y\cap Z^S_{\nu _j}$ from assumption (c) using Lemma 4.2.5.

4.3 The proof

Now we are ready to prove our main result (Theorem 0.3).

Theorem 4.3.1. There exists $m\in \mathbb N$ (depending on $\gamma $ ) such that for all m-regular admissible tuples $\overline {w}_1,\ldots ,\overline {w}_n\in \widetilde {W}^{\mathcal {C}}$ , the natural map $H_i(\bigcup _{j=1}^n \operatorname {Fl}^{\leq \overline {w}_j}_{\gamma })\to H_i(\operatorname {Fl}_{\gamma })$ is injective for all $i\in \mathbb Z$ .

Proof. Set $Z':=\bigcup _{j=1}^n \operatorname {Fl}^{\leq \overline {w}_j}\subseteq \operatorname {Fl}$ . We want to show that if each $\overline {w}_j$ is sufficiently regular, then the natural map $H_i(Z^{\prime }_{\gamma })\to H_i(\operatorname {Fl}_{\gamma })$ is injective for all $i\in \mathbb Z$ . To make the proof more structural, we will divide it into steps.

Step 1. Let $\overline {x}_0\in \Lambda ^{\mathcal {C}}$ be an admissible tuple constructed in Lemma 2.3.9 and such that $\operatorname {Fl}^{\leq '\bar {x}_0}\subseteq \operatorname {Fl}^{\leq \overline {w}_1}$ , and let $\{\overline {x}_l\}_{l\geq 0}$ be a sequence of admissible tuples from Lemma 2.3.10. Moreover, it follows from Lemmas 2.3.9 and 2.3.10 that each $\overline {x}_l$ is sufficiently regular if $\overline {w}_1$ is sufficiently regular.

Notice that $\{\operatorname {Fl}^{\leq '\overline {x}_{l}}_{\gamma }\}_{l\geq 0}$ form an exhausting increasing union of closed subsets of $\operatorname {Fl}_{\gamma }$ ; hence, it is enough to show that for every $l>0$ , the map

$$\begin{align*}H_i(Z^{\prime}_{\gamma}\cup \operatorname{Fl}^{\leq'\overline{x}_{l-1}}_{\gamma})\to H_i(Z^{\prime}_{\gamma}\cup \operatorname{Fl}^{\leq'\overline{x}_{l}}_{\gamma}) \end{align*}$$

is injective for all l. Using inclusion

$$\begin{align*}(Z^{\prime}_{\gamma}\cup \operatorname{Fl}^{\leq'\overline{x}_{l}}_{\gamma})\smallsetminus (Z^{\prime}_{\gamma}\cup \operatorname{Fl}^{\leq'\overline{x}_{l-1}}_{\gamma})\subseteq \operatorname{Fl}^{\leq'\overline{x}_{l}}_{\gamma}, \end{align*}$$

we conclude from Lemma 4.2.2(b) that it suffices to show that the map

$$\begin{align*}H_i((Z^{\prime}_{\gamma}\cap \operatorname{Fl}^{\leq'\overline{x}_{l}}_{\gamma})\cup \operatorname{Fl}^{\leq'\overline{x}_{l-1}}_{\gamma})\to H_i(\operatorname{Fl}^{\leq'\overline{x}_l}_{\gamma}) \end{align*}$$

is injective. We set $\overline {x}:=\overline {x}_{l-1}$ . Then $\overline {x}_{l}=\overline {x}+\overline {e}_{\psi }$ for some $\psi \in \Psi $ , and we want to show that the map

$$\begin{align*}H_i((Z^{\prime}_{\gamma}\cap \operatorname{Fl}^{\leq'\overline{x}+\overline{e}_{\psi}}_{\gamma})\cup \operatorname{Fl}^{\leq'\overline{x}}_{\gamma})\to H_i(\operatorname{Fl}^{\leq'\overline{x}+\overline{e}_{\psi}}_{\gamma}) \end{align*}$$

is injective.

Step 2. If $\check {\psi }\notin (\Lambda _{\gamma })_{\mathbb Q}$ , then we have an equality $\operatorname {Fl}^{\leq '\overline {x}}_{\gamma }=\operatorname {Fl}^{\leq '\overline {x}+\overline {e}_{\psi }}_{\gamma }$ (by Lemma 3.2.10), so the assertion is tautological.

