Hostname: page-component-6bf8c574d5-gr6zb Total loading time: 0 Render date: 2025-02-15T08:47:02.399Z Has data issue: false hasContentIssue false

Higher Orbital Integrals, Cyclic Cocycles and Noncommutative Geometry

Published online by Cambridge University Press:  10 February 2025

Yanli Song*
Affiliation:
Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO, 63130, U.S.A.
Xiang Tang
Affiliation:
Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO, 63130, U.S.A.; E-mail: [email protected]
*
E-mail: [email protected] (corresponding author)

Abstract

Let G be a linear real reductive Lie group. Orbital integrals define traces on the group algebra of G. We introduce a construction of higher orbital integrals in the direction of higher cyclic cocycles on the Harish-Chandra Schwartz algebra of G. We analyze these higher orbital integrals via Fourier transform by expressing them as integrals on the tempered dual of G. We obtain explicit formulas for the pairing between the higher orbital integrals and the K-theory of the reduced group $C^{*}$-algebra, and we discuss their application to K-theory.

Type
Analysis
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

1 Introduction

Let G be a linear real reductive group and let f be a compactly supported smooth function on G. For $x\in G$ , let $Z_G(x)$ be the centralizer of G associated with x and $d_{G/Z_G(x)}\dot {g}$ be the left invariant measure on $G/Z_G(x)$ determined by a Haar measure $dg$ on G. The following integral

$$\begin{align*}\Lambda^{Z_G(x)}_f:=\int_{G/Z_G(x)} f(gxg^{-1})d_{G/Z_G(x)}\dot{g}\ \ \ \ \end{align*}$$

is an important tool in representation theory with deep connections to number theory. Harish-Chandra showed the above integrals extend to all f in the Harish-Chandra Schwartz algebra $\mathcal {C}(G)$ , and obtained his famous Plancherel formula [Reference Harish-Chandra9, Reference Harish-Chandra10, Reference Harish-Chandra13].

In this paper, we aim to study the noncommutative geometry of the above integral and its generalizations. Let H be a Cartan subgroup of G and K be a maximal compact subgroup of G. The Weyl group $W(H, G) = N_K(H)/Z_K(H)$ is defined as the quotient of the normalizer $N_K(H)$ by the centralizer $Z_K(H)$ . Let $H^{\operatorname {\mathrm {reg}}} \subset H$ be the subset of regular elements. In particular, for any $x \in H^{\operatorname {\mathrm {reg}}}$ , we have that $Z_G(x) = H$ . Following Harish-Chandra, we define the orbital integral associated to H to be

(1.1) $$ \begin{align} F^H: \mathcal{C}(G)\to C^\infty(H^{\mathrm{{reg}}})^{-W(H,G)},\ F^H_f(x):=\epsilon^H(x) \Delta^G_H(x)\int_{G/H} f(gxg^{-1})d_{G/H}\dot{g}, \end{align} $$

where $C^\infty (H^{\mathrm {{reg}}})^{-W(H,G)}$ is the space of anti-symmetric functions with respect to the Weyl group $W(H, G)$ action on H, $\epsilon ^H(h)$ is a sign function on H, and $\Delta ^G_H$ is the Weyl denominator for H. Our starting point is the property that for a given $x\in H^{\mathrm {{reg}}}$ , the linear functional on $\mathcal {C}(G)$ ,

$$\begin{align*}F^H(x): f\mapsto F_f^H(x), \end{align*}$$

is a trace on $\mathcal {C}(G)$ ; cf. [Reference Hochs and Wang17].

In cyclic cohomology, traces are special examples of cyclic cocycles on an algebra. In noncommutative geometry, there is a fundamental pairing between the periodic cyclic cohomology and the K-theory of an algebra. We say that a linear real reductive Lie group G is of equal rank if and only if the dimension of a Cartan subgroup of G equals the dimension of a Cartan subgroup of the maximal compact subgroup K of G. In this case, G has discrete series representations [Reference Knapp18, Theorem 12.20]. The pairing between the orbital integrals $F^H(x)$ and $K_0(\mathcal {C}(G))$ behaves differently between the cases when G is of equal rank and nonequal rank. More explicitly, we will show in this article that when G has equal rank, $F^H$ defines an isomorphism as abelian groups from the K-theory of $\mathcal {C}(G)$ to the representation ring of K. Nevertheless, when G has nonequal rank, $F^H$ vanishes on K-theory of $\mathcal {C}(G)$ completely (cf. [Reference Hochs and Wang17]). Furthermore, many numerical invariants for G-equivariant Dirac operators in the literature [Reference Barbasch and Moscovici1, Reference Connes and Moscovici8, Reference Hochs and Wang17, Reference Mathai and Zhang21, Reference Wang31] etc., vanish when G has nonequal rank. Our main goal in this article is to introduce generalizations of orbital integrals in the sense of higher cyclic cocycles on $\mathcal {C}(G)$ which will treat equal and nonequal rank groups in a uniform way and give new interesting numerical invariants for G-equivariant Dirac operators. We remark that orbital integrals and cyclic (co)homology of $\mathcal {C}(G)$ were well studied in the literature (e.g., [Reference Blanc and Brylinski3, Reference Nistor23, Reference Pflaum, Posthuma and Tang24, Reference Pflaum, Posthuma and Tang25, Reference Piazza and Posthuma26, Reference Wassermann34]). Our approach here differs from prior work in its emphasis on the construction of explicit cocycles. To understand the nonequal rank case better, we start with the example of the abelian group $G{=}\mathbb {R}$ , which turns out to be very instructive. Here, $\mathcal {C}(\mathbb {R})$ is the usual algebra of Schwartz functions on $\mathbb {R}$ with the convolution product, and it carries a nontrivial degree one cyclic cohomology. Indeed, we can define a cyclic cocycle $\varphi $ on $\mathcal {C}(\mathbb {R})$ as follows (cf. [Reference Pflaum, Posthuma and Tang24, Prop. 1.4]:

(1.2) $$ \begin{align} \varphi(f_0, f_1)=\int_{\mathbb{R}}s \cdot f_0(-s)f_1(s)\;ds. \end{align} $$

Under the Fourier transform, the convolution algebra $\mathcal {C}(\mathbb {R})$ is transformed into the Schwartz functions with pointwise multiplication. Accordingly, $\varphi $ can be rewritten as a cocycle $\hat {\varphi }$ on $\mathcal {C}(\widehat {\mathbb {R}})$ :

(1.3) $$ \begin{align} \hat{\varphi}(\hat{f}_0, \hat{f}_1)=\frac{1}{\sqrt{-1}}\int_{\widehat{\mathbb{R}}} \hat{f}_0d\hat{f}_1, \end{align} $$

where $\hat {f}_i \in \mathcal {C}(\hat {\mathbb {R}})$ are the Fourier transforms of $f_i$ . Equation (1.3) is more familiar. It follows from the Connes-Hochschild-Kostant-Rosenberg theorem ([Reference Connes7, Theorem 46]) that $\hat {\varphi }$ generates the degree one cyclic cohomology of $\mathcal {C}(\widehat {\mathbb {R}})$ , and accordingly $\varphi $ generates the degree one cyclic cohomology of $\mathcal {C}(\mathbb {R})$ .

It is crucial to have the identity function $s \colon \mathbb {R} \to \mathbb {R}$ in Equation (1.2) to have the integral of $\hat {f}_0d\hat {f}_1$ on $\mathcal {C}(\widehat {\mathbb {R}})$ . Our key discovery is a natural generalization of the function s on a general linear real reductive group G. Let $P=MAN$ be a cuspidal parabolic subgroup of G (sometimes we use $P = M_PA_PN_P$ to emphasize that the subgroups are associated to the parabolic subgroup P). By the Iwasawa decomposition $G=KMAN$ , we can write an element $g\in G$ as

$$\begin{align*}g = \kappa (g)\mu(g) e^{\widetilde{H}(g)}n \in KM A N = G. \end{align*}$$

Note that the above decomposition might not be unique, but the A-part is always unique. Let $\dim (A)=m$ . By fixing a basis for the Lie algebra $\mathfrak {a}$ , the map

$$\begin{align*}\widetilde{H} = \left(H_1, H_2, \dots, H_{m}\right) \end{align*}$$

provides us the right ingredient to generalize the cocycle $\varphi $ in Equation (1.2). We introduce a generalization $\Phi _{P,x}$ for orbital integrals in Definition 3.3. For $f_0, ..., f_m \in \mathcal {C}(G)$ and semi-simple element $x \in M$ , $\Phi _{P,x}$ is defined by the following integral:

$$\begin{align*}\begin{aligned} &\Phi_{P,x}(f_0, f_1, \dots, f_m) \\ :=&\int_{h \in M/Z_M(x)} \int_{K N} \int_{G^{\times m}} \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot H_{\tau(1)}(g_1...g_mk) H_{\tau(2)}(g_2...g_mk ) \dots H_{\tau(m)}(g_m, k) \\ & f_0 \big (kh x h^{-1}nk^{-1} (g_1\dots g_m)^{-1}\big)f_1(g_1) \dots f_m(g_m)dg_1\cdots dg_m dk dn dh, \end{aligned} \end{align*}$$

where $Z_M(x)$ is the centralizer of x in M. Though the function $\widetilde {H}$ is not a group cocycle on G, we show in Lemma 3.1 that it satisfies a kind of twisted group cocycle property, which leads us to the following theorem in Section 3.1.

Theorem I (Theorem 3.5)

Suppose that G is a linear real reductive Lie group. For any cuspidal parabolic subgroup $P= M A N$ and a semi-simple element $x \in M$ , the cochain $\Phi _{P,x}$ is a continuous cyclic cocycle of degree m on $\mathcal {C}(G)$ .

Modeling on the above example of $\mathbb {R}$ (e.g., Equation (1.3)), we analyze the higher orbital integral $\Phi _{P,x}$ by computing its Fourier transform. Using Harish-Chandra’s theory of orbital integrals and character formulas for parabolically induced representations, we introduce in Definition 4.14 a cyclic cocycle $\widehat {\Phi }_{x}$ defined as an integral on the tempered dual space $\widehat {G}_{\text {temp}}$ . In Theorem 4.15 and 4.18, we generalize Equation (1.3) to linear connected real reductive Lie groups.

As an application of our study, we compute the pairing between the K-theory of $\mathcal {C}(G)$ and $\Phi _{P, x}$ . Lafforgue showed in [Reference Lafforgue19] that Harish-Chandra’s Schwartz algebra $\mathcal {C}(G)$ is a subalgebra of $C^{*}_r(G)$ , stable under holomorphic functional calculus. Therefore, the K-theory of $\mathcal {C}(G)$ is isomorphic to the K-theory of the reduced group $C^{*}$ -algebra $C^{*}_r(G)$ . The structure of $C^{*}_r(G)$ is studied by [Reference Clare, Crisp and Higson4, Reference Wassermann33]. Under the assumption that G is connected, we have that [Reference Baum, Connes and Higson2, (4.11)],

$$\begin{align*}K_i\big(\mathcal{C}(G)\big) = 0, \quad \text{if} \quad i \neq \dim(G/K)\quad \mod 2. \end{align*}$$

That is, the K-theory group $K_*\big (\mathcal {C}(G)\big )$ is concentrated in one degree. Replacing G by $G \times \mathbb {R}$ if necessary, we can assume that $K_1\big (\mathcal {C}(G)\big )$ is trivial and all the information is contained in $K_0\big (\mathcal {C}(G)\big )$ .

In [Reference Clare, Higson and Song5, Reference Clare, Higson, Song and Tang6], we are able to explicitly identify a set of generators of the K-theory of $C^{*}_r(G)$ as a free abelian group; cf. Theorem C.3. With wave packets (Section 4.2), we construct generators $[Q_\lambda ] \in K(C^{*}_r(G))$ in Theorem C.3, where $Q_\lambda $ are matrices with entries taking values in $\mathcal {C}(G)$ . Applying Harish-Chandra’s theory of orbital integrals, we compute explicitly the index pairing (Section 2.3) between $[Q_\lambda ]$ and $\Phi _{P_\circ ,x}$ , where $P_\circ $ denotes the maximal cuspidal parabolic subgroup. This would be enough for us to distinguish elements in $ K_*\big (\mathcal {C}(G)\big )$ . In [Reference Hochs, Song and Tang16, Theorem 2.1], we show that the paring between $[Q_\lambda ]$ and $\Phi _{P,x}$ vanishes for $P \neq P_\circ $ or x does not lie in a compact subgroup of M.

Theorem II (Theorem 5.4)

Suppose that G is a linear connected real reductive Lie group and $P_\circ = M_\circ A_\circ N_\circ $ is the maximal cuspidal parabolic subgroup. The index pairing between periodic cyclic cohomology and K-theory

$$\begin{align*}HP^{\mathrm{{even}}}\big(\mathcal{C}(G)\big) \otimes K_0\big(\mathcal{C}(G)\big) \to \mathbb{C} \end{align*}$$

is given by the following formulas:

  • for the identity element $e \in G$ ,

    $$\begin{align*}\langle \Phi_{P_\circ, e}, [Q_\lambda] \rangle = \frac{1}{|W_{M_\circ \cap K}|} \cdot \sum_{w \in W_K} m\left(\sigma^{M_\circ}(w \cdot \lambda)\right), \end{align*}$$
    where $\sigma ^{M_\circ }(w \cdotp \lambda )$ is the discrete series representation of $M_\circ $ with Harish-Chandra parameter $w \cdot \lambda $ , and $m\left (\sigma ^{M_\circ }(w \cdot \lambda )\right )$ is its Plancherel measure;
  • for any $t \in T^{\text {reg}}$ ,

    $$\begin{align*}\langle \Phi_{P_\circ,t}, [Q_\lambda] \rangle = \frac{\sum_{w \in W_K} (-1)^w e^{w \cdot \lambda}(t)}{\Delta^{M_\circ}_T(t)}. \end{align*}$$

We refer the readers to Theorem 5.4 for the notations involved in the above formulas. For the case of equal rank, the first formula was obtained in [Reference Connes and Moscovici8], in which Connes-Moscovici used the $L^2$ -index on homogeneous spaces to detect the Plancherel measure of discrete series representations. It is interesting to point out (cf. Remark 3.6) that the higher orbital integrals $\Phi _{P_\circ , x}$ actually extend to a family of Banach subalgebras of $C^{*}_r(G)$ introduced by Lafforgue, [Reference Lafforgue19, Definition 4.1.1]. However, we have chosen to work with the Harish-Chandra Schwartz algebra $\mathcal {C}(G)$ , as our proofs rely crucially on Harish-Chandra’s theory of orbital integrals and character formulas.

Note that the higher orbital integrals $\Phi _{P, x}$ reduce to the classical ones when G is equal rank. Nevertheless, our main result, Theorem II for higher orbital integrals, is also new in the equal rank case. For example, as a corollary to Theorem II, in Corollary 5.5, we are able to detect the character information of limit of discrete series representations using the higher orbital integrals. This allows us to identify the contribution of limit of discrete series representations in the K-theory of $C^{*}_r(G)$ without using geometry of the homogeneous space $G/K$ (e.g., the Connes-Kasparov index map). As an application, our computation of the index pairing in Theorem II suggests a natural isomorphism $\mathcal {F}^T$ , Definition 5.7 and Corollary 5.8,

$$\begin{align*}\mathcal{F}^T \colon K(C^{*}_r(G))\to \text{Rep}(K). \end{align*}$$

In [Reference Clare, Higson and Song5, Reference Clare, Higson, Song and Tang6], we will prove that $\mathcal {F}^T$ is the inverse of the Connes-Kasparov index map,

$$\begin{align*}\operatorname{\mathrm{Ind}} \colon \text{Rep}(K)\to K(C^{*}_r(G)). \end{align*}$$

Given a Dirac operator D on $G/K$ , the Connes-Kasparov index map gives an element $\operatorname {\mathrm {Ind}}(D)$ in $K(C^{*}_r(G))$ . In this article, Theorem II and its corollaries, we study the representation theoretic information of the index pairing

$$\begin{align*}\langle[\Phi_{P,x}], [\operatorname{\mathrm{Ind}}(D)]\rangle. \end{align*}$$

As an application of this paper, in [Reference Hochs, Song and Tang16], we proved a topological formula for the above pairing for a G-invariant elliptic operator on a manifold X with proper cocompact G-action, generalizing the Connes-Moscovici $L^2$ -index theorem [Reference Connes and Moscovici8]. In [Reference Piazza, Posthuma, Song and Tang27], we extended our study to G-proper manifolds with boundary and established a generalized Atiyah-Patodi-Singer index theorem.

In this article, motivated by the applications in K-theory, we introduce $\Phi _{P,x}$ as a cyclic cocycle on $\mathcal {C}(G)$ . Actually, the construction of $\Phi _{P,x}$ can be generalized to construct a larger class of Hochschild cocycles for $\mathcal {C}(G)$ . Our construction is also closely related to the work in [Reference Nistor22]. In particular, the definition of $\Phi _{P,x}$ is compatible with the localization process introduced by Nistor [Reference Nistor22, Section 4.2]. It is an interesting question to extend the construction of $\Phi _{P,x}$ to a cyclic cocycle on $A\rtimes G$ considered in [Reference Nistor22]. Our preliminary study on examples also suggests that the construction of $\Phi _{P,x}$ in this paper generalizes to groups beyond linear connected real reductive Lie groups (e.g., real algebraic groups with the Iwasawa theory), covering of linear connected real reductive Lie groups and some p-adic groups like $SL(2, \mathbb {Q}_p)$ . A careful study of the analog of the Harish-Chandra Schwartz algebra is needed to generalize Theorem I and II to these groups. We plan to report our study in this direction in a separate publication soon.

The article is organized as follows. In Section 2, we review some basics about representation theory of linear real reductive Lie groups, Harish-Chandra’s Schwartz algebra and cyclic theory. We introduce the higher orbital integral $\Phi _{P, x}$ in Section 3 and prove Theorem I. The Fourier transform of the higher orbital integral is studied in Section 4 and provides a key tool in our proof of Theorem II. And in Section 5, we compute the pairing between the higher orbital integrals $\Phi _{P,x}$ and $K(C^{*}_r(G))$ , proving Theorem II and its corollaries. For the convenience of readers, we have included in Appendix B and C a review of background material about related topics in representation theory and $K(C^{*}_r(G))$ .

2 Preliminaries

In this article, we shall not attempt to strive for the utmost generality in the class of groups we shall consider. Instead, we shall aim for (relative) simplicity.

2.1 Linear real reductive Lie group and Cartan subgroups

Let $G \subseteq GL(n, \mathbb {R})$ be a self-adjoint group which is also the group of real points of a connected algebraic group defined over $\mathbb {R}$ (we will additionally assume that G is connected in Section 4 and 5.). For brevity, we shall simply say that G is a linear real reductive Lie group. In this case, the Cartan involution on the Lie algebra $\mathfrak {g}$ is given by $\theta (X) = - X^T$ , where $X^{T}$ denotes the transpose matrix of X.

Let $K = G \cap O(n)$ , which is a maximal compact subgroup of G. Let $\mathfrak {k}$ be the Lie algebra of K. We have a $\theta $ -stable Cartan decomposition $\mathfrak {g} = \mathfrak {k} \oplus \mathfrak {s}$ . Let H be a Cartan subgroup of G. Then, H has a $\theta $ -stable decomposition $H = T \times A$ , where $T = H \cap K$ is the compactly embedded part and $\exp \colon \mathfrak {a} \to A$ is a bijection. Here, the Lie algebra $\mathfrak {a}$ of A is an abelian subalgebra in $\mathfrak {s}$ . Any choice of a positive $\mathfrak {a}$ -root system defines a parabolic subalgebra $\mathfrak {p} = \mathfrak {m} + \mathfrak {a} + \mathfrak {n}$ in $\mathfrak {g}$ and thus defines a cuspidal parabolic subgroup $P = MAN$ in G. We say that P is the cuspidal parabolic subgroup associated to the Cartan subgroup H and vice versa.

Let $\mathfrak {h} = \mathfrak {t}\oplus \mathfrak {a}$ be an arbitrary $\theta $ -stable Cartan subalgebra of $\mathfrak {g}$ , where $\mathfrak {t} = \mathfrak {h} \cap \mathfrak {k}, \mathfrak {a} = \mathfrak {h} \cap \mathfrak {s}$ . Let $\mathcal {R}(\mathfrak {h}, \mathfrak {g})$ be the associated root system. If $\alpha \in \mathcal {R}(\mathfrak {h}, \mathfrak {g})$ is a real root (that is, $\alpha |_{\mathfrak {t}} \equiv 0$ ), then we can apply the Cayley transform to $\mathfrak {h}$ and obtain a new Cartan subalgebra $\mathfrak {h}' = \mathfrak {t}' \oplus \mathfrak {a}'$ such that $\dim (\mathfrak {t}')> \dim (\mathfrak {t})$ . Let P and $P'$ be the two cuspidal parabolic subgroups associated to $\mathfrak {h}$ and $\mathfrak {h}'$ , respectively. We say that $P'$ is more compact than P. In this way, we define a partial order on the set of all cuspidal parabolic subgroups of G.

Definition 2.1. We say that a Cartan subgroup H is maximally compact if $\dim T$ is maximal among all $\theta $ -stable Cartan subgroups. In other words, T is a Cartan subgroup of K. We denote by $H_\circ $ the maximally compact Cartan subgroup and $P_\circ = M_\circ A_\circ N_\circ $ its associated cuspidal parabolic subgroup. We call $P_\circ $ the maximal cuspidal parabolic subgroup.

2.2 Harish-Chandra’s Schwartz function

Following Harish-Chandra [Reference Harish-Chandra12, Lemma 2], we fix a real-valued nondegenerate bilinear symmetric form B on $\mathfrak {g}$ which is invariant under the adjoint action of G on $\mathfrak {g}$ and also the Cartan involution $\theta $ . Moreover, we can choose B such that $\langle , \rangle = -B(\cdot , \theta \cdot )$ defines a K-invariant inner product on $\mathfrak {s}$ . Thus, $\langle , \rangle $ induces a G-invariant Riemannian metric on $G/K$ . For $g \in G$ , we use $\|g\|$ to denote the Riemannian distance from $eK$ to $gK$ in $G/K$ . For every $n \geq 0, X, Y \in U(\mathfrak {g})$ , and $f \in C^{\infty }(G)$ , set

$$\begin{align*}\nu_{X, Y, n}(f) :=\sup _{g \in G}\Big\{(1+\|g\|))^{n} \Xi(g)^{-1} \big|L(X) R(Y) f(g)\big|\Big\}, \end{align*}$$

where L and R denote the left and right regular representations, respectively, and $\Xi $ is the Harish-Chandra’s $\Xi $ -function [Reference Harish-Chandra11].

Definition 2.2. The Harish-Chandra Schwartz space $\mathcal {C}(G)$ is the space of $f \in C^\infty (G)$ such that for all $n \geq 0$ and $X, Y \in U(\mathfrak {g})$ , $\nu _{X, Y, n}(f) < \infty $ .

The space $\mathcal {C}(G)$ is a Fréchet space in the semi- norms $\nu _{X, Y, n}$ . It is closed under convolution, which is a continuous operation on this space. Moreover, if G has equal rank (thus has discrete series representations), then all K-finite matrix coefficients of discrete series representations lie in $\mathcal {C}(G)$ . It is proved in [Reference Lafforgue19] that $\mathcal {C}(G)$ is a $*$ -subalgebra of the reduced group $C^{*}$ -algebra $C^{*}_r(G)$ that is closed under holomorphic functional calculus.

2.3 Cyclic cohomology

Definition 2.3. Let A be an algebra over $\mathbb {C}$ .Define the space of Hochschild cochains of degree k of A to be

$$\begin{align*}C^k(A) \colon = \mathrm{Hom}_{\mathbb{C}}\big(A^{\otimes(k+1)}, \mathbb{C}\big), \end{align*}$$

consisting of all bounded $k+1$ -linear functionals on A. Define the Hochschild codifferential $b \colon C^k(A) \to C^{k+1}(A)$ by the following formula:

$$\begin{align*}\begin{aligned} &b\Phi(a_0 \otimes \dots \otimes a_{k+1}) \\ =&\sum_{i=0}^k (-1)^i \Phi(a_0 \otimes \dots \otimes a_i a_{i+1} \otimes \dots \otimes a_{k+1}) + (-1)^{k+1} \Phi(a_{k+1}a_0 \otimes a_1 \otimes \dots \otimes a_{k}). \end{aligned} \end{align*}$$

The Hochschild cohomology of A is the cohomology of the complex $(C^{*}(A), b)$ .

Definition 2.4. We call a k-cochain $\Phi \in C^k(A)$ cyclic if for all $a_0, \dots , a_k \in A$ , it holds that

$$\begin{align*}\Phi(a_k, a_0, \dots, a_{k-1}) = (-1)^k \Phi(a_0, a_1, \dots, a_k). \end{align*}$$

The subspace $C^k_\lambda $ of cyclic cochains is closed under the Hochschild codifferential. The cyclic cohomology $HC^{*}(A)$ is defined by the cohomology of the subcomplex of cyclic cochains.

One can define a periodicity map $S: HC^{k}(A)\to HC^{k+2}(A)$ ; cf. [Reference Loday and Ronco20, Section 2.2.5]. And the periodic cyclic cohomology $HP^{*}(A)$ (for $*$ =even or odd) is defined to be the inductive limit of $HC^{2k}(A)$ (or $HC^{2k+1}(A)$ ). Let $R = (R_{i, j}), i, j = 1, \dots , m$ be an idempotent in $M_m(A)$ . The following formula

$$\begin{align*}\langle [\Phi], [R] \rangle \colon = \frac{1}{k!}\sum_{i_0,\cdots, i_{2k}=1}^m\Phi(R_{i_0i_1}, R_{i_1i_2}, ..., R_{i_{2k}i_0}) \end{align*}$$

defines a natural pairing between $[\Phi ]\in HP^{\text {even}}(A)$ and $K_0(A)$ ; that is,

$$\begin{align*}\langle \ \cdot \ , \ \cdot \ \rangle \colon HP ^{\text{even}}(A) \otimes K_0(A) \to \mathbb{C}. \end{align*}$$

3 Higher orbital integrals

In this section, we construct higher orbital integrals as cyclic cocycles on $\mathcal {C}(G)$ .

3.1 Higher cyclic cocycles

Let $P = MAN$ be a cuspidal parabolic subgroup and denote $m = \dim A$ . By the Iwasawa decomposition, we have that

$$\begin{align*}G = KMAN. \end{align*}$$

We define a map $\widetilde {H} \colon G \to \mathfrak {a}$ by the decomposition

$$\begin{align*}g = \kappa (g)\mu(g) e^{\widetilde{H}(g)}n \in KM A N = G. \end{align*}$$

By fixing a basis for the Lie algebra $\mathfrak {a}$ , we write $\widetilde {H} = \left (H_1, \dots , H_m\right )$ .

Lemma 3.1. For any $g_0, g_1 \in G$ , the function $H_i\left (g_1 \kappa (g_0)\right )$ does not depend on the choice of $\kappa (g_0)$ . Moreover, the following identity holds:

$$\begin{align*}H_i(g_0) + H_i\left(g_1 \kappa(g_0)\right) = H_i(g_1 g_0). \end{align*}$$

Proof. Using $G = KMAN$ , we write

$$\begin{align*}g_0 = k_0m_0a_0 n_0, \hspace{5mm} g_1 = k_1m_1a_1 n_1. \end{align*}$$

Recall that the group $MA$ normalizes N and M commutes with A. Thus, for any $k \in K \cap M$ , there exists $n^{\prime }_1 \in N$ such that

$$\begin{align*}H_i(g_1 k) = H_i(k_1m_1a_1 n_1 k) = H_i(k_1 m_1ka_1 n_1' ) = H_i(a_1) = H_i(g_1). \end{align*}$$

It follows that $H_i \left (g_1 \kappa (g_0)\right )$ is well defined. Next, by the definition of $H_i$ ,

$$\begin{align*}H_i(g_1g_0) = H_i(a_1 n_1 k_0 a_0) = H_i(a_1 n_1 k_0) + H_i(a_0). \end{align*}$$

The lemma follows from the following identities:

$$\begin{align*}H_i(g_1 \kappa(g_0)) = H_i(a_1 n_1 k_0), \hspace{5mm} H_i(g_0) = H_i(a_0). \end{align*}$$

Let $S_m$ be the permutation group of m elements. For any $\tau \in S_m$ , let $\text {sgn}(\tau ) = \pm 1$ depending on the parity of $\tau $ .

Definition 3.2. We define a function

$$\begin{align*}C \in C^\infty\big(K \times G^{\times m}\big) \end{align*}$$

by

$$\begin{align*}\begin{aligned} C(k, g_1, \dots, g_m)\colon =& \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot H_{\tau(1)}(g_1k) H_{\tau(2)}(g_2k ) \dots H_{\tau(m)}(g_m k)\\ =&\det \big(\widetilde{H}(g_1k), \dots, \widetilde{H}(g_mk) \big). \end{aligned} \end{align*}$$

Definition 3.3. For any $f_0, \dots , f_m \in \mathcal {C}(G)$ and semi-simple element $x \in M$ , we define a Hochschild cochain on $\mathcal {C}(G)$ by the following formula:

(3.1) $$ \begin{align} \begin{aligned} &\Phi_{P,x}(f_0, f_1, \dots, f_m)\colon =\int_{h \in M/Z_M(x)} \int_{K N} \int_{G^{\times m}} C(k, g_1g_2\dots g_m, \dots, g_{m-1}g_m, g_m) \\ & f_0 \big (kh x h^{-1}nk^{-1} (g_1\dots g_m)^{-1}\big)f_1(g_1) \dots f_m(g_m)dg_1\cdots dg_m dk dn dh, \end{aligned} \end{align} $$

where $Z_M(x)$ is the centralizer of x in M.

We prove in Theorem A.5 that the above integral (3.1) is convergent for all semi-simple elements $x \in M$ . A similar estimate leads us to the following property.

Proposition 3.4. For every semi-simple element $x\in M$ , the integral $\Phi _{P,x}$ defines a (continuous) Hochschild cochain on the Schwartz algebra $\mathcal {C}(G). $

For simplicity, we omit the respective measures $dg_1, \cdots , dg_m$ , $dk$ , $dn$ , $dh$ , in the integral (3.1) for $\Phi _{P,x}$ .

Theorem 3.5. Let $P=MAN$ be a cuspidal parabolic subgroup of G and $x \in M$ be a semi-simple element. The cochain $\Phi _{P,x}$ is a cyclic cocycle and defines an element

$$\begin{align*}[\Phi_{P,x}] \in HC^m (\mathcal{C}(G)). \end{align*}$$

Remark 3.6. We notice that our proofs in Sections 3.2 and 3.3 also work for the algebra $\mathcal {S}_{t}(G)$ (for sufficiently large t) introduced in Definition A.3. And we can conclude from Theorem A.5 that $\Phi _{P,x}$ defines a continuous cyclic cocycle on $\mathcal {S}_{t}(G)\supset \mathcal {C}(G)$ for a sufficiently large t for every $x \in M$ .

The proof of Theorem 3.5 occupies the rest of this section.

3.2 Cocycle condition

In this subsection, we prove that the cochain $\Phi _{P,x}$ introduced in Definition 3.3 is a Hochschild cocycle. We have the following expression for the codifferential of $\Phi _{P,x}$ :

(3.2) $$ \begin{align} \begin{aligned} &b\Phi_{P,x}(f_0, f_1, \dots, f_m, f_{m+1})\\ =&\sum_{i=0}^m (-1)^i \Phi_{P,x} \big(f_0, \dots, f_i \ast f_{i+1}, \dots, f_{m+1}\big) + (-1)^{m+1} \Phi_{P,x}\big(f_{m+1}\ast f_0, f_1, \dots, f_m \big). \end{aligned} \end{align} $$

Here, $f_i \ast f_{i+1}$ is the convolution product given by

$$\begin{align*}f_i \ast f_{i+1}(h) = \int_G f_i(g) f_{i+1}(g^{-1}h) dg. \end{align*}$$

Lemma 3.7. For $i = 0$ , the term on the right-hand side of (3.2) can be computed by the following integral:

$$\begin{align*}\begin{aligned} \Phi_{P,x} \big(f_0 \ast f_1, f_2 , \dots, f_{m+1}\big) &=\int_{M/Z_M(x)} \int_{K N} \int_{G^{\times (m+1)}} C(k, t_2t_3\dots t_{m+1}, \dots, t_mt_{m+1}, t_{m+1}) \\ &\quad f_0\big(kh x h^{-1}nk^{-1} (t_1\dots t_{m+1})^{-1}\big) f_1(t_1) f_2(t_2) \dots f_{m+1}(t_{m+1}). \end{aligned} \end{align*}$$

Proof. By definition,

$$\begin{align*}\begin{aligned} \Phi_{P,x} \big(f_0 \ast f_1, f_2 , \dots, f_{m+1}\big) &=\int_{M/Z_M(x)} \int_{K N} \int_G\int_{G^{\times m}} C(k, g_1g_2\dots g_m, \dots, g_{m-1}g_m, g_m) \\ &\quad f_0(g) f_1 \big (g^{-1} kh x h^{-1}nk^{-1} (g_1\dots g_m)^{-1}\big) f_2(g_1) \dots f_{m+1}(g_m). \end{aligned} \end{align*}$$

By changing variables,

$$\begin{align*}t_1 = g^{-1} kh x h^{-1}nk^{-1} (g_1\dots g_m)^{-1}, \hspace{5mm} t_j = g_{j-1}, \hspace{5mm} j = 2, \dots m+1, \end{align*}$$

we get

$$\begin{align*}g = kh x h^{-1}nk^{-1} (t_1\dots t_{m+1})^{-1}. \end{align*}$$

One can prove the lemma by replacing $g_i$ by $t_i$ .

Lemma 3.8. For $ 1\leq i \leq m$ , we have

(3.3)

where means that the term is omitted in the expression.