From now on, assume that $\check {\psi }\in (\Lambda _{\gamma })_{\mathbb Q}$ . Let $r\in \mathbb N$ be as in Proposition 3.2.2. Then, by Lemma 4.2.2(a), it is enough to show that the map

$$\begin{align*}H_{i,BM}([(Z^{\prime}_{\gamma}\cap \operatorname{Fl}^{\leq'\overline{x}+\overline{e}_{\psi}}_{\gamma})\cup \operatorname{Fl}^{\leq'\overline{x}}_{\gamma}]\smallsetminus \operatorname{Fl}^{\leq'\overline{x}-r\overline{e}_{\psi}}_{\gamma})\to H_{i,BM}(\operatorname{Fl}^{\leq'\overline{x}+\overline{e}_{\psi}}_{\gamma}\smallsetminus \operatorname{Fl}^{\leq'\overline{x}-r\overline{e}_{\psi}}_{\gamma}) \end{align*}$$

is injective.

Step 3. We are going to apply the criterion of Corollary 4.2.6 in the case $Z=\operatorname {Fl}$ , $S=T_{\psi }$ ,

$$\begin{align*}X= [(Z^{\prime}_{\gamma}\cap \operatorname{Fl}^{\leq'\bar{x}+\overline{e}_{\psi}}_{\gamma})\cup \operatorname{Fl}^{\leq'\overline{x}}_{\gamma}]\smallsetminus \operatorname{Fl}^{\leq'\overline{x}-r\overline{e}_{\psi}}_{\gamma}, \end{align*}$$

$Y=\operatorname {Fl}^{\leq '\overline {x}+\overline {e}_{\psi }}_{\gamma }\smallsetminus \operatorname {Fl}^{\leq '\overline {x}-r\overline {e}_{\psi }}_{\gamma }$ , and $\{Z_{\nu }\}_{\nu \in \widetilde {W}_{\psi }}$ is the stratification of $\operatorname {Fl}$ by $L(P^{\operatorname {sc}}_{\psi })$ -orbits, considered in Section 2.4.3.

Since X and Y are locally closed subschemes of Z of finite type over k, it remains to show that X and Y are S-invariant and properties (a)–(c) of Corollary 4.2.6 are satisfied. Property (a) was mentioned in Section 2.4.3(g).

Step 4. We claim that the reduced intersections $Y\cap Z_{\nu }$ and $X\cap Z_{\nu }$ are either empty or are of the form $\bigcup _{t=1}^m (\operatorname {Fl}_{\gamma }^{\leq \overline {u}_t}\cap Z_{\nu })$ , where each $\overline {u}_t$ is sufficiently regular, and $(\overline {u}_t)_{\psi }=\nu $ .

First, we claim that it follows from Corollary 2.3.3 that for every stratum $Z_{\nu }$ such that $Y\cap Z_{\nu }\neq \emptyset $ , we have

(4.2) $$ \begin{align} \overline{x}(\psi)-r<\langle\psi,\pi(\nu)\rangle\leq \overline{x}(\psi)+1. \end{align} $$

Indeed, our assumption implies that $\operatorname {pr}(Z_{\nu })\cap (\operatorname {Gr}^{\leq \overline {x}+\overline {e}_{\psi }}\smallsetminus \operatorname {Gr}^{\leq \overline {x}-r\overline {e}_{\psi }})\neq \emptyset $ . Then, using equality $\operatorname {pr}(Z_{\nu })=L(P^{\operatorname {sc}}_{\psi })(\pi (\nu ))\subseteq \operatorname {Gr}$ , we conclude from Corollary 2.3.3(c) that $\pi (\nu ) \text{ belongs to } \operatorname {Gr}^{\leq _{\psi }\overline {x}(\psi )+1}\smallsetminus \operatorname {Gr}^{\leq _{\psi }\overline {x}(\psi )-r}$ , from which inequalities (4.2) follow from Corollary 2.3.3(a),(b).