Proof. The left-hand side of the above equation,

(3.4) $$ \begin{align} \begin{aligned} &\Phi_{P,x} \big(f_0, \dots, f_i \ast f_{i+1}, \dots, f_{m+1}\big)\\ =&\int_{ M/Z_M(x)} \int_{K N} \int_G\int_{G^{\times m}} C(k, g_1g_2\dots g_m, \dots, g_{m-1}g_m, g_m) \\ &f_0 \big (khxh^{-1}nk^{-1} (g_1\dots g_m)^{-1}\big)f_1(g_1) \dots f_{i-1}(g_{i-1}) \\ &\big( f_i(g) f_{i+1} (g^{-1} g_i) \big) f_{i+2}(g_{i+1}) \dots f_{m+1}(g_m). \end{aligned} \end{align} $$

Let $t_j = g_j$ for $j = 1, \dots , i-1$ , and for $j = i+2, \dots , m+1$

$$\begin{align*}t_i = g, \hspace{5mm} t_{i+1} = g^{-1}g_i, \hspace{5mm} t_j = g_{j-1}. \end{align*}$$

Lemma 3.9. The last term in the right-hand side of (3.2) can be computed by the following integral:

$$\begin{align*}\begin{aligned} \Phi_{P,x} \big(f_{m+1} \ast f_0, f_1 , \dots, f_{m}\big)& =\int_{ M/Z_M(x)}\int_{K N} \int_{G^{\times (m+1)}} C(\kappa(t_{m+1}k), t_1t_2\dots t_m, \dots,t_{m-1}t_m, t_m) \\ &\quad f_0 \big (khxh^{-1}nk^{-1} (t_1\dots t_{m+1})^{-1}\big) f_1(t_1) \dots f_{m+1}(t_{m+1}). \end{aligned} \end{align*}$$

Proof. By definition,

(3.5) $$ \begin{align} \begin{aligned} \Phi_{P,x} \big(f_{m+1} \ast f_0, f_1 , \dots, f_{m}\big) &=\int_{ M/Z_M(x)}\int_{K N} \int_G\int_{G^{\times m}} C(k, g_1g_2\dots g_m, \dots, g_{m-1}g_m, g_m) \\ &\quad f_{m+1}(g) f_0 \big (g^{-1} k hxh^{-1}nk^{-1} (g_1\dots g_m)^{-1}\big) f_1(g_1) \dots f_{m}(g_m). \end{aligned} \end{align} $$

As before, we write

$$\begin{align*}t_j = g_{j}, \hspace{5mm} j = 1, \dots, m, \end{align*}$$

and $t_{m+1} = g$ . We can rewrite Equation (3.5) as

(3.6) $$ \begin{align} \begin{aligned} \Phi_{P,x} \big(f_{m+1} \ast f_0, f_1 , \dots, f_m\big) &=\int_{ M/Z_M(x)}\int_{K N} \int_{G^{\times (m+1)}} C(k, t_1t_2\dots t_m, \dots, t_{m-1}t_m, t_m) \\ &\quad f_0 \big (t_{m+1}^{-1} khxh^{-1}nk^{-1} (t_1\dots t_m)^{-1}\big) f_1(t_1) \dots f_{m+1}(t_{m+1}). \end{aligned} \end{align} $$

For all $t_{m+1} \in G$ and $k \in K$ , we decompose

$$\begin{align*}t_{m+1}^{-1} k = k_1 \mu_1 a_1 n_1 \in KMAN. \end{align*}$$

It follows that $k = t_{m+1} k_1 \mu _1 a_1n_1$ and $k = \kappa (t_{m+1} k_1)$ . We see

$$\begin{align*}\begin{aligned} &\Phi_{P,x} \big(f_{m+1} \ast f_0, f_1 , \dots, f_{m}\big) =\int_{ M/Z_M(x)}\int_{K N} \int_{G^{\times (m+1)}} C(k, t_1t_2\dots t_m, \dots, t_{m-1}t_m, t_m) \\ &f_0 \big ( k_1 \mu_1 a_1 n_1 hxh^{-1}nn_1^{-1}a_1^{-1}\mu_1^{-1} k_1^{-1} t_{m+1}^{-1} (t_1\dots t_m)^{-1}\big) f_1(t_1) \dots f_{m+1}(t_{m+1}). \end{aligned} \end{align*}$$

Since $\mu _1 a_1 \in MA$ normalizes the nilpotent group N, we can find $\tilde {n}_1, n^{\prime }_1 \in N$ such that

$$\begin{align*}\begin{aligned} &f_0 \big ( k_1 \mu_1 a_1 n_1 hxh^{-1}nn_1^{-1}a_1^{-1}\mu_1^{-1} k_1^{-1} t_{m+1}^{-1} (t_1\dots t_m)^{-1}\big)\\ &\quad =f_0 \big ( k_1 \mu_1 hx(\mu_1h)^{-1} \tilde{n}_1 n{n'}_1^{-1}k_1^{-1} (t_1\dots t_{m+1})^{-1}\big). \end{aligned} \end{align*}$$

Renaming $\tilde {n}_1 n{n'}_1^{-1}$ by n, we conclude that

$$\begin{align*}\begin{aligned} \Phi_{P,x} \big(f_{m+1} \ast f_0, f_1 , \dots, f_{m}\big)=&\int_{ M/Z_M(x)}\int_{K N} \int_{G^{\times (m+1)}} C(\kappa(t_{m+1} k_1), t_1t_2\dots t_m, \dots, t_{m-1}t_m, t_m) \\ &f_0 \big ( k_1 hxh^{-1}n k_1^{-1} (t_1\dots t_{m+1})^{-1}\big) \cdot f_1(t_1) \dots f_{m+1}(t_{m+1}).\\ \end{aligned} \end{align*}$$

This completes the proof.

Combining Lemmas 3.7, 3.8 and 3.9, we have reached the following equation:

(3.7) $$ \begin{align} \begin{aligned} & b\Phi_{P,x}(f_0, f_1, \dots, f_m, f_{m+1})\\ &\quad = \int_{ M/Z_M(x)} \int_{K N} \int_{G^{\times (m+1)}} \tilde{C}(k, t_1, \dots t_{m+1}) \cdot f_0 \big ( k_1 hxh^{-1}n k_1^{-1} (t_1\dots t_{m+1})^{-1}\big) \\ &\qquad \cdot f_1(t_1) \dots f_{m+1}(t_{m+1}), \end{aligned} \end{align} $$

where $\tilde {C} \in C^\infty \big (K \times G^{\times m}\big )$ is given by

Lemma 3.10. We have that

$$\begin{align*}b\Phi_{P,x}(f_0, f_1, \dots, f_m, f_{m+1}) = 0. \end{align*}$$

Proof. We will show that

$$\begin{align*}\tilde{C}(k, t_1, \dots, t_{m+1}) = 0. \end{align*}$$

To begin with, we notice the following expression:

$$\begin{align*}\begin{aligned} &C\big(\kappa(t_{m+1} k), t_1t_2\dots t_m, \dots, t_{m-1}t_m, t_m\big)\\ =&\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot H_{\tau(1)}\big(t_1\dots t_m \kappa(t_{m+1} k)\big) H_{\tau(2)}\big(t_2\dots t_m \kappa(t_{m+1} k) \big) \dots H_{\tau(m)}\big(t_m \kappa(t_{m+1} k) \big). \end{aligned} \end{align*}$$

By Lemma 3.1, we have

$$\begin{align*}H_{\tau(i)}\big(t_i\dots t_m \kappa(t_{m+1} k) \big) = H_{\tau(i)}\big(t_i\dots t_{m+1} k \big) - H_{\tau(i)}(t_{m+1} k). \end{align*}$$

It follows that

$$\begin{align*}\begin{aligned} &C\big(\kappa(t_{m+1} k), t_1t_2\dots t_m, \dots, t_{m-1}t_m, t_m\big)\\ =&\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot \Big(H_{\tau(1)}(t_1\dots t_{m+1} k) -H_{\tau(1)}(t_{m+1} k) \Big) \\ &\cdot \Big( H_{\tau(2)}(t_2\dots t_{m+1} k) - H_{\tau(2)}(t_{m+1} k) \Big)\dots \Big( H_{\tau(m)}(t_m t_{m+1} k) - H_{\tau(m)}(t_{m+1} k) \Big). \\ \end{aligned} \end{align*}$$

As the above sum is invariant with respect to the permutation group $S_m$ , the terms containing more than one factor $H_{\tau (i)}(t_{m+1}k)$ vanish. Thus,

$$\begin{align*}\begin{aligned} &C\big(\kappa(t_{m+1} k), t_1t_2\dots t_m, \dots, t_{m-1}t_m, t_m\big)\\ &\quad =\sum_{i=1}^m\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot H_{\tau(1)}(t_1\dots t_{m+1} k) \dots \Big( - H_{\tau(i)}(t_{m+1} k) \Big) \dots H_{\tau(m)}(t_m t_{m+1} k) \\ &\qquad + \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot H_{\tau(1)}(t_1\dots t_{m+1} k)\dots H_{\tau(m)}(t_m t_{m+1} k). \\ \end{aligned} \end{align*}$$

In the above expression, by changing the permutations

$$\begin{align*}\big(\tau(1), \dots, \tau(m)\big ) \mapsto \big(\tau(1), \dots , \tau(i-1), \tau(m), \tau(i), \dots ,\tau(m-1) \big), \end{align*}$$

we get

$$\begin{align*}\begin{aligned} &\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot H_{\tau(1)}(t_1\dots t_{m+1} k) \dots H_{\tau(i-1)}(t_{i-1} \dots t_{m+1} k) \\ & \Big( - H_{\tau(i)}(t_{m+1} k) \Big) H_{\tau(i+1)}(t_{i+1} \dots t_{m+1} k) \dots H_{\tau(m)}(t_m t_{m+1} k)\\ =\, & (-1)^{n- i}\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot H_{\tau(1)}(t_1\dots t_{m+1} k) \dots H_{\tau(i-1)}(t_{i-1}\dots t_m k) \\ & H_{\tau(m)}(t_{m+1} k) H_{\tau(i)}(t_{i+1} \dots t_{m+1} k) \dots H_{\tau(m-1)}(t_m t_{m+1} k). \end{aligned} \end{align*}$$

Putting all the above together, we have

and

We conclude from Lemmas 3.73.10 that $\Phi _{P,x}$ is a Hochschild cocycle. We will prove that $\Phi _{P,x}$ is cyclic in the next subsection.

3.3 Cyclic condition

In this subsection, we prove that the cocycle $\Phi _{P,x}$ is cyclic. Recall

(3.8) $$ \begin{align} \begin{aligned} \Phi_{P,x}(f_1, \dots, f_m, f_0) = & \int_{ M/Z_M(x)}\int_{K N} \int_{G^{\times m}} C(k, g_1g_2\dots g_m, \dots, g_{m-1}g_m, g_m) \\ &f_1 \big (khxh^{-1}nk^{-1} (g_1\dots g_m)^{-1}\big)f_2(g_1) \dots f_m(g_{m-1}) f_0(g_m). \end{aligned} \end{align} $$

By changing the variables,

$$\begin{align*}t_1 =khxh^{-1}nk^{-1} (g_1\dots g_m)^{-1}, \end{align*}$$

and $t_j = g_{j-1}$ for $j = 2, \dots , m$ . We have

$$\begin{align*}g_m = (t_1 \dots t_m)^{-1} khxh^{-1}nk^{-1}, \end{align*}$$

and

$$\begin{align*}g_i \dots g_m = (t_1 \dots t_i)^{-1} khxh^{-1}nk^{-1}. \end{align*}$$

It follows that

$$\begin{align*}\begin{aligned} &\Phi_{P,x}(f_1, \dots, f_m, f_0)= \int_{ M/Z_M(x)}\int_{K N} \int_{G^{\times m}}\\ & C\big(k, t_1^{-1} khxh^{-1}nk^{-1}, \dots, (t_1 \dots t_{m-1})^{-1} khxh^{-1}nk^{-1}, (t_1 \dots t_m)^{-1} khxh^{-1}nk^{-1} \big)\\ & f_0\big((t_1 \dots t_m)^{-1} khxh^{-1}nk^{-1}\big) f_1(t_1) f_2(t_2) \dots f_m(t_{m})\\ =& \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot \int_{ M/Z_M(x)} \int_{K N} \int_{G^{\times m}} H_{\tau(1)}( t_1^{-1} khxh^{-1}n) \dots H_{\tau(m)}((t_1 \dots t_m)^{-1} khxh^{-1}n)\\ &f_0\big((t_1 \dots t_m)^{-1} khxh^{-1}nk^{-1}\big) f_1(t_1) f_2(t_2) \dots f_m(t_{m}).\\ \end{aligned} \end{align*}$$

We write

$$\begin{align*}(t_1 \dots t_m)^{-1} k = k_1 \mu_1 a_1 n_1 \in KMAN. \end{align*}$$

Then,

(3.9) $$ \begin{align} k = (t_1 \dots t_m) k_1 \mu_1 a_1 n_1, \end{align} $$

and

$$\begin{align*}\begin{aligned} f_0\big((t_1 \dots t_m)^{-1} khxh^{-1}nk^{-1}\big) &= f_0\big(k_1 \mu_1 a_1 n_1hxh^{-1} n n_1^{-1}a_1^{-1}\mu_1^{-1}k_1^{-1}(t_1 \dots t_m)^{-1} \big)\\ &= f_0\big(k_1h' x h^{\prime -1}n' k_1^{-1}(t_1 \dots t_m)^{-1} \big). \end{aligned} \end{align*}$$

Thus, we rewrite the right-hand side of (3.8)

(3.10) $$ \begin{align} \begin{aligned} \Phi_{P,x}(f_1, \dots, f_m, f_0)=& \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot \int_{M/Z_M(x)} \int_{K N} \int_{G^{\times m}} H_{\tau(1)}( t_1^{-1} k) \dots H_{\tau(m)}((t_1 \dots t_m)^{-1} k)\\ &f_0\big( k_1hxh^{-1}nk_1^{-1}(t_1 \dots t_m)^{-1}\big) f_1(t_1) f_2(t_2) \dots f_m(t_{m}). \end{aligned} \end{align} $$

By Lemma 3.1 and (3.9), we have, for $1\leq i \leq m-1$ ,

(3.11) $$ \begin{align} \begin{aligned} H_{\tau(i)}\big( (t_1\dots t_i)^{-1} k\big)&=-H_{\tau(i)}\big( t_1\dots t_i \kappa((t_1\dots t_i)^{-1} k)\big)\\ &=-H_{\tau(i)}\big( t_1\dots t_i \kappa(t_{i+1} \dots t_m k_1)\big)\\ &= H_{\tau(i)}\big( t_{i+1} \dots t_m k_1 \big) - H_{\tau(i)}\big( t_1 \dots t_m k_1)\big), \end{aligned} \end{align} $$

and

(3.12) $$ \begin{align} \begin{aligned} H_{\tau(m)}\big( (t_1\dots t_m)^{-1} k\big)=&-H_{\tau(m)}\big( t_1\dots t_m \kappa((t_1\dots t_m)^{-1} k)\big)\\ =&-H_{\tau(m)}\big( t_1\dots t_m k_1\big). \end{aligned} \end{align} $$

Putting (3.10), (3.11) and (3.12) together, we see that

$$\begin{align*}\begin{aligned} &\Phi_{P,x}(f_1, \dots, f_m, f_0)\\ =& \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot\int_{ M/Z_M(m)} \int_{K N} \int_{G^{\times m}} \prod_{i=1}^{m-1} \Big( H_{\tau(i)}\big( t_{i+1} \dots t_m k_1 \big) - H_{\tau(i)}\big( t_1 \dots t_m k_1)\big) \Big)\\ &\big(-H_{\tau(m)}( t_1\dots t_m k_1)\big)\cdot f_0\big( k_1hxh^{-1}nk_1^{-1}(t_1 \dots t_m)^{-1}\big) f_1(t_1) f_2(t_2) \dots f_m(t_{m}).\\ \end{aligned} \end{align*}$$

By symmetry, one can check that

(3.13) $$ \begin{align} \begin{aligned} &\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot \prod_{i=1}^{m-1} \Big( H_{\tau(i)}\big( t_{i+1} \dots t_m k_1 \big) - H_{\tau(i)}\big( t_1 \dots t_m k_1)\big) \Big) \cdot H_{\tau(m)}( t_1\dots t_m k_1)\\ &\quad =\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot \prod_{i=1}^{m-1} H_{\tau(i)}\big( t_{i+1} \dots t_m k_1 \big) \cdot H_{\tau(m)}( t_1\dots t_m k_1). \end{aligned} \end{align} $$

In the above expression, by changing the permutation

$$\begin{align*}\big(\tau(1), \dots, \tau(m)\big ) \mapsto \big(\tau(2), \dots ,\tau(m), \tau(1) \big) , \end{align*}$$

we can simplify Equation (3.13) to the following one:

$$\begin{align*}\begin{aligned} &\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot \prod_{i=1}^{m-1} \Big( H_{\tau(i)}\big( t_{i+1} \dots t_m k_1 \big) - H_{\tau(i)}\big( t_1 \dots t_m k_1)\big) \Big) \cdot H_{\tau(m)}( t_1\dots t_m k_1)\\ &\quad =(-1)^{m-1} \cdot \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot \prod_{i=1}^{m} H_{\tau(i)}\big( t_{i} \dots t_m k_1 \big). \end{aligned} \end{align*}$$

Finally, we have obtained the following identity:

$$\begin{align*}\begin{aligned} \Phi_{P,x}(f_1, \dots, f_m, f_0)&=(-1)^m\cdot \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\cdot \int_{ M/Z_M(x)}\int_{K N} \int_{G^{\times m}} \prod_{i=1}^m H_{\tau(i)}\big( t_{i} \dots t_m k \big) \\ &\quad \cdot f_0\big( khxh^{-1}nk^{-1}(t_1 \dots t_m)^{-1}\big) f_1(t_1) f_2(t_2) \dots f_m(t_{m})\\ &=(-1)^m \cdot \Phi_{P,x}(f_0, \dots, f_m). \end{aligned} \end{align*}$$

Hence, we conclude that $\Phi _{P,x}$ is a cyclic cocycle, and we have completed the proof of Theorem 3.5.

4 The Fourier transform of $\Phi _{P_\circ ,x}$

In this section, we study the Fourier transform of the cyclic cocycle $\Phi _{P,x}$ introduced in Section 3. From now on, we additionally assume that G is connected following Knapp’s book [Reference Knapp18]. For the reader’s convenience, we start with recalling the basic material on parabolic induction and the Plancherel formula in Section 4.1 and 4.2.

4.1 Parabolic induction

A brief introduction to discrete series representations can be found in Appendix B. In this section, we review the construction of parabolic induction. Let H be a $\theta $ -stable Cartan subgroup of G with Lie algebra $\mathfrak {h}$ . Let $P= M_P A_P N_P$ be a cuspidal parabolic subgroup associated to H as in subsection 2.1.

Definition 4.1. Let $\eta $ be a unitary representation of $M_P$ and $\varphi $ a unitary representation of $A_P$ . The product $\sigma \otimes \varphi $ defines a unitary representation of $L_P=M_PA_P$ . A basic representation of G is a representation by extending $\sigma \otimes \varphi $ to P trivially across $N_P$ then inducing to G:

$$\begin{align*}\pi_{\eta, \varphi} = \operatorname{\mathrm{Ind}}_P^G(\eta \otimes \varphi). \end{align*}$$

If $\eta = \sigma $ is a discrete series representation, then $\operatorname {\mathrm {Ind}}_P^G(\sigma \otimes \varphi )$ will be called a basic representation induced from the discrete series representation of $M_P$ and unitary representation of $A_P$ . This construction is known as parabolic induction.

The character of $\pi _{\sigma , \varphi }$ is given in Theorem B.5, Equation (B.3) and Corollary B.6. Note that basic representations might not be irreducible. Knapp and Zuckerman completed the classification of tempered representations by showing which basic representations are irreducible and proved that every tempered representation of G is basic and every basic representation is tempered.

Now consider a single cuspidal parabolic subgroup $P \subseteq G$ with $L_P = M_PA_P$ , and form the group

$$\begin{align*}W(A_P, G) = N_K(\mathfrak{a}_P)/Z_K(\mathfrak{a}_P), \end{align*}$$

where $N_K(\mathfrak {a}_P)$ and $Z_K(\mathfrak {a}_P)$ are the normalizer and centralizer of $\mathfrak {a}_P$ in K, respectively. The group $W(A_P, G)$ acts as an outer automorphism of $M_P$ , and hence on the set of equivalence classes of representations of $M_P$ . For any discrete series representation $\sigma $ of $M_P$ , we define

$$\begin{align*}W_\sigma = \big\{ w \in N_K(\mathfrak{a}_P)\colon \operatorname{\mathrm{Ad}}_w^{*} \sigma \cong \sigma \big\} / Z_K(\mathfrak{a}_P). \end{align*}$$

Then, the above Weyl group acts on the family of induced representations

$$\begin{align*}\big\{\operatorname{\mathrm{Ind}}_P^G(\sigma \otimes \varphi)\big\}_{\varphi \in \widehat{A}_P}. \end{align*}$$

Definition 4.2. Let $P_1$ and $P_2$ be two cuspidal parabolic subgroups of G with $L_{P_i} = M_{P_i} A_{P_i}$ . Let $\sigma _1$ and $\sigma _2$ be two discrete series representations of $M_{P_i}$ . We say that

(4.1) $$ \begin{align} (P_1, \sigma_1) \sim (P_2, \sigma_2) \end{align} $$

if there exists an element w in G that conjugates $L_{P_1}$ of $P_1$ to $L_{P_2}$ of $P_2$ , and conjugates $\sigma _1$ to a representation unitarily equivalent to $\sigma _2$ . In this case, there is a unitary G-equivariant isomorphism

$$\begin{align*}\operatorname{\mathrm{Ind}}_{P_1}^G(\sigma_1 \otimes \varphi) \cong \operatorname{\mathrm{Ind}}_{P_2}^G(\sigma_2 \otimes (\operatorname{\mathrm{Ad}}_w^{*}\varphi)) \end{align*}$$

as Hilbert $C_0(\widehat {A}_{P_j})$ -modules that covers the isomorphism

$$\begin{align*}\operatorname{\mathrm{Ad}}_w^{*} \colon C_0(\widehat{A}_{P_1}) \to C_0(\widehat{A}_{P_2}). \end{align*}$$

We denote by $[P,\sigma ]$ the equivalence class of (4.1), and $\mathcal {P}(G)$ the set of all equivalence classes.

Finally, we recall the functoriality of parabolic induction.

Lemma 4.3. If $S = M_S A_S N_S$ is any cuspidal parabolic subgroup of L, then the unipotent radical of $SN_P$ is $N_SN_P$ , and the product

$$\begin{align*}Q = M_Q A_Q N_Q = M_S (A_sa:P) (N_SN_P) \end{align*}$$

is a cuspidal parabolic subgroup of G.

Proof. See [Reference Vogan29, Lemma 4.1.1].

Theorem 4.4 (Induction in stages)

Let $\eta $ be a unitary representation (not necessarily a discrete series representation) of $M_S$ . We decompose

$$\begin{align*}\varphi= (\varphi_1, \varphi_2) \in \widehat{A}_{S} \times \widehat{A}_P. \end{align*}$$

There is a canonical equivalence

$$\begin{align*}\operatorname{\mathrm{Ind}}_{P}^G\big(\operatorname{\mathrm{Ind}}^{M_P}_{S}(\eta \otimes \varphi_1) \otimes \varphi_2 \big)\cong \operatorname{\mathrm{Ind}}_{Q}^G\big(\eta \otimes (\varphi_1, \varphi_2)\big). \end{align*}$$

Proof. See [Reference Knapp18, p. 170].

4.2 Wave packets

Let $\widehat {G}_{\mathrm {temp}}$ be the set of equivalence classes of irreducible unitary tempered representations of G. For a Schwartz function f on G, its Fourier transform $\widehat {f}$ is defined by

$$\begin{align*}\widehat{f}(\pi) = \int_G f(g) \pi(g) dg, \hspace{5mm} \pi \in \widehat{G}_{\mathrm{temp}}. \end{align*}$$

Thus, the Fourier transform assigns to f a family of operators on different Hilbert spaces (tempered representations of G) indexed by $\pi $ .

The group $A_P$ , which consists entirely of positive definite matrices, is isomorphic to its Lie algebra via the exponential map. So $A_P$ carries the structure of a vector space, and we can speak of its space of Schwartz functions in the ordinary sense of harmonic analysis. The same goes for the unitary (Pontryagin) dual $\widehat {A}_P$ . By a tempered measure on $A_P$ , we mean a smooth measure for which integration extends to a continuous linear functional on the Schwartz space. Recall Harish-Chandra’s Plancherel formula for G [Reference Harish-Chandra13].

Theorem 4.5. There is a unique smooth, tempered, $W_\sigma $ -invariant function $m_{P, \sigma }$ on the spaces $\widehat {A}_P$ such that

$$\begin{align*}\|f\|_{L^{2}(G)}^{2}=\sum_{[P, \sigma] \in \mathcal{P}(G)} \int_{\widehat{A}_{P}}\left\|\widehat{f}(\pi_{\sigma, \varphi})\right\|_{HS}^{2} m_{P, \sigma}(\varphi) d\varphi \end{align*}$$

for every Schwartz function $f \in \mathcal {C}(G)$ . We call $m_{P, \sigma }(\varphi )$ the Plancherel density of the representation $\operatorname {\mathrm {Ind}}_P^G(\sigma \otimes \varphi )$ .

As $\varphi \in \widehat {A}_P$ varies, the induced G-representations

$$\begin{align*}\pi_{\sigma, \varphi} = \operatorname{\mathrm{Ind}}_P^G(\sigma \otimes \varphi) \end{align*}$$

can be identified with one another as representations of K. Denote by $\operatorname {\mathrm {Ind}}_P^G (\sigma )$ this common Hilbert space, and $\mathcal {L}(\operatorname {\mathrm {Ind}}_P^G( \sigma ))$ the space of K-finite Hilbert-Schmidt operators on $\operatorname {\mathrm {Ind}}_P^G( \sigma )$ . We shall discuss the adjoint to the Fourier transform.

Definition 4.6. Let h be a Schwartz-class function from $\widehat {A}_P$ into operators on $\operatorname {\mathrm {Ind}}_P^G (\sigma )$ that is invariant under the $W_\sigma $ -action. That is,

$$\begin{align*}h \in \big[\mathcal{C}(\widehat{A}_P) \otimes \mathcal{L}^2(\operatorname{\mathrm{Ind}}_P^G (\sigma)) \big]^{W_\sigma}. \end{align*}$$

The wave packet associated to h is the scalar function defined by the following formula:

$$\begin{align*}\check{h}(g) = \int_{\widehat{A}_P} \mathrm{Trace} \big(\pi_{\sigma, \varphi}(g^{-1}) \cdot h(\varphi) \big) \cdot m_{P, \sigma}(\varphi) d\varphi. \end{align*}$$

A fundamental theorem of Harish-Chandra asserts that wave packets are Schwartz functions on G.

Theorem 4.7. The wave packets associated to the Schwartz-class functions from $\widehat {A}_P$ into $\mathcal {L}(\operatorname {\mathrm {Ind}}_P^G (\sigma ))$ all belong to the Harish-Chandra Schwartz space $\mathcal {C}(G)$ . Moreover, the wave packet operator $h \to \check {h}$ is adjoint to the Fourier transform.

Proof. See [Reference Wallach30, Theorems 12.7.1 and 13.4.1] and [Reference Clare, Crisp and Higson4, Corollary 9.8].

4.3 Derivatives of Fourier transform

Let $P = MAN$ be a cuspidal parabolic subgroup. Here, P does not have to be maximal. Thus, we can decompose $A_P = A_\circ \times A_S$ (see Lemma 4.3). Suppose that $\pi = \operatorname {\mathrm {Ind}}_P^G(\eta ^{M} \otimes \varphi )$ , where $\eta ^{M}$ is an irreducible tempered representation (does not have to be a discrete series representation) of M with character denoted by $\Theta ^M(\eta ^M)$ and

$$\begin{align*}\varphi \in \widehat{A}_P = \widehat{A}_\circ \times \widehat{A}_S. \end{align*}$$

We denote $r = \dim (\widehat {A}_S)$ and $m = \dim (\widehat {A}_\circ )$ . As a vector space, let

$$\begin{align*}x_1, \dots, x_{\dim A_\circ}, x_{\dim A_\circ +1 }, \dots, x_{\dim A_P} \end{align*}$$

be the coordinates for $\widehat {A}_P$ . For $i = 0, \dots , m$ , let $h_i \in \mathcal {C}(\widehat {A}_P)$ , and $v_i, w_i$ be unit K-finite vectors in $\operatorname {\mathrm {Ind}}_P^G(\eta ^M)$ . We denote by $\frac {\partial h_i}{\partial j}$ the partial derivative of $h_i$ with respect to $x_j$ , $j = 1, \dots , m$ .

Definition 4.8. Suppose that $f_i\in \mathcal {C}(G)$ are wave packets associated to

$$\begin{align*}h_i \cdot v_{i} \otimes w_i^{*} \in \mathcal{C}\big(\widehat{A}_P, \mathcal{L}(\operatorname{\mathrm{Ind}}_P^G(\eta^M)\big). \end{align*}$$

We define an $(m+1)$ -linear map $T_\pi $ with an image in $\mathcal {C}(\widehat {A}_P)$ by

(4.2) $$ \begin{align} \begin{aligned} &T_\pi(\widehat{f}_0, \dots, \widehat{f}_m) \\ =& \begin{cases} \sum_{\tau \in S_m}\mathrm{sgn}(\tau) \cdot h_0(\varphi) \cdot \prod_{i=1}^m \frac{\partial h_i(\varphi)}{\partial_{\tau(i)}} & \text{if } \ v_i = w_{i+1}, i = 0, \dots, m-1, \ \text{and} \ v_m = w_0;\\ 0 & \text{otherwise}. \\ \end{cases} \end{aligned} \end{align} $$

Next we want to generalize the above definition to the Fourier transforms of all $f \in \mathcal {C}(G)$ . The induced space $\pi = \operatorname {\mathrm {Ind}}_P^G(\eta ^M \otimes \varphi )$ has a dense subspace:

(4.3) $$ \begin{align} \big\{s \colon K \to V^{\eta^M} \ \mathrm{continuous} \big| s(km) = \eta^M(m)^{-1}s(k) \ \mathrm{for} \ k \in K, m \in K \cap M \big\}, \end{align} $$

where $V^{\eta ^M}$ is the Hilbert space of M-representation $\eta ^M$ . The group G action on $\pi $ is given by the formula

(4.4) $$ \begin{align} \left( \pi\left(g\right) s \right)(k) = e^{-\langle \log \varphi + \rho, H(g^{-1}k)\rangle } \cdot \eta^M(\mu(g^{-1}k))^{-1} \cdot s(\kappa(g^{-1}k)), \end{align} $$

where $\rho $ denotes the half sum of positive roots. By Equation (4.4), the Fourier transform

$$\begin{align*}\begin{aligned} \left( \pi(f) s \right)(k) &= \left(\widehat{f}(\pi)s \right)(k) \\ &= \int_G(e^{-\langle \log \varphi + \rho, H(g^{-1}k)\rangle } \cdot \eta^M(\mu(g^{-1}k))^{-1} f(g) \cdot s(\kappa(g^{-1}k)) dg. \end{aligned} \end{align*}$$

Suppose now that $f_0, \dots , f_m $ are arbitrary Schwartz functions on G and $\widehat {f}_0,\dots , \widehat {f}_m$ are their Fourier transforms.

Definition 4.9. For any $1 \leq i \leq n$ , we define a bounded operator $\frac {\partial \widehat {f}}{\partial _i}$ from $\pi = \operatorname {\mathrm {Ind}}_P^G(\eta ^M \otimes \varphi )$ to itself by the following formula:

(4.5) $$ \begin{align} \left(\left(\frac{\partial\widehat{f}(\pi)}{\partial_i}\right)s \right)(k): = \int_G H_i(g^{-1}k) \cdot (e^{-\langle \log \varphi + \rho, H(g^{-1}k)\rangle } \cdot \eta^M(\mu(g^{-1}k))^{-1} \cdot f(g) \cdot s(\kappa(g^{-1}k)). \end{align} $$

We define an $(m+1)$ -linear map

$$\begin{align*}T_\pi\colon \underbrace{\mathcal{C}(G) \times \dots \times \mathcal{C}(G)}_{m+1} \to \mathbb{C} \end{align*}$$

by

$$\begin{align*}T_{\pi}(\widehat{f}_0, \dots, \widehat{f}_m) :=\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \cdot \mathrm{Trace} \Big( \widehat{f}_0(\pi) \cdot \prod_{i=1}^m \frac{\partial \widehat{f}_i(\pi)}{\partial_{\tau(i)}} \Big). \end{align*}$$

The above definition generalizes (4.2).

Proposition 4.10. For any $\pi = \operatorname {\mathrm {Ind}}_P^G(\eta ^M \otimes \varphi )$ , we have the following identity:

(4.6) $$ \begin{align} \begin{aligned} T_{\pi}(\widehat{f}_0, \dots, \widehat{f}_m) &=(-1)^m\sum_{\tau \in S_m}\mathrm{sgn}(\tau)\int_{KMAN}\int_{G^{\times m} } H_{\tau(1)}\big(g_1 \dots g_m k\big)\dots H_{\tau(m)}\big(g_mk\big)\\ & e^{\langle \log \varphi + \rho, \log a\rangle } \cdot \Theta^M(\eta^M)(m) \cdot f_0(kmank^{-1} (g_1 g_2 \dots g_m)^{-1}) f_1(g_1) \dots f_m(g_m). \end{aligned} \end{align} $$

Proof. By definition, for any $\tau \in S_m$ ,

$$\begin{align*}\begin{aligned} &\Big( \widehat{f}_0(\pi) \cdot \prod_{i=1}^m \frac{\partial \widehat{f}_i(\pi)}{\partial_{\tau(i)}} \Big)s(k)\\ =& \int_{G^{\times {(k+1)}} } H_{\tau(1)}(g_1^{-1}\kappa(g_0^{-1}k)) H_{\tau(2)}\big(g_2^{-1}\kappa((g_0g_1)^{-1}k)\big)\\ & H_{\tau(m)}\big(g_m^{-1}\kappa((g_0g_1\dots g_{m-1})^{-1}k)\big)\cdot e^{-\langle \log \varphi+\rho, H((g_0g_1\dots g_m)^{-1}k) \rangle } \\ &\eta^M(\mu((g_0g_1\dots g_m)^{-1}k))^{-1} \cdot f_0(g_0) f_1(g_1) \dots f_m(g_m) s\big(\kappa((g_0g_1\dots g_m)^{-1}k)\big). \end{aligned} \end{align*}$$

By setting $g = (g_0g_1\dots g_m)^{-1}k$ , we have

$$\begin{align*}g_0= kg^{-1} (g_1 g_2 \dots g_m)^{-1}, \end{align*}$$

and

$$\begin{align*}(g_0 g_1 \dots g_j)^{-1} k = g_{j+1} g_{j+2} \dots g_m g. \end{align*}$$

Recall that recall $MA$ normalizes N and M centralizes A. We denote

$$\begin{align*}g^{-1} = \mu ank^{\prime -1} \in MA NK = G. \end{align*}$$

Thus,

(4.7) $$ \begin{align} \begin{aligned} &\left( \widehat{f}_0(\pi) \cdot \prod_{i=1}^m \frac{\partial \widehat{f}_i(\pi)}{\partial_{\tau(i)}} \right)s(k)\\ =&\int_{KMAN} \int_{G^{\times k} } H_{\tau(1)}\left(g_1^{-1}\kappa(g_1 \dots g_m k)\right) \dots H_{\tau(m)}\left(g_m^{-1}\kappa(g_mk)\right)\\ & e^{\langle \log \varphi+\rho, \log a\rangle} \cdot \eta^M(\mu) \cdot f_0\left(k\mu ank^{\prime -1} \left(g_1 g_2 \dots g_m\right)^{-1}\right) f_1(g_1) \dots f_m(g_m) s(k'). \end{aligned} \end{align} $$

By Lemma 3.1,

$$\begin{align*}H_{\tau(i)}\big(g_i^{-1}\kappa(g_i \dots g_m k)\big) = H_{\tau(i)}\big(g_{i+1} \dots g_m k\big) - H_{\tau(i)}\big(g_{i} \dots g_m k\big). \end{align*}$$

Thus,

(4.8) $$ \begin{align} \begin{aligned} &\sum_{\tau \in S_m}\mathrm{sgn}(\tau) H_{\tau(1)}\big(g_1^{-1}\kappa(g_1 \dots g_m k)\big) H_{\tau(2)}\big(g_2^{-1}\kappa((g_2g_3\dots g_mk)\big)\dots H_{\tau(m)}\big(g_m^{-1}\kappa(g_mk)\big)\\ =&\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \big(H_{\tau(1)}(g_2 \dots g_m k) - H_{\tau(1)}(g_1g_2 \dots g_m k)\big)\big(H_{\tau(2)}(g_3 \dots g_m k) - H_{\tau(2)}(g_2 \dots g_m k)\big) \\ & \dots \big(H_{\tau(m-1)}(g_m k) - H_{\tau(m-1)}(g_{m-1}g_m k)\big) \big(- H_{\tau(m)}(g_mk) \big).\\ \end{aligned} \end{align} $$