Similarly, we claim that we have equalities

(4.3) $$ \begin{align} Y\cap Z_{\nu}=(\operatorname{Fl}^{\leq'\overline{x}+\overline{e}_{\psi}}\cap \operatorname{Fl}^{\leq_{\psi}\nu}) \cap Z_{\nu,\gamma}, \text{ if } \overline{x}(\psi)-r<\langle\psi,\pi(\nu)\rangle\leq \overline{x}(\psi)+1; \end{align} $$
(4.4) $$ \begin{align} X\cap Z_{\nu}=(\operatorname{Fl}^{\leq'\overline{x}}\cap \operatorname{Fl}^{\leq_{\psi}\nu}) \cap Z_{\nu,\gamma},\text{ if } \overline{x}(\psi)-r<\langle\psi,\pi(\nu)\rangle\leq\overline{x}(\psi); \end{align} $$
(4.5) $$ \begin{align} X\cap Z_{\nu}=(Z'\cap \operatorname{Fl}^{\leq'\overline{x}+\overline{e}_{\psi}}\cap \operatorname{Fl}^{\leq_{\psi}\nu}) \cap Z_{\nu,\gamma}, \text{ if } \langle\psi,\pi(\nu)\rangle=\overline{x}(\psi)+1.\\[-24pt]\nonumber \end{align} $$

For this, we have to show that our assumption on $\nu $ in (4.3) (resp. (4.4), resp. (4.5)) implies that $Z_{\nu }\cap \operatorname {Fl}^{\leq '\overline {x}-r\overline {e}_{\psi }}=\emptyset $ (resp. $Z_{\nu }\cap \operatorname {Fl}^{\leq '\overline {x}+\overline {e}_{\psi }}=Z_{\nu }\cap \operatorname {Fl}^{\leq '\overline {x}}$ and $Z_{\nu }\cap \operatorname {Fl}^{\leq '\overline {x}-r\overline {e}_{\psi }}=\emptyset $ , resp. $Z_{\nu }\cap \operatorname {Fl}^{\leq '\overline {x}}=\emptyset $ ). But this follows from Corollary (a),(c).

Next, using inequalities (4.2), we deduce from a combination of Lemma 2.3.5(a),(b) and Corollary 2.1.7(f), that the reduced intersections $\operatorname {Fl}^{\leq '\overline {x}+\overline {e}_{\psi }}\cap \operatorname {Fl}^{\leq _{\psi }\nu }$ , $\operatorname {Fl}^{\leq '\overline {x}}\cap \operatorname {Fl}^{\leq _{\psi }\nu }$ and $Z'\cap \operatorname {Fl}^{\leq '\overline {x}+\overline {e}_{\psi }}\cap \operatorname {Fl}^{\leq _{\psi }\nu }$ decompose as finite unions $\bigcup _t \operatorname {Fl}^{\leq \overline {u}_t}$ , where each $\overline {u}_t$ is sufficiently regular. Therefore, using formulas (4.3)-(4.5) and Lemma 2.3.2(a), we see that the reduced intersections $X\cap Z_{\nu }$ and $Y\cap Z_{\nu }$ are of the form $\bigcup _t (\operatorname {Fl}_{\gamma }^{\leq \overline {u}_t}\cap Z_{\nu })$ , where each $\overline {u}_t$ is sufficiently regular, and $(\overline {u}_t)_{\psi }=\nu $ .

Step 5. Now we are going to show property (b) of Corollary 4.2.6. It is enough to show that the composition

(4.6) $$ \begin{align} H_{i,BM}(X\cap Z^{S}_{\nu})\to H_{i,BM}(Y\cap Z^{S}_{\nu})\to H_{i,BM}(Z^{S}_{\nu,\gamma}) \end{align} $$

is injective.

By a combination of Step 4 and Proposition 3.1.8(b), the reduced intersection $X\cap Z^{S}_{\nu }$ is of the form $\bigcup _t \operatorname {Fl}_{M^{\operatorname {sc}}_{\psi },\gamma }^{\leq \overline {u}^{\psi }_t}$ , and each $\overline {u}^{\psi }_t\in \widetilde {W}^{\psi }$ is sufficiently regular (by Lemma 1.3.10(d)).

By induction on the semisimple rank of G, we can assume that Theorem 4.3.1 holds for the Levi subgroup $M_{\psi }$ . Therefore, the map

$$\begin{align*}H_{i,BM}(\bigcup_t \operatorname{Fl}_{M^{\operatorname{sc}}_{\psi},\gamma}^{\leq\overline{u}^{\psi}_t})\to H_{i,BM}(\operatorname{Fl}_{M^{\operatorname{sc}}_{\psi},\gamma}) \end{align*}$$

is injective, from which the injectivity of (4.6) and hence property (b) of Corollary 4.2.6 follows.