By induction on m, we can prove that the right-hand side of Equation (4.8) equals

$$\begin{align*}(-1)^m \sum_{\tau \in S_m}\mathrm{sgn}(\tau) H_{\tau(1)}\big(g_1 \dots g_m k\big) H_{\tau(2)}\big(g_2g_3\dots g_mk\big)\cdot H_{\tau(m)}\big(g_mk\big). \end{align*}$$

By (4.7) and (4.8), we conclude that

$$\begin{align*}\begin{aligned} &\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \Big( \widehat{f}_0(\pi) \cdot \prod_{i=1}^m \frac{\partial \widehat{f}_i(\pi)}{\partial_{\tau(i)}} \Big)s(k)\\ &\quad =(-1)^m \sum_{\tau \in S_m}\mathrm{sgn}(\tau) \int_{KMAN} \int_{G^{\times k} }H_{\tau(1)}\big(g_1 \dots g_m k\big) H_{\tau(2)}\big(g_2g_3\dots g_mk\big)\cdot H_{\tau(m)}\big(g_mk\big)\\ &\qquad e^{\langle \log \varphi+\rho, \log a \rangle} \cdot \eta^M(\mu) \cdot f_0\big(k\mu ank^{\prime -1} (g_1 g_2 \dots g_m)^{-1}\big) f_1(g_1) \dots f_m(g_m) s(k'). \end{aligned} \end{align*}$$

Expressing it as a kernel operator, we have

$$\begin{align*}\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \cdot \Big( \widehat{f}_0(\pi) \cdot \prod_{i=1}^m \frac{\partial \widehat{f}_i(\pi)}{\partial_{\tau(i)}} \Big)s(k) = \int_{K} L(k, k') s(k') dk', \end{align*}$$

where

$$\begin{align*}\begin{aligned} L(k, k') &= (-1)^m \sum_{\tau \in S_m}\mathrm{sgn}(\tau)\int_{MAN}\int_{G^{\times k} } H_{\tau(1)}\big(g_1 \dots g_m k\big) H_{\tau(2)}\big(g_2g_3\dots g_mk\big)\cdot H_{\tau(m)}\big(g_mk\big)\\ &\quad e^{\langle \log \varphi+\rho, \log a \rangle} \cdot \eta^M(\mu) \cdot f_0(k\mu ank^{\prime -1} (g_1 g_2 \dots g_m)^{-1}) f_1(g_1) \dots f_m(g_m). \end{aligned} \end{align*}$$

The proposition follows from the fact that $T_{\pi } = \int _K L(k, k) dk$ .

Suppose that $P_1= M_1 A_1 N_1$ and $P_2 = M_2 A_2 N_2$ are two cuspidal parabolic subgroups such that $P_1$ is more noncompact than $P_2$ . Moreover, we assume that the induced representation $\operatorname {\mathrm {Ind}}_{P_1}^G\big (\sigma _1 \otimes \varphi _1\big )$ is reducible and decomposes into

$$\begin{align*}\operatorname{\mathrm{Ind}}_{P_1}^G\big(\sigma_1 \otimes \varphi_1\big) = \bigoplus_k \operatorname{\mathrm{Ind}}_{P_2}^G\big(\delta_k \otimes \varphi_2\big), \end{align*}$$

where $\sigma _1$ is a discrete series representation of $M_1$ and $\delta _k$ are different limit of discrete series representations of $M_2$ . We decompose

$$\begin{align*}\widehat{A}_2 = \widehat{A}_\circ \times \widehat{A}_S, \quad \widehat{A}_1 = \widehat{A}_2 \times \widehat{A}_{12} = \widehat{A}_\circ \times \widehat{A}_S \times \widehat{A}_{12}. \end{align*}$$

Let $h_i \in \mathcal {C}(\widehat {A}_1 )$ , and $v_i, w_i$ be unit K-finite vectors in $\operatorname {\mathrm {Ind}}_{P_1}^G(\sigma _1)$ for $i = 0, \dots , m$ . We put

$$\begin{align*}\widehat{f}_i = h_i \cdot v_{i} \otimes w_i^{*} \in \mathcal{C}\big(\widehat{A}_1, \mathcal{L}(\operatorname{\mathrm{Ind}}_{P_1}^G(\sigma_1)\big). \end{align*}$$

The following lemma follows from Definition 4.9.

Lemma 4.11. Suppose that $\pi = \operatorname {\mathrm {Ind}}_{P_2}^G\big (\delta _k \otimes \varphi _2\big )$ . If

$$\begin{align*}v_i = w_{i+1}, \quad i= 0, \dots, m-1, \end{align*}$$

and $v_m = w_0$ , then

$$\begin{align*}T_\pi(\widehat{f}_0 , \dots, \widehat{f}_m) = \sum_{\tau \in S_m}\mathrm{sgn}(\tau) \cdot h_0\big((\varphi_2, 0)\big) \cdot \prod_{i=1}^m \frac{\partial h_i\big((\varphi_2, 0)\big)}{\partial_{\tau(i)}}. \end{align*}$$

Otherwise, $T_\pi (\widehat {f}_0 , \dots , \widehat {f}_m) = 0$ .

4.4 Cocycles on $\widehat {G}_{\mathrm {temp}}$

Let $P_\circ = M_\circ A_\circ N_\circ $ be a maximal cuspidal parabolic subgroup (cf. Definition 2.1) and T be the maximal torus of K. In particular, the Lie algebra $\mathfrak {t}$ of T gives a Cartan subalgebra of $\mathfrak {m}_\circ $ and $T \subseteq M_\circ $ .

Definition 4.12. For an irreducible tempered representation $\pi $ of G, we define

$$\begin{align*}\mathcal{A}(\pi) = \left\{\eta^{M_\circ}\otimes \varphi \in (\widehat{M_\circ A_\circ})_{\mathrm{temp}} \Big| \operatorname{\mathrm{Ind}}^G_{P_\circ}(\eta^{M_\circ}\otimes \varphi) = \pi\right\}. \end{align*}$$

Definition 4.13. Let $m(\eta ^{M_\circ })$ be the Plancherel density for the irreducible tempered representations $\eta ^{M_\circ }$ of $M_\circ $ . We put

$$\begin{align*}\mu\big(\pi \big) = \sum_{\eta^{M_\circ}\otimes \varphi \in \mathcal{A}(\pi)} m(\eta^{M_\circ}). \end{align*}$$

Recall the Plancherel formula

(4.9) $$ \begin{align} f(e) =\int_{\pi \in \widehat{G}_{\mathrm{temp}}} \mathrm{Trace}\big(\widehat{f}(\pi) \big)\cdot m(\pi)d\pi, \end{align} $$

where $m(\pi )$ is the Plancherel density for the G-representation $\pi $ .

Definition 4.14. We define $\widehat {\Phi }_{e}$ by the following formula:

$$\begin{align*}\widehat{\Phi}_{e}(\widehat{f}_0 , \dots, \widehat{f}_m) = \int_{\pi \in \widehat{G}_{\mathrm{temp}}} T_{\pi}(\widehat{f}_0, \dots, \widehat{f}_m) \cdot \mu(\pi) \cdot d\pi. \end{align*}$$

Theorem 4.15. For any $f_0, \dots , f_m \in \mathcal {C}(G)$ ,

$$\begin{align*}\Phi_{P_\circ,e}(f_0, \dots, f_m) =(-1)^m\widehat{\Phi}_{e}(\widehat{f}_0, \dots, \widehat{f}_m). \end{align*}$$

The proof of Theorem 4.15 is presented in Section 4.5.

Example 4.16. Suppose that $G = \mathbb {R}^m$ . Let

$$\begin{align*}x^i = (x^i_1, \dots x^i_{m}) \in \mathbb{R}^m \end{align*}$$

be the coordinates of $\mathbb {R}^{m}$ . On $\mathcal {C}(\mathbb {R}^m)$ , the cocycle $\Phi _{P_\circ ,e}$ is given as follows:

$$\begin{align*}\begin{aligned} &\Phi_{P_\circ,e}(f_0, \dots, f_{m})\\ =& \sum_{\tau \in S_{m}} \mathrm{sgn}(\tau) \int_{x^1 \in \mathbb{R}^{m}} \dots \int_{x^{m}\in \mathbb{R}^{m}} x^1_{\tau(1)} \dots x^{m}_{\tau(m)}f_0\big(-(x^1 +\dots+ x^{m}) \big)f_1(x^1) \dots f_{m}(x^{m}). \end{aligned} \end{align*}$$

However, the cocycle $\widehat {\Phi }_e$ on $\mathcal {C}(\widehat {\mathbb {R}}^m)$ is given as follows:

$$\begin{align*}\widehat{\Phi}_e(\widehat{f}_0, \dots, \widehat{f}_{m}) =(-\sqrt{-1})^m \int_{\mathbb{R}^{m}} \widehat{f}_0 d \widehat{f}_1 \dots d\widehat{f}_{m}. \end{align*}$$

To see they are equal, we can compute

To introduce the cocycle $\widehat {\Phi }_t$ for any $t \in T^{\text {reg}}$ , we first recall the formula (C.7) for orbital integrals splits into three parts:

$$\begin{align*}\text{regular part} + \text{singular part} + \text{higher part}. \end{align*}$$

Accordingly, for any $t \in T^{\text {reg}}$ , we define

  • regular part: for regular $\lambda \in \Lambda ^{*}_{K} + \rho _c$ (see Definition B.1), we define

    $$\begin{align*}\begin{aligned} &\left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda} = \left(\sum_{w \in W_{K}} (-1)^w \cdot e^{w \cdot \lambda}(t) \right) \cdot \int_{\varphi \in \widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda)\otimes \varphi)}(\widehat{f}_0 , \dots, \widehat{f}_m)\cdot d\varphi, \end{aligned} \end{align*}$$
    where $\sigma ^{M_\circ }(\lambda )$ is the discrete series representation of $M_\circ $ with Harish-Chandra parameter $\lambda $ .
  • singular part: for any singular $\lambda \in \Lambda ^{*}_{K} + \rho _c$ , we define

    $$\begin{align*}\begin{aligned} &\left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda} = \frac{\sum_{w \in W_{K}} (-1)^w \cdot e^{w \cdot \lambda}(t) }{n(\lambda)} \cdot \sum_{i=1}^{n(\lambda)} \int_{\varphi \in \widehat{A}_\circ} \epsilon(i) \cdot T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}_i(\lambda)\otimes \varphi)}(\widehat{f}_0 , \dots, \widehat{f}_m)\cdot d\varphi,\\ \end{aligned} \end{align*}$$
    where $\sigma ^{M_\circ }_i$ are limit of discrete series representations of $M_\circ $ with Harish-Chandra parameter $\lambda $ and $n(\lambda )$ is the number of different limit of discrete series representations with Harish-Chandra parameter $\lambda $ , and $\epsilon (i) = 1$ for $i = 1, \dots \frac {n(\lambda )}{2}$ and $\epsilon (i) = -1$ for $i = \frac {n(\lambda )}{2}+1, \dots n(\lambda )$ (compare with the notations in Theorem C.7).
  • higher part:

    $$\begin{align*}\begin{aligned} &\left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\mathrm{high}}=\int_{\pi \in \widehat{G}^{\text{high}}_{\mathrm{temp}}} T_{\pi}(\widehat{f}_0, \dots, \widehat{f}_m)\cdot \left( \sum_{\eta^{M_\circ} \otimes \varphi \in \mathcal{A}(\pi)} \kappa^{M_\circ} (\eta^{M_\circ}, t) \right) \cdot d\varphi, \end{aligned} \end{align*}$$
    where the functions $\kappa ^{M_\circ }(\eta ^{M_\circ }, t)$ are defined in Subsection C.3, and
    $$\begin{align*}\widehat{G}^{\text{high}}_{\mathrm{temp}} = \big\{\pi \in \widehat{G}_{\mathrm{temp}} \big| \pi =\operatorname{\mathrm{Ind}}_{P_\circ}^G( \eta^{M_\circ} \otimes \varphi), \eta^{M_\circ} \in (\widehat{M}_\circ)^{\text{high}}_{\mathrm{temp}} \big\}, \end{align*}$$
    where $(\widehat {M}_\circ )^{\text {high}}_{\mathrm {temp}}$ is the set of irreducible tempered representations of $M_\circ $ which are not (limit of) discrete series representations.

Definition 4.17. For any element $t \in T^{\text {reg}}$ , we define

$$\begin{align*}\begin{aligned} &\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m) \\ =& \sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K}+ \rho_c} \left[\widehat{\Phi}_{h}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda} + \sum_{\text{singular} \ \lambda \in \Lambda^{*}_{K}+ \rho_c} \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda}+ \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\mathrm{high}}. \end{aligned} \end{align*}$$

Theorem 4.18. For any $t \in T^{\text {reg}}$ , and $f_0, \dots , f_m \in \mathcal {C}(G)$ ,

$$\begin{align*}\Delta_{T}^{M_\circ}(t) \Phi_{P_\circ,t}(f_0, \dots, f_m) = (-1)^m \widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m). \end{align*}$$

The proof of Theorem 4.18 is presented in Section 4.6.

4.5 Proof of Theorem 4.15

We split the proof into several steps:

$\mathbf {Step \ 1} \colon $ Change the integral from $\widehat {G}_{\text {temp}}$ to $(\widehat {M_\circ A_\circ } )_{\text {temp}}$ :

$$\begin{align*}\begin{aligned} \widehat{\Phi}_{e}(\widehat{f}_0, \dots, \widehat{f}_m) &= \int_{\pi \in \widehat{G}_{\mathrm{temp}}} T_{\pi}(\widehat{f}_0, \dots, \widehat{f}_m) \cdot \mu(\pi) \cdot d\pi \\ &= \int_{\eta^{M_\circ} \otimes \varphi \in (\widehat{M_\circ A_\circ} )_{\text{temp}}} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\eta^{M_\circ} \otimes \varphi)}(\widehat{f}_0 , \dots, \widehat{f}_m)\cdot m(\eta^{M_\circ}).\\ \end{aligned} \end{align*}$$

$\mathbf {Step \ 2} \colon $ Replace $T_{\operatorname {\mathrm {Ind}}_{P_\circ }^G(\eta ^{M_\circ } \otimes \varphi )}$ in the above expression of $\widehat {\Phi }_e$ by Equation (4.6):

$$\begin{align*}\begin{aligned} &\widehat{\Phi}_{e}(\widehat{f}_0 , \dots, \widehat{f}_m) \\ &\quad =(-1)^m\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \int_{\eta^{M_\circ}\otimes \varphi \in (\widehat{M_\circ A_\circ} )_{\text{temp}}} \int_{KM_\circ A_\circ N_\circ}\int_{G^{\times m} } H_{\tau(1)}\big(g_1 \dots g_m k\big)\dots H_{\tau(m)}\big(g_mk\big)\\ &\qquad e^{\langle \log \varphi+\rho, \log a\rangle} \cdot \Theta^{M_\circ}(\eta^{M_\circ})(m) \cdot f_0\left(kmank^{-1} (g_1 g_2 \dots g_m)^{-1}\right) f_1(g_1) \dots f_m(g_m) \cdot m(\eta^{M_\circ}). \\ \end{aligned} \end{align*}$$

$\mathbf {Step \ 3} \colon $ Simplify $\widehat {\Phi }_e$ by Harish-Chandra’s Plancherel formula. We write

$$\begin{align*}\begin{aligned} & \widehat{\Phi}_{e}(\widehat{f}_0 , \dots, \widehat{f}_m) \\ &\quad =(-1)^m\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \int_{K N_\circ}\int_{G^{\times m} } H_{\tau(1)}\left(g_1 \dots g_m k\right)\dots H_{\tau(m)}\left(g_mk\right) \cdot f' \cdot f_1(g_1) \dots f_m(g_m),\\ \end{aligned} \end{align*}$$

where the function $f'$ is defined by the following formula:

$$\begin{align*}\begin{aligned} f'(k, n, g_1, \dots, g_m)= &\int_{\eta^{M_\circ} \otimes \varphi \in (\widehat{M_\circ A_\circ} )_{\text{temp}}} \int_{M_\circ A_\circ } e^{\langle \log \varphi+\rho, \log a\rangle} \\ &\Theta^{M_\circ}(\eta^{M_\circ})(m) \cdot f_0(kmank^{-1} (g_1 g_2 \dots g_m)^{-1}) \cdot m(\eta^{M_\circ}). \end{aligned} \end{align*}$$

If we put

$$\begin{align*}c(k, m, a, n, g_1, \dots, g_m)= e^{\langle \rho, \log a \rangle}\cdot f_0\left(kmank^{-1} (g_1 g_2 \dots g_m)^{-1}\right), \end{align*}$$

then

$$\begin{align*}f'(k, n, g_1, \dots, g_m) = \int_{\eta^{M_\circ}\otimes \varphi \in (\widehat{M_\circ A_\circ} )_{\text{temp}}} \left( \Theta^{M_\circ}(\eta^{M_\circ}) \otimes \varphi \right)(c) \cdot m(\eta^{M_\circ}). \end{align*}$$

By (4.9),

$$\begin{align*}f' = c(k, e, e, n, g_1, \dots, g_m) = f_0\left(knk^{-1} (g_1 g_2 \dots g_m)^{-1}\right). \end{align*}$$

This completes the proof.

4.6 Proof of Theorem 4.18

Our proof strategy for Theorem 4.18 is similar to the one used to prove Theorem 4.15. We split its proof into 3 steps as before.

$\mathbf {Step \ 1} \colon $ Let $\Lambda ^{*}_T$ be the weight lattice for T and $\Lambda ^{*}_{K \cap M_\circ }$ be the intersection of $\Lambda ^{*}_T$ and the positive Weyl chamber for the group $M_\circ \cap K$ . We denote by $\rho _c^{M_\circ \cap K}$ the half sum of positive roots for $M_\circ \cap K$ . For any $\lambda \in \Lambda ^{*}_{K \cap M_\circ } $ , we can find an element $w \in W_K /W_{K \cap M_\circ }$ such that $w \cdot \lambda \in \Lambda ^{*}_{K}$ . Moreover, for any $w \in W_K /W_{K \cap M_\circ }$ ,

(4.10) $$ \begin{align} \operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda)\otimes \varphi) \cong \operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(w \cdot \lambda)\otimes \varphi). \end{align} $$

For the regular part,

(4.11) $$ \begin{align} \begin{aligned} & \sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K} + \rho_c} \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda}\\ =& \sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K}+ \rho_c} \left(\sum_{w \in W_{K}} (-1)^w \cdot e^{w \cdot \lambda}(t) \right) \cdot \int_{\varphi \in \widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda)\otimes \varphi)}(\widehat{f}_0 , \dots, \widehat{f}_m)\cdot d\varphi\\ =& \sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K\cap M_\circ}+ \rho_c} \left(\sum_{w \in W_{K \cap M_\circ}} (-1)^w \cdot e^{w \cdot \lambda}(t) \right) \cdot \int_{\varphi \in \widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda)\otimes \varphi)}(\widehat{f}_0 , \dots, \widehat{f}_m)\cdot d\varphi. \end{aligned} \end{align} $$

Here, the last equation follows from (4.10). Remembering that the above is anti-invariant under the $W_K$ -action, we can replace $\rho _c$ by $\rho _c^{M_\circ \cap K}$ . That is, (4.11) equals

$$\begin{align*}\sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K\cap M_\circ}+ \rho_c^{M_\circ \cap K}} \left(\sum_{w \in W_{K \cap M_\circ}} (-1)^w \cdot e^{w \cdot \lambda}(t) \right) \cdot \int_{\varphi \in \widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda)\otimes \varphi)}(\widehat{f}_0, \dots, \widehat{f}_m)\cdot d\varphi. \end{align*}$$

Similarly, for the singular part,

$$\begin{align*}\begin{aligned} & \sum_{\text{singular} \ \lambda \in \Lambda^{*}_{K}+ \rho_c} \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda}= \sum_{\text{singular} \ \lambda \in \Lambda^{*}_{K \cap M_\circ}+ \rho_c^{M_\circ \cap K}} \left(\sum_{w \in W_{K \cap M_\circ}} (-1)^w \cdot e^{w \cdot \lambda}(t) \right)\\ & \times \left(\sum_{i=1}^{n(\lambda)} \frac{\epsilon(i)}{n(\lambda)} \cdot \int_{\varphi \in \widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}_i(\lambda)\otimes \varphi)}(\widehat{f}_0 , \dots, \widehat{f}_m) \right). \end{aligned} \end{align*}$$

Finally, for the higher part,

$$\begin{align*}\begin{aligned}\left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\mathrm{high}} &=\int_{\pi \in \widehat{G}^{\text{high}}_{\mathrm{temp}}} T_{\pi}(\widehat{f}_0 , \dots, \widehat{f}_m)\left( \sum_{\eta^{M_\circ} \otimes \varphi \in \mathcal{A}(\pi)} \kappa^{M_\circ} (\eta^{M_\circ}, t) \right) \cdot d\varphi\\ &= \int_{\eta^{M_\circ} \otimes \varphi \in \widehat{M}^{\text{high}}_{\mathrm{temp}} \times \widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\eta^{M_\circ} \otimes \varphi)}(\widehat{f}_0, \dots, \widehat{f}_m) \cdot \kappa^{M_\circ} (\eta^{M_\circ}, t). \end{aligned} \end{align*}$$

$\mathbf {Step \ 2} \colon $ We apply Proposition 4.10 and obtain the following.

  • regular part:

    $$\begin{align*}\begin{aligned} & \sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K} + \rho_c} \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda}\\ &\quad =(-1)^m\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K \cap M_\circ} + \rho_c^{M_\circ \cap K}} \left(\sum_{w \in W_{K \cap M_\circ}} (-1)^w \cdot e^{w \cdot \lambda}(t) \right)\\ &\qquad \int_{\varphi \in \widehat{A}_\circ} \int_{KM_\circ A_\circ N_\circ}\int_{G^{\times m} } H_{\tau(1)}\big(g_1 \dots g_m k\big)\dots H_{\tau(m)}\big(g_mk\big)\\ &\qquad e^{\langle \log \varphi+\rho, \log a\rangle} \cdot \Theta^{M_\circ}\big(\lambda\big)(m) \cdot f_0\big(kmank^{-1} (g_1 g_2 \dots g_m)^{-1}\big) f_1(g_1) \dots f_m(g_m). \end{aligned} \end{align*}$$
  • singular part:

    $$\begin{align*}\begin{aligned} & \sum_{\text{singular} \ \lambda \in \Lambda^{*}_{K} + \rho_c} \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda}\\ &\quad =(-1)^m\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \sum_{\text{singular} \ \lambda \in \Lambda^{*}_{K \cap M_\circ} + \rho_c^{M_\circ \cap K}} \sum_{i=1}^{n(\lambda)} \left(\frac{\epsilon(i)}{n(\lambda)}\sum_{w \in W_{K \cap M_\circ}} (-1)^w \cdot e^{w \cdot \lambda}(t) \right)\\ &\qquad \int_{\varphi \in \widehat{A}_\circ} \int_{KM_\circ A_\circ N_\circ}\int_{G^{\times m} } H_{\tau(1)}\left(g_1 \dots g_m k\big)\dots H_{\tau(m)}\big(g_mk\right)\\ &\qquad e^{\langle \log \varphi+\rho, \log a\rangle} \cdot \Theta^{M_\circ}_i(\lambda)(m) \cdot f_0\left(kmank^{-1} (g_1 g_2 \dots g_m)^{-1}\right) f_1(g_1) \dots f_m(g_m). \end{aligned} \end{align*}$$
  • higher part:

    $$\begin{align*}\begin{aligned} &\left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\mathrm{high}}\\ &\quad =(-1)^m\int_{\eta^{M_\circ} \otimes \varphi \in \widehat{M}^{\text{high}}_{\mathrm{temp}} \times \widehat{A}_\circ} \int_{KM_\circ A_\circ N_\circ}\int_{G^{\times m} } H_{\tau(1)}\big(g_1 \dots g_m k\big)\dots H_{\tau(m)}\big(g_mk\big)\\ &\qquad e^{\langle \log \varphi+\rho, \log a\rangle} \cdot \Theta^{M_\circ}\big(\eta^{M_\circ}\big)(m) \cdot f_0\big(kmank^{-1} (g_1 g_2 \dots g_m)^{-1}\big)\\ &\qquad f_1(g_1) \dots f_m(g_m) \cdot \kappa^{M_\circ}(\eta^{M_\circ}, t). \end{aligned} \end{align*}$$

$\mathbf {Step \ 3} \colon $ All the above computations imply that

(4.12) $$ \begin{align} \begin{aligned} &\widehat{\Phi}_{t}(\widehat{f}_0 , \dots, \widehat{f}_m)\\ &\quad = \sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K} + \rho_c} \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda} + \sum_{\text{singular} \ \lambda \in \Lambda^{*}_{K} + \rho_c} \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\lambda} + \left[\widehat{\Phi}_{t}(\widehat{f}_0, \dots, \widehat{f}_m)\right]_{\mathrm{high}}\\ &\quad =(-1)^m \int_{K N_\circ}\int_{G^{\times m} } f' \cdot \left( \sum_{\tau \in S_m}\mathrm{sgn}(\tau) \cdot H_{\tau(1)}\big(g_1 \dots g_m k\big)\dots H_{\tau(m)}\big(g_mk\big)\cdot f_1(g_1) \dots f_m(g_m) \right),\\ \end{aligned} \end{align} $$

where

$$\begin{align*}\begin{aligned} &f' (t, k, n, g_1, \dots, g_m) \\ &\quad = \sum_{\text{regular} \ \lambda \in \Lambda^{*}_{K \cap M_\circ} + \rho_c^{M_\circ \cap K}} \left(\sum_{w \in W_{K \cap M_\circ}} (-1)^w \cdot e^{w \cdot \lambda}(t) \right) \cdot \int_{\varphi \in \widehat{A}_\circ} \left(\Theta^{M_\circ}(\lambda)\otimes \varphi\right)(c)\\ &\qquad + \sum_{\text{singular} \ \lambda \in \Lambda^{*}_{K \cap M_\circ} + \rho_c^{M_\circ \cap K}} \left(\frac{\sum_{w \in W_{K \cap M_\circ}} (-1)^w \cdot e^{w \cdot \lambda}(t) }{n(\lambda)}\right) \cdot \sum_{i=1}^{n(\lambda)} \epsilon(i) \cdot \int_{\varphi \in \widehat{A}_\circ} \left(\Theta^{M_\circ}_i(\lambda)\otimes \varphi\right)(c) \\ &\qquad + \int_{\eta^{M_\circ}\otimes \varphi \in \widehat{M}^{\text{high}}_{\mathrm{temp}} \otimes \widehat{A}_\circ} \left(\Theta^{M_\circ}(\eta^{M_\circ})\otimes \varphi \right)(c) \cdot \kappa^{M_\circ}(\eta^{M_\circ}, t), \end{aligned} \end{align*}$$

where

$$\begin{align*}c (k,m, a, n, g_1, \dots, g_m)= e^{\langle \rho, \log a \rangle }\cdot f_0\big(kmank^{-1} (g_1 g_2 \dots g_m)^{-1}\big). \end{align*}$$

Because T is a compact Cartan subgroup of $M_\circ $ , the sign function in the definition of Harish-Chandra’s orbital integral (1.1) is trivial [Reference Warner32, Section 8.1.1]. Hence, we apply Theorem C.7 to the function c and obtain

(4.13) $$ \begin{align} f' = F^T_c(t) = \Delta^{M_\circ}_T(t) \cdot \int_{h \in M_\circ/T_\circ} f_0\left(k h t h^{-1} n k^{-1} (g_1 g_2 \dots g_m)^{-1} \right). \end{align} $$

By (4.12) and (4.13), we conclude that

$$\begin{align*}\begin{aligned} &\widehat{\Phi}_{t}(\widehat{f}_0 , \dots, \widehat{f}_m)\\ &\quad = \Delta^{M_\circ}_T(t) \cdot (-1)^m\sum_{\tau \in S_m}\mathrm{sgn}(\tau) \int_{h \in M_\circ/T_\circ} \int_{K N_\circ}\int_{G^{\times m} } H_{\tau(1)}\big(g_1 \dots g_m k\big)\dots H_{\tau(m)}\big(g_mk\big)\\ &\qquad f_0\big(k hth^{-1} n k^{-1} (g_1 g_2 \dots g_m)^{-1} \big) f_1(g_1) \dots f_m(g_m)\\ &\quad = (-1)^m \Delta^{M_\circ}_T(t) \cdot \Phi_{P_\circ,t}(f_0, \dots, f_m). \end{aligned} \end{align*}$$

This completes the proof of Theorem 4.18.

5 Higher Index Pairing

In this section, we study the K-theory of the reduced group $C^{*}$ -algebra of G by computing its pairing with $\Phi _{P_\circ ,t}$ for $t\in T^{\text {reg}} \cap M_\circ $ and $\Phi _{P_\circ ,e}$ . Moreover, we construct a group isomorphism

$$\begin{align*}\mathcal{F} \colon K_*(C^{*}_r(G))\to \text{Rep}(K), \end{align*}$$

where $\text {Rep}(K)$ is the character ring of the compact Lie group K. By replacing G with $G\times \mathbb {R}$ if necessary, we may assume that $\dim (A_\circ )$ is even.

5.1 Generators of $K_0(C^{*}_r(G))$

In Theorem C.4, we explain that the K-theory group of $C_r^{*}(G)$ is a free abelian group generated by the following components:

(5.1) $$ \begin{align} \begin{aligned} K_0(C^{*}_r(G))\cong& \bigoplus_{[P, \sigma]^{\mathrm{ess}}} K_0 \left(\mathcal{K}\left(C^{*}_r(G)_{[P, \sigma]}\right)\right)\\ \cong & \bigoplus_{ \lambda \in \Lambda^{*}_{K} +\rho_c} \mathbb{Z}. \end{aligned} \end{align} $$

Let $[P, \sigma ] \in \mathcal {P}(G)$ be an essential class corresponding to $\lambda \in \Lambda ^{*}_{K} + \rho _c$ . In this subsection, we construct a generator of $K_0(C^{*}_r(G))$ associated to $\lambda $ . We decompose $\widehat {A}_P = \widehat {A}_S \times \widehat {A}_\circ $ and denote $r = \dim \widehat {A}_S$ and $m=\dim \widehat {A}_\circ $ . Let V be an r-dimensional complex vector space and W an m-dimensional Euclidean space. Take

$$\begin{align*}z = (x_1, \cdots, x_r, y_1, \dots y_{m}), \quad x_i \in \mathbb{C}, y_j \in \mathbb{R} \end{align*}$$

to be coordinates on $V\oplus W$ . Assume that the finite group $(\mathbb {Z}_2)^{r}$ acts on V by simple reflections. In terms of coordinates,

$$\begin{align*}(x_1, \cdots, x_r, y_1, \dots, y_{m})\mapsto (\pm x_1, \cdots, \pm x_r, y_1, \dots, y_{m}). \end{align*}$$

Let us consider the Clifford algebra

$$\begin{align*}\mathrm{Clifford}(V) \otimes \mathrm{Clifford} (W) \end{align*}$$

together with the spinor module $S = S_{V} \otimes S_{W}$ . Here, the spinor modules are equipped with a $\mathbb {Z}_2$ -grading:

$$\begin{align*}S^+ = S_{V} ^+\otimes S_{W}^+ \oplus S_{V} ^-\otimes S_{W}^-, \quad S^- = S_{V} ^+\otimes S_{W}^- \oplus S_{V} ^-\otimes S_{W}^+. \end{align*}$$

Let $\mathcal {C}(V), \mathcal {C}(W)$ and $\mathcal {C}(V\oplus W)$ be the algebra of Schwartz functions on V, W and $V\oplus W$ . For any $z \in V \oplus W$ , the Clifford action $c(z) \colon S^\pm \to S^\mp $ is defined as follows.

Let $e_1, \dots e_{2^{r-1}}$ be a basis for $S^+_V$ , let $e_{2^{r-1}+1}, \dots e_{2^{r}}$ be a basis for $S^-_V$ , and let $f_1, \dots f_{2^{\frac {m}{2}}}$ be a basis for $S_W$ . We write

$$\begin{align*}c_{i, j, k, l}(z) = \langle c(z) e_i \otimes f_l, e_j \otimes f_k \rangle, \quad 1 \leq i, j \leq 2^r, 1 \leq k, l \leq 2^{\frac{m}{2}} \end{align*}$$

and define

$$\begin{align*}T:=\left( \begin{array}{cc} e^{-|z|^2} \cdot \mathrm{id}_{S^+}& e^{-\frac{|z|^2}{2}}(1-e^{-|z|^2})\cdot \frac{c(z)}{|z|^2}\\ e^{-\frac{|z|^2}{2}}c(z) & (1-e^{-|z|^2}) \cdot \mathrm{id}_{S^-} \end{array} \right) - \left(\begin{array}{cc} 0& 0\\ 0 & \mathrm{id}_{S^-} \end{array} \right) , \end{align*}$$

which is a $2^{r+\frac {m}{2}} \times 2^{r+\frac {m}{2}}$ matrix:

$$\begin{align*}\big(t_{i,j, k, l}\big), \quad 1 \leq i, j \leq 2^r, 1 \leq k, l \leq 2^{\frac{m}{2}}, \end{align*}$$

with $t_{i, j, k, l} \in \mathcal {C}(V \oplus W)$ .

Definition 5.1. On the m-dimensional Euclidean space W, we can define

$$\begin{align*}B^{m}=\left( \begin{array}{cc} e^{-|y|^2} \cdot \mathrm{id}_{S_{W} ^+}& e^{-\frac{|y|^2}{2}}(1-e^{-|y|^2})\cdot \frac{c(y)}{|y|^2}\\ e^{-\frac{|y|^2}{2}}c(y) & (1-e^{-|y|^2}) \cdot \mathrm{id}_{S_{W} ^-} \end{array} \right) - \left(\begin{array}{cc} 0& 0\\ 0 & \mathrm{id}_{S_{W}^-} \end{array} \right), \end{align*}$$

which is a $2^{\frac {m}{2}}\times 2^{\frac {m}{2}}$ matrix:

$$\begin{align*}\big(b_{k, l}\big), \quad 1 \leq k, l \leq 2^{\frac{m}{2}}, \end{align*}$$

with $b_{k, l} \in \mathcal {C}(W)$ . By straightforward computation, one can check that both the two matrices

$$\begin{align*}\left( \begin{array}{cc} e^{-|y|^2} \cdot \mathrm{id}_{S_{W} ^+}& e^{-\frac{|y|^2}{2}}(1-e^{-|y|^2})\cdot \frac{c(y)}{|y|^2}\\ e^{-\frac{|y|^2}{2}}c(y) & (1-e^{-|y|^2}) \cdot \mathrm{id}_{S_{W} ^-} \end{array} \right) , \quad\left(\begin{array}{cc} 0& 0\\ 0 & \mathrm{id}_{S_{W}^-}\end{array} \right) \end{align*}$$

are idempotents. In fact, $B^{m}$ is the Bott generator in $K_0(C_0(W)) \cong \mathbb {Z}$ .