Step 6. It remains to show X and Y are S-invariant and satisfy property (c) of Corollary 4.2.6. Recall that in Proposition 3.1.7, we constructed an S-equivariant retraction $p_{\nu ,\gamma }:Z_{\nu ,\gamma }\to Z_{\nu ,\gamma }^{S}$ , which is a composition of affine bundles; hence, it is acyclic.

By Lemma 4.2.5, it is enough to show that $p_{\nu ,\gamma }$ satisfies inclusions of sets

(4.7) $$ \begin{align} p_{\nu,\gamma}^{-1} (p_{\nu,\gamma}(Y\cap Z_{\nu}))\subseteq Y\cap Z_{\nu}\text{ and }p_{\nu,\gamma}^{-1}(p_{\nu,\gamma}(X\cap Z_{\nu}))\subseteq X\cap Z_{\nu}. \end{align} $$

By Step 4, it suffices to show that for every sufficiently regular admissible tuple $\overline {u}_t$ such that $(\overline {u}_t)_{\psi }=\nu $ , we have an inclusion of sets $p_{\nu ,\gamma }^{-1}(p_{\nu ,\gamma }(\operatorname {Fl}^{\leq \overline {u}_t}\cap Z_{\nu ,\gamma }))\subseteq \operatorname {Fl}^{\leq \overline {u}_t}$ . But this follows from Proposition 3.1.8(c).

Footnotes

This research was partially supported by the BFS grant 2020189. The research of R.B. was also partially supported by NSF grant DMS-1601953 and by grants from the Institute for Advanced Study and Carnegie Corporation of New York. The research of Y.V. was partially supported by the ISF grant 2091/21.

1 In [Reference Bezrukavnikov, Kazhdan and VarshavskyBKV, Section 1.1.2], such morphisms are called unipotent.

References

Achar, P., Perverse Sheaves and Applications to Representation Theory (Math. Surveys Monogr.) vol. 258 (American Mathematical Society, Providence, RI, 2021).CrossRefGoogle Scholar
Anderson, D. and Fulton, W., Equivariant Cohomology in Algebraic Geometry (Cambridge Stud. Adv. Math.) vol. 210 (Cambridge University Press, Cambridge, 2024).Google Scholar
Björner, A. and Brenti, F., Combinatorics of Coxeter Groups (Graduate Texts in Mathematics) vol. 231 (Springer, New York, 2005).Google Scholar
Beilinson, A. and Drinfeld, V., ‘Quantization of Hitchin’s integrable system and Hecke eigen-sheaves’, http://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf.Google Scholar
Behrend, K., ‘Semi-stability of reductive group schemes over curves’, Math. Ann. 301 (1995), 281305.CrossRefGoogle Scholar
Bernstein, J. and Lunts, V., Equivariant Sheaves and Functors (Lecture Notes in Mathematics) vol. 1578 (Springer-Verlag, Berlin, 1994).CrossRefGoogle Scholar
Bezrukavnikov, R., Kazhdan, D. and Varshavsky, Y., ‘A categorical approach to the stable center conjecture’, Astérisque 369 (2015), 2797.Google Scholar
Bourbaki, N., Lie Groups and Lie Algebras (Springer–Verlag, Berlin, 2002), chapters 46.CrossRefGoogle Scholar
Bezrukavnikov, R. and Varshavsky, Y., ‘Affine Springer fibers and depth zero L-packets’, Preprint, 2021, arXiv:2104.13123.Google Scholar
Faltings, G., ‘Algebraic loop groups and moduli spaces of bundles’, J. Eur. Math. Soc. 5 (2003), 4168.CrossRefGoogle Scholar
Goresky, M., Kottwitz, R. and MacPherson, R., ‘Equivariant cohomology, Koszul duality, and the localization theorem’, Invent. Math. 131(1) (1998), 2583.CrossRefGoogle Scholar
Ewald, G., Combinatorial Complexity and Algebraic Geometry (Graduate Texts in Mathematics) vol. 168 (Springer-Verlag, New York, 1996).CrossRefGoogle Scholar
Mirkovic, I. and Vilonen, K., ‘Geometric Langlands duality and representations of algebraic groups over commutative rings’, Ann. of Math. (2) 166(1) (2007), 95143.CrossRefGoogle Scholar
Steinberg, R., Endomorphisms of Linear Algebraic Groups (Mem. Amer. Math. Soc.) no. 80 (American Mathematical Society, Providence, RI, 1968).Google Scholar