Lemma 5.2. If we restrict to $W \subset V \oplus W$ (that is, $x = 0$ ), then

$$\begin{align*}T\big|_{x=0} = \left(\begin{array}{cc} \mathrm{id}_{S_{V}^+} & 0\\ 0 & -\mathrm{id}_{S_{V}^-} \end{array} \right) \otimes B^{m}. \end{align*}$$

Proof. By definition, we have that

  • $t_{i, j, k, l} = e^{-z^2}$ when $e_i, e_j, f_k, f_l \in S^+$ ;

  • $t_{i, j, k, l} = -e^{-z^2}$ when $e_i, e_j, f_k, f_l \in S^-$ ;

  • $t_{i, j, k, l} = e^{-\frac {|z|^2}{2}}(1-e^{-|z|^2})\cdot \frac {c_{i, j, k, l}(z)}{|z|^2}$ when $e_i, f_k, \in S^+$ and $e_j, f_l, \in S^-$ ;

  • $t_{i, j, k, l} = e^{-|z|^2} \cdot c_{i, j, k, l}(z)$ when $e_i, f_k, \in S^-$ and $e_j, f_l, \in S^+$ .

Moreover, the Clifford action $c(z)$ equals

$$\begin{align*}c(x) \otimes 1 + 1 \otimes c(y) \in \mathrm{End}(S_V) \otimes \mathrm{End}(S_W) \end{align*}$$

for $z = (x, y) \in V \oplus W$ . Thus, $c_{i,j, k, l}(z)\big |_{x = 0} = c_{k, l}(y)$ . This completes the proof.

Let $\sigma $ be a discrete series representation of $M_P$ and $\varphi \in \widehat {A}_\circ $ . Then,

$$\begin{align*}\varphi \otimes 1 \in \widehat{A}_\circ \times \widehat{A}_S = \widehat{A}_P. \end{align*}$$

Because $[P, \sigma ]$ is essential, the induced representation decomposes as

$$\begin{align*}\operatorname{\mathrm{Ind}}_{P}^G(\sigma \otimes \varphi \otimes 1) = \bigoplus_{i=1}^{2^r} \operatorname{\mathrm{Ind}}_{P_\circ}^G \big( \delta_i \otimes \varphi \big), \end{align*}$$

where $\delta _i$ are limit of discrete series representations of $M_\circ $ . By Equation (B.1), the characters of the limit of discrete series representations of $\delta _i$ are all the same up to a sign after restricting to a compact Cartan subgroup of $M_P$ . We can organize the numbering so that

$$\begin{align*}\delta_i, \quad i = 1, \dots 2^{r-1} \end{align*}$$

have the same character after restriction and

$$\begin{align*}\delta_i, \quad i = 2^{r-1}+1, \dots 2^{r} \end{align*}$$

have the same character. In particular, $\delta _i$ with $ 1 \leq i \leq 2^{r-1}$ and $\delta _j$ with $2^{r-1}+1\leq j \leq 2^r$ have the opposite characters after restriction.

We fix $2^r$ unit K-finite vectors $v_i \in \operatorname {\mathrm {Ind}}_{P}^G \big ( \delta _i \big )$ and define

(5.2) $$ \begin{align} S_\lambda := \big(t_{i,j, k, l}\cdot v_i \otimes v_j^{*}\big). \end{align} $$

The matrix

$$\begin{align*}S_\lambda \in \Big[\mathcal{C}\big(\widehat{A}_P, \mathcal{L}(\operatorname{\mathrm{Ind}}_P^G\sigma)\big) \Big]^{W_\sigma}, \end{align*}$$

and it is an idempotent. By the Morita equivalence (C.3),

$$\begin{align*}\mathcal{K}\big(\operatorname{\mathrm{Ind}}_P^G \sigma \big)^{W_\sigma} \sim \big(C_0(\mathbb{R})\rtimes \mathbb{Z}_2\big)^r \otimes C_0(\mathbb{R}^{m}). \end{align*}$$

Definition 5.3. We define

$$\begin{align*}Q_\lambda \in M_{2^{r+ m}}(\mathcal{C}(G)) \end{align*}$$

to be the wave packet associated to $S_\lambda $ . Then, $[Q_\lambda ]$ is the generator in $ K_0 \left (C^{*}_r(G)_{[P, \sigma ]}\right )$ for essential class $[P, \sigma ] \in \mathcal {P}(G)$ .

5.2 The main results

Let G be a linear connected real reductive Lie group with maximal compact subgroup K. We choose a maximal torus T of K, and $P_\circ $ a maximal cuspidal parabolic subgroup of G. It follows from Appendix C that for any $\lambda \in \Lambda ^{*}_{K} + \rho _c$ , there is a generator

$$\begin{align*}[Q_\lambda] \in K\big(C^{*}_r(G)\big). \end{align*}$$

In Section 3, we defined a family of cyclic cocycles

$$\begin{align*}\Phi_{P_\circ,e}, \hspace{5mm} \Phi_{P_\circ,t} \in HC\big(\mathcal{C}(G)\big) \end{align*}$$

for all $t\in T^{\text {reg}}$ and the maximal compact cuspidal parabolic subgroup $P_\circ $ .

Theorem 5.4. The index pairing between periodic cyclic cohomology and K-theory

$$\begin{align*}HP^{\text{even}}\big(\mathcal{C}(G)\big) \otimes K_0\big(\mathcal{C}(G)\big) \to \mathbb{C} \end{align*}$$

is given by

  • we have

    $$\begin{align*}\langle \Phi_{P_\circ,e}, [Q_\lambda] \rangle = \frac{1}{|W_{M_\circ \cap K}|} \cdot \sum_{w \in W_K} m\left(\sigma^{M_\circ}(w \cdot \lambda)\right), \end{align*}$$
    where $\sigma ^{M_\circ }(w \cdotp \lambda )$ is the discrete series representation with Harish-Chandra parameter $w \cdot \lambda $ , and $m\left (\sigma ^{M_\circ }(w \cdot \lambda )\right )$ is its Plancherel measure;
  • for any $t \in T^{\text {reg}}$ ,

    (5.3) $$ \begin{align} \langle \Phi_{P_\circ,t}, [Q_\lambda] \rangle = \frac{\sum_{w \in W_K} (-1)^w e^{w \cdot \lambda}(t)}{\Delta^{M_\circ}_T(t)}. \end{align} $$

The proof of Theorem 5.4 is presented in Sections 5.3 and 5.4.

Corollary 5.5. The index paring of $[Q_\lambda ]$ and normalized higher orbital integral equals the character of the representation $\operatorname {\mathrm {Ind}}_{P_\circ }^G(\sigma ^{M_\circ }(\lambda ) \otimes \varphi )$ at $\varphi = 1$ . That is,

$$\begin{align*}\left\langle \frac{\Delta^{M_\circ}_T}{\Delta^{G}_T}\cdot \Phi_{P_\circ,t}, [Q_\lambda] \right\rangle = \Theta(P_\circ, \sigma^{M_\circ}(\lambda), 1)(t). \end{align*}$$

Proof. It follows from applying the character formula, Corollary B.6, to the right side of Equation (5.3).

Remark 5.6. If the group G is of equal rank, then the normalization factor is trivial. And the above corollary says that the orbital integral equals the character of a (limit of) discrete series representations. This result in the equal rank case is also obtained by Hochs-Wang in [Reference Hochs and Wang17] using a fixed point theorem and the Connes-Kasparov isomorphism. In contrast to the Hochs-Wang approach, our proof is based on representation theory and does not use any geometry of the homogenous space $G/K$ or the Connes-Kasparov theory.

We notice that though the cocycles $\Phi _{P_\circ ,t}$ introduced in Definition 3.3 are only defined for regular elements in T, Theorem 5.4 suggests that the pairing $\Delta ^{M_\circ }_T(t) \langle \Phi _{P_\circ ,t}, [Q_\lambda ]\rangle $ is a well-defined smooth function on T. This inspires us to introduce the following map.

Definition 5.7. Define a map $\mathcal {F}^T\colon K_0(C^{*}_r(G))\to C^\infty (T)$ by

$$\begin{align*}\mathcal{F}^T([Q_\lambda])(t) \colon = \Delta^{M_\circ}_T \cdot \langle \Phi_{P_\circ,t}, [Q_\lambda]\rangle, \quad \lambda \in \Lambda_K^{*}+ \rho_c. \end{align*}$$

The map $\mathcal {F} ^T$ is first defined on the regular part $T^{\operatorname {\mathrm {reg}}}$ but can be extended smoothly to all elements in T as the right-hand side of the above equation extends to a smooth function on T.

By the Weyl character formula, for any irreducible K-representation $V_\lambda $ with highest weight $\lambda \in \Lambda _K^{*}$ , its character is given by

$$\begin{align*}\Theta_\lambda(t) = \frac{\sum_{w \in W_K} (-1)^w e^{w \cdot (\lambda+\rho_c)}(t)}{\Delta^{K}_T(t)}. \end{align*}$$

Multiplying by $\Delta ^K_T$ , we can identify $\text {Rep}(K)$ with the following subset of $C^\infty (T)$ :

$$\begin{align*}\left\{f \in C^\infty(T)\big| f(t) = \sum_{\lambda \in \Lambda^{*}_K + \rho_c} n_\lambda \cdot \left(\sum_{w \in W_K} (-1)^w e^{w \cdot (\lambda)}(t) \right), \quad n_\lambda \in \mathbb{Z} \right\}. \end{align*}$$

Under the above identification, we have the following corollary.

Corollary 5.8. The map $\mathcal {F}^T: K_0(C^{*}_r(G))\to \text {Rep}(K)$ is an isomorphism of abelian groups.

In [Reference Clare, Higson and Song5, Reference Clare, Higson, Song and Tang6], we use the above property of $\mathcal {F}^T$ to show that $\mathcal {F}^T$ is actually the inverse of the Connes-Kasparov Dirac index map, $\operatorname {\mathrm {index}}: \text {Rep}(K)\to K(C^{*}_r(G))$ .

Remark 5.9. The cyclic homology of the algebra $\mathcal {C}(G)$ was studied by Wassermann [Reference Wassermann34]. Wassermann’s result and the unpublished description of the decomposition of $\mathcal {C}(G)$ analogous to Equation (C.2) implies that the Connes-Chern character

$$\begin{align*}\operatorname{ch}: K_0\big(\mathcal{C}(G)\big)\to HP_{\text{even}}\big(\mathcal{C}(G)\big) \end{align*}$$

induces an isomorphism

$$\begin{align*}K_0\big(\mathcal{C}(G)\big)\otimes_{\mathbb{Z}} \mathbb{C}\cong HP_{\text{even}}\big(\mathcal{C}(G)\big). \end{align*}$$

Corollary 5.8 shows that higher orbital integrals $\Phi _{P_\circ ,t}, t\in T^{\text {reg}}$ distinguish $K_0(\mathcal {C}(G))$ . We can conclude from this fact that $\Phi _{P_\circ ,t}, t\in T^{\text {reg}}$ actually spans $HP^{\text {even}}\big (\mathcal {C}(G)\big )$ . As this outline of arguments involve some nontrivial unpublished works, we will not state this result as a ‘theorem’.

5.3 Regular case

Suppose that $\lambda \in \Lambda ^{*}_{K} + \rho _c$ is regular and $\sigma ^{M_\circ }(\lambda )$ is the discrete series representation of $M_\circ $ with Harish-Chandra parameter $\lambda $ . We consider the generator $[Q_\lambda ]$ , the wave packet associated to the matrix $S_\lambda $ introduced in (5.2), corresponding to

$$\begin{align*}\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda) \otimes \varphi), \hspace{5mm} \varphi \in \widehat{A}_\circ. \end{align*}$$

According to Theorem 4.15,

$$\begin{align*}\begin{aligned} (-1)^m\langle \Phi_{P_\circ,e}, Q_\lambda \rangle =&\int_{\pi \in \widehat{G}_{\mathrm{temp}}} T_{\pi}\left( \mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \right) \right)\cdot \mu(\pi ) \\ =& \int_{\widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda) \otimes \varphi) } \cdot \left( \mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \right) \right) \cdot \mu\left(\operatorname{\mathrm{Ind}}_{P}^G(\sigma^{M_\circ}(\lambda) \otimes \varphi)\right).\\ \end{aligned} \end{align*}$$

By Definition 4.13,

$$\begin{align*}\begin{aligned} \mu\left(\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda) \otimes \varphi)\right) &= \mu\left(\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda) \otimes 1\right) \\ &= \sum_{w \in W_K/ W_{K \cap M_\circ}} m\left(\sigma^{M_\circ}(w \cdot \lambda)\right)\\ &=\frac{1}{|W_{K\cap M_\circ}|} \cdot \sum_{w \in W_K} m\left(\sigma^{M_\circ}(w \cdot \lambda)\right). \end{aligned} \end{align*}$$

Moreover, in the case of regular $\lambda $ , $S_\lambda = [B^m \cdot (v \otimes v^{*})]$ , where $B^m$ is the Bott generator for $K_0(\mathcal {C}(\widehat {A}_\circ ))$ and v is a unit K-finite vector in $\operatorname {\mathrm {Ind}}_{P_\circ }^G(\sigma ^{M_\circ }(\lambda ))$ . By (4.2),

$$\begin{align*}\begin{aligned} &\int_{\widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma(\lambda) \otimes \varphi) }\left( \mathrm{Trace} \big(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \big) \right) = \langle B^m, b_{m} \rangle = 1, \end{aligned} \end{align*}$$

where $[b_m] \in HC^m(\mathcal {C}(\mathbb {R}^m))$ is the cyclic cocycle on $\mathcal {C}(\mathbb {R}^m)$ of degree m; cf. Example 4.16. We conclude that

$$\begin{align*}\langle \Phi_{P_\circ,e}, [Q_\lambda] \rangle = \frac{(-1)^m}{|W_{K\cap M_\circ}|} \cdot \sum_{w \in W_K} m\left(\sigma^{M_\circ}(w \cdot \lambda)\right). \end{align*}$$

For the orbital integral $\Phi _{P_\circ ,t}$ , only the regular part will contribute. The computation is similar as above, and we conclude that

$$\begin{align*}\begin{aligned} \langle \Phi_{P_\circ,t}, Q_\lambda \rangle &= (-1)^m\sum_{w \in W_K} (-1)^w e^{w \cdot \lambda}(t) \cdot \int_{\widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma^{M_\circ}(\lambda) \otimes \varphi) }\left( \mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \right) \right)\\ &=(-1)^m \sum_{w \in W_K} (-1)^w e^{w \cdot \lambda}(t). \end{aligned} \end{align*}$$

5.4 Singular case

Suppose now that $\lambda \in \Lambda ^{*}_{K} + \rho _c$ is singular. We decompose

$$\begin{align*}\widehat{A}_{P} = \widehat{A}_\circ \times \widehat{A}_S, \hspace{5mm} \varphi = (\varphi_1, \varphi_2). \end{align*}$$

We denote $r = \dim (A_S)$ and $m = \dim (A_\circ )$ as before. In this case, we have that

$$\begin{align*}\operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi_1 \otimes 1) = \bigoplus_{i=1}^{2^r} \operatorname{\mathrm{Ind}}_{P_\circ}^G \big( \sigma^{M_\circ}_i \otimes \varphi_1 \big), \end{align*}$$

where $\sigma ^M$ is a discrete series representation of M and $ \sigma ^{M_\circ }_i $ , $i=1,..., 2^r$ , are limit of discrete series representations of $M_\circ $ with Harish-Chandra parameter $\lambda $ .

Recall that the generator $Q_\lambda $ is the wave packet associated to $S_\lambda $ . The index paring equals

$$\begin{align*}(-1)^m\langle \Phi_{P_\circ,e}, Q_\lambda \rangle = \int_{\widehat{A}_P} T_{\operatorname{\mathrm{Ind}}_{P}^G(\sigma^M\otimes \varphi)}\left( \mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \right) \right)\cdot \mu\left( \operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi) \right). \end{align*}$$

By the definition of $\mu $ ,

$$\begin{align*}\mu\left( \operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi) \right) = \sum_{\eta^{M_\circ} \otimes \varphi_1 \in \mathcal{A}\left(( \operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi) \right)} m(\eta^{M_\circ}). \end{align*}$$

Thus, the function $\mu \big ( \operatorname {\mathrm {Ind}}_{P}^G(\sigma ^M \otimes \varphi _1\otimes \varphi _2) \big )$ is constant with respect to $\varphi _1 \in \widehat {A}_\circ $ . It follows from (4.2) that

$$\begin{align*}\begin{aligned} &(-1)^m\langle \Phi_{P_\circ,e}, Q_\lambda \rangle \\ &\quad = \int_{\widehat{A}_S} \left(\mu\left( \operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi) \right) \cdot \int_{\widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P}^G(\sigma^M, \varphi)}\left( \mathrm{Trace} (\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} ) \right)\right) \\ &\quad = \sum_{\tau \in S_m} \sum_{j_0 = i_1, \dots j_{m-1} = i_m, j_m = i_0} \\ &\qquad \int_{\widehat{A}_S} \left( \mu\big( \operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi) \int_{\widehat{A}_\circ} (-1)^\tau \cdot s_{i_0, j_0}(\varphi) \frac{\partial s_{i_1, j_1}(\varphi)}{\partial_{\tau(1)}} \dots \frac{\partial s_{i_m, j_m}(\varphi)}{\partial_{\tau(m)}} \right), \end{aligned} \end{align*}$$

where $s_{i, j} \in \mathcal {C}(\widehat {A}_\circ \times \widehat {A}_S)$ with $1 \leq i, j \leq 2^{r + \frac {m}{2}}$ is the coefficient of the $(i,j)$ -th entry in the matrix $S_\lambda $ . We notice that the dimension of $\widehat {A}_P$ is $m+r$ . It follows from the Connes-Hochschild-Kostant-Rosenberg theorem ([Reference Connes7, Theorem 46]) that the periodic cyclic cohomology of the algebra $\mathcal {C}(\widehat {A}_P)$ is spanned by a cyclic cocycle of degree $m+r$ . Accordingly, we conclude that

$$\begin{align*}\langle [\Phi_{P_\circ,e}], Q_\lambda \rangle = 0 \end{align*}$$

because it equals the pairing of the Bott element $B^{m+r} \in K(\widehat {A}_P)$ and a cyclic cocycle in $HC(\widehat {A}_P)$ with degree only $m<m+r$ .

Next, we turn to the index pairing of orbital integrals $\Phi _{P_\circ ,t}$ for $t \in T^{\operatorname {\mathrm {reg}}}$ . In this singular case, it is clear that the regular part of higher orbital integrals will not contribute. For the higher part,

$$\begin{align*}\begin{aligned} &(-1)^m\langle [\Phi_{P_\circ,t}]_{\text{high}}, Q_\lambda \rangle \\ &\quad = \int_{\varphi \in \widehat{A}_P} T_{\operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi)}\left( \mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \right) \right) \cdot \left( \sum_{\eta^{M_\circ} \otimes \varphi_1 \in \mathcal{A}(\operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi))} \kappa^{M_\circ} (\eta^{M_\circ}, t) \right). \end{aligned} \end{align*}$$

Note that the function

$$\begin{align*}\sum_{\eta^{M_\circ} \otimes \varphi_1 \in \mathcal{A}(\operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi))} \kappa^{M_\circ} (\eta^{M_\circ}, t) \end{align*}$$

is constant in $\varphi _1 \in \widehat {A}_\circ $ . By (4.2), we see that

$$\begin{align*}\begin{aligned} &\int_{\widehat{A}_S} \left( \sum_{\eta^{M_\circ} \otimes \varphi_1 \in \mathcal{A}\left(\operatorname{\mathrm{Ind}}_{P}^G\left(\sigma^M \otimes \varphi \right)\right)} \kappa^{M_\circ} \left(\eta^{M_\circ}, t\right) \cdot \int_{ \widehat{A}_\circ} T_{\operatorname{\mathrm{Ind}}_{P}^G\left(\sigma^M \otimes \varphi\right)}\mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1}\right) \right)\\ &\quad = \sum_{\tau \in S_m} \quad \sum_{\eta^{M_\circ} \otimes \varphi_1 \in \mathcal{A}(\operatorname{\mathrm{Ind}}_{P}^G(\sigma^M \otimes \varphi))} \quad \sum_{j_0 = i_1, \dots j_{m-1} = i_m, j_m = i_0} \\ &\qquad \int_{\widehat{A}_S} \int_{\widehat{A}_\circ} \Bigg( \kappa^{M_\circ} (\eta^{M_\circ}, t) (-1)^\tau \cdot s_{i_0, j_0}(\varphi) \frac{\partial s_{i_1, j_1}(\varphi)}{\partial_{\tau(1)}} \dots \frac{\partial s_{i_m, j_m}(\varphi)}{\partial_{\tau(m)}} \Bigg). \end{aligned} \end{align*}$$

We conclude that

$$\begin{align*}\langle [\Phi_{P_\circ,t}]_{\text{high}}, Q_\lambda \rangle = 0 \end{align*}$$

because it equals the paring of the Bott element $B^{m+r} \in K(\widehat {A}_P)$ and a cyclic cocycle on $\mathcal {C}(\widehat {A}_P)$ of degree m, which is trivial in $HP^{\text {even}}(\mathcal {C}(\widehat {A}_P))$ .

For the singular part, by the Schur’s orthogonality, we have $\langle [\Phi _{P_\circ ,t}]_{\lambda '}, Q_\lambda \rangle = 0$ unless $\lambda ' = \lambda $ . When $\lambda '=\lambda $ , Theorem 4.18 gives us the following computation:

$$\begin{align*}\begin{aligned} &(-1)^m\langle [\Phi_{P_\circ,t}]_{\lambda}, Q_\lambda \rangle\\ &\quad = \left( \frac{1}{2^r}\sum_{w \in W_K} (-1)^w e^{w \cdot \lambda}(t) \right) \cdot \sum_{k=1}^{2^r}\int_{\varphi \in \widehat{A}_P} \epsilon(k) \cdot T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma_k^{M_\circ} \otimes \varphi_1)}\left( \mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \right) \right). \end{aligned} \end{align*}$$

For each fixed k, it follows from Lemma 5.2 and Lemma 4.11 that

$$\begin{align*}\begin{aligned} &\int_{\varphi \in \widehat{A}_P} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma_k^{M_\circ} \otimes \varphi_1)}\left( \mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \right) \right)\\ &\quad =\int_{\varphi \in \widehat{A}_P} T_{\operatorname{\mathrm{Ind}}_{P_\circ}^G(\sigma_k^{M_\circ} \otimes \varphi_1)}\left( \mathrm{Trace} \left(\underbrace{S_\lambda \otimes \dots \otimes S_\lambda}_{m+1} \right)\Big|_{\varphi_2=0} \right)\\ &\quad = \sum_{j_0 = i_1, \dots j_{m-1} = i_m, j_m = i_0 = k} \sum_{\tau \in S_m}\int_{\varphi_1 \in \widehat{A}_\circ} (-1)^\tau \cdot s_{i_0, j_0}(\varphi_1) \frac{\partial s_{i_1, j_1}(\varphi_1)}{\partial_{\tau(1)}} \dots \frac{\partial s_{i_m, j_m}(\varphi_1)}{\partial_{\tau(m)}}\\ &\quad = \begin{cases} \langle B^m, b_m\rangle = 1 & \text{if} \ k = 1, \dots 2^{r-1} \\ -\langle B^m, b_m\rangle = 1 & \text{if} \ k = 2^{r-1}+ 1, \dots 2^{r}. \\ \end{cases} \end{aligned} \end{align*}$$

Combining all the above together and the fact that $\epsilon (k) = 1$ for $k = 1, \dots 2^{r-1}$ and $\epsilon (k) = -1$ for $k = 2^{r-1}+1, \dots 2^{r}$ , we conclude that

$$\begin{align*}\langle [\Phi_{P_\circ,t}], Q_\lambda \rangle = \langle [\Phi_{P_\circ,t}]_{\lambda}, Q_\lambda \rangle = (-1)^m \sum_{w \in W_K} (-1)^w e^{w \cdot \lambda}(t). \end{align*}$$

Appendix

A Integration of Schwartz functions

Let $\mathfrak {a} \subseteq \mathfrak {s}$ be the maximal abelian subalgebra of $\mathfrak {s}$ and $\mathfrak {h} = \mathfrak {t} \oplus \mathfrak {a}$ be the most noncompact Cartan subalgebra of $\mathfrak {g}$ . Let $\mathfrak {u} = \mathfrak {k} \oplus i \mathfrak {s}$ and U be the compact Lie group with Lie algebra $\mathfrak {u}$ . Take $v \in \mathfrak {a}^{*}$ an integral weight. Let $\tilde {v} \in \mathfrak {t}^{*} \oplus i \mathfrak {a}^{*}$ be an integral weight so that its restriction $\tilde {v}\big |_{i\mathfrak {a}^{*}} = i \cdot v$ . Let $G^{\mathbb {C}}$ be the complexification of G. Suppose that V is a finite-dimensional irreducible holomorphic representation of $G^{\mathbb {C}}$ with highest weight $\tilde {v}$ . Introduce a Hermitian inner product V so that U acts on V unitarily.

We take $u_v$ to be a unit vector in the sum of the weight spaces for weights that restrict to v on $\mathfrak {a}$ .

Lemma A.1. For any $g \in G$ , we have that

$$\begin{align*}e^{\langle v, \widetilde{H}(g)\rangle} = \|g \cdot u_v\|. \end{align*}$$

Proof. The proof is borrowed from [Reference Knapp18, Proposition 7.17]. By the Iwasawa decomposition, we write $g = ka n$ with $a = \exp (X)$ and $X \in \mathfrak {a}$ . Since $u_v$ is the highest vector for the action of $\mathfrak {a}$ , $\mathfrak {n}$ annihilates $u_v$ . Thus,

$$\begin{align*}\| g u_v\| = \|ka u_v\|= e^{\langle v, X \rangle }\|k u_v\|= e^{\langle v, X \rangle }. \end{align*}$$

The last equation follows from the fact that $K \subseteq U$ acts on V in a unitary way. However, we have that $H(g) = X$ . This completes the proof.

Proposition A.2. There exists a constant $C_v>0$ such that

$$\begin{align*}\langle v, \widetilde{H}(g) \rangle \leq C_v \cdot \| g\|, \end{align*}$$

where $\|g\|$ is the distance from $g \cdot K$ to $e \cdot K$ on $G/K$ .

Proof. Since $G = K\exp (\mathfrak {a}^+)K$ , we write $g = k' \exp (X) k$ with $X \in \mathfrak {a}^+$ . By definition,

$$\begin{align*}\|g \| = \|X\|, \quad \text{and} \quad \widetilde{H}(g) = \widetilde{H}(ak). \end{align*}$$

By the above lemma, we have that

$$\begin{align*}e^{\langle v,\widetilde{H}(ak)\rangle} = \|ak \cdot u_v\|. \end{align*}$$

We decompose $k \cdot u_v$ into the weight spaces of $\mathfrak {a}$ -action. That is,

$$\begin{align*}k \cdot u_v = \sum_{i=1}^n c_i \cdot u_i, \end{align*}$$

where $c_i \in \mathbb {C}, \|c_i\| \leq 1$ and $u_i$ is a unit vector in the weight spaces for weights that restricts to $\lambda _i \in \mathfrak {a}^{*}$ . It follows that

(A.1) $$ \begin{align} \begin{aligned} \|a k \cdot u_v \| &= \|\sum_{i=1}^n c_i \cdot a \cdot u_i\|\\ &\leq \sum_{i=1}^n \|a \cdot u_i\|= \sum_{i=1}^n e^{\langle \lambda_i, X\rangle}\| u_i\|\leq e^{C_v \cdot \|X\|}, \end{aligned} \end{align} $$

where

$$\begin{align*}C_v = n \cdot \sup_{Y \in \mathfrak{a}, \text{with} \ \|Y\| = 1 }\big\{\langle \lambda_i, Y \rangle \big| 1 \leq i \leq n \big\}. \end{align*}$$

This completes the proof.

Now let us fix a cuspidal parabolic subgroup $P = MAN$ . To prove the integral in the definition of $\Phi _{P,x}$ defines a continuous cochain on $\mathcal {C}(G)$ , we consider a family of Banach subalgebras $\mathcal {S}_t(G)$ , $t\in [0,\infty ]$ , of $C^{*}_r(G)$ , which was introduced and studied by Lafforgue, [Reference Lafforgue19, Definition 4.1.1].

Definition A.3. For $t\in [0, \infty ]$ , let $\mathcal {S}_t(G)$ be the completion of $C_c(G)$ with respect to the norm $\nu _t$ defined as follows:

$$\begin{align*}\nu_{t}(f) :=\sup _{g \in G}\Big\{(1+\|g\|))^{t} \Xi(g)^{-1} \big| f(g)\big|\Big\}. \end{align*}$$

Proposition A.4. The family of Banach spaces $\{\mathcal {S}_t(G)\}_{t\geq 0}$ satisfies the following properties.

  1. 1. For every $t\in [0,\infty )$ , $\mathcal {S}_t(G)$ is a dense subalgebra of $C^{*}_r(G)$ stable under holomorphic functional calculus.

  2. 2. For $0\leq t_1<t_2<\infty $ , $\|f\|_{t_1}\leq \|f\|_{t_2}$ , for $f\in \mathcal {S}_{t_2}(G)$ . Therefore, $\mathcal {C}(G)\subset \mathcal {S}_{t_2}(G)\subset \mathcal {S}_{t_1}(G)$ .

  3. 3. There exists a number $d_0>0$ such that the integral

    $$\begin{align*}f\mapsto f^P(xa):= \int_{KN}f(kxank^{-1}), \quad x \in M, a \in A \end{align*}$$
    is a continuous linear map from $\mathcal {S}_{t+d_0}(G)$ to $\mathcal {S}_t(MA)$ for $t\in [0,\infty )$ .
  4. 4. There exists $T_0>0$ such that the orbital integral

    $$\begin{align*}f\mapsto \int_{G/Z_G(x)} f(gxg^{-1}) \end{align*}$$
    is a continuous linear functional on $\mathcal {S}_t(G)$ for $t\geq T_0$ , $\forall x\in G$ .

Proof. Property 1 is from [Reference Lafforgue19, Proposition 4.1.2]; Property 2 follows from the definition of the norm $\nu _t$ ; Property 3 follows from [Reference Harish-Chandra10, Lemma 21]; Property 4 follows from [Reference Harish-Chandra10, Theorem 6].

Theorem A.5. For any $f_0, \dots f_m \in \mathcal {S}_{T_0+d_0+1}(G)$ for $t\geq T$ , and $x \in M$ , the following integral

$$\begin{align*}\begin{aligned} &\int_{h\in M /Z_M(x)} \int_{KN}\int_{G^{\times m}} H_1(g_1 k) \dots H_m(g_m k) \\ &f_0\left(k hxh^{-1} n k^{-1} (g_1 \dots g_m)^{-1}\right) \cdot f_1(g_1 )\dots f_m(g_m) \end{aligned} \end{align*}$$

is finite and defines a continuous n-linear functional on $\mathcal {S}_{d_0+T_0+1}(G)$ .

Proof. We put

$$\begin{align*}\tilde{f}_i(g_i) = \sup_{k \in K} \big\{ \big|H_i(g_i k)f_i(g_i)\big| \big\}. \end{align*}$$

By Proposition A.2, we find constants $C_i> 0$ so that

$$\begin{align*}|H_i(g_i k)|\leq C_i \|g_i k\| = C_i \|g_i\|. \end{align*}$$

It shows from Definition A.3 that $\tilde {f}_i$ belongs to $\mathcal {S}_{d_0+T_0}(G)$ , $i=1,...n$ . Thus, the integration in (A.1) is bounded by the following:

(A.2) $$ \begin{align} \begin{aligned} \int_{h\in M /Z_M(x)} \int_{KN}\int_{G^{\times m}} & \left| f_0\left(k hxh^{-1} n k^{-1} (g_1 \dots g_m)^{-1}\right) \cdot \tilde{f}_1(g_1 )\dots \tilde{f}_m(g_m) \right|\\ =& \int_{h\in M /Z_M(x)} \int_{KN} F(khxh^{-1}n k^{-1}), \end{aligned} \end{align} $$

where by Proposition A.4.2,

$$\begin{align*}F = \big| f_0 \ast \tilde{f}_1 \ast\dots \ast \tilde{f}_m \big|\in \mathcal{S}_{d_0+T_0}(G). \end{align*}$$

For any $x\in M, a \in A$ , we introduce

$$\begin{align*}F^{(P)}(x a) = \int_{KN}F(kxank^{-1}). \end{align*}$$

By Proposition A.4.3, we have that $F^{(P)}$ belongs to $\mathcal {S}_{T_0}(MA)$ . Applying Proposition A.4.4 to the group $MA$ , we conclude the orbital integral

$$\begin{align*}\int_{M/ Z_M(x)}F^{(P)}(hxh^{-1}) < +\infty, \end{align*}$$

from which we obtain the desired finiteness of the integral (A.2). Furthermore, with the continuity of the above maps,

$$\begin{align*}f_i\mapsto \tilde{f}_i, \qquad f_0\otimes \tilde{f}_1\otimes ...\otimes \tilde{f}_m\mapsto F,\qquad F\mapsto F^{(P)},\qquad F^{(P)}\mapsto \int_{M/ Z_M(x)}F^{(P)}(hxh^{-1}) , \end{align*}$$

and we conclude that the integral (A.2) is a continuous n-linear functional on $\mathcal {S}_{d_0+T_0+1}(G)$ .

B Characters of representations of G

B.1 Discrete series representation of G

Suppose that $\operatorname {\mathrm {rank}} G = \operatorname {\mathrm {rank}} K$ . Then, G has a compact Cartan subgroup T with Lie algebra denoted by $\mathfrak {t}$ . Moreover, $\dim (G/K)$ and $\dim (A_\circ )$ are automatically even. We can decompose the roots into compact roots and noncompact roots; that is,

$$\begin{align*}\mathcal{R}(\mathfrak{t}, \mathfrak{g}) = \mathcal{R}_c(\mathfrak{t}, \mathfrak{g}) \cup \mathcal{R}_n(\mathfrak{t}, \mathfrak{g}). \end{align*}$$

We choose a set of positive roots $\mathcal {R}^+(\mathfrak {t}, \mathfrak {g})$ and define

$$\begin{align*}\rho_c =\frac{1}{2} \sum_{ \alpha \in \mathcal{R}^+_c(\mathfrak{t}, \mathfrak{g}) }\alpha, \hspace{5mm} \rho_n =\frac{1}{2} \sum_{ \alpha \in \mathcal{R}^+_n(\mathfrak{t}, \mathfrak{g}) }\alpha, \hspace{5mm} \rho = \rho_c + \rho_n. \end{align*}$$

The choice of $\mathcal {R}^+_c(\mathfrak {t}, \mathfrak {k})$ determines a positive Weyl chamber $\mathfrak {t}_+^{*}$ . Let $\Lambda _T^{*}$ be the weight lattice in $\mathfrak {t}^{*}$ . Then, the set

$$\begin{align*}\Lambda^{*}_{K} = \Lambda^{*}_T \cap \mathfrak{t}^{*}_+ \end{align*}$$

parametrizes the set of irreducible K-representations. In addition, we denote by $W_K$ the Weyl group of the compact subgroup K. For any $w \in W_K$ , let $l(w)$ be the length of w, and we denote by $(-1)^w = (-1)^{l(w)}$ .

Definition B.1. Let $\lambda \in \Lambda ^{*}_{K} +\rho _c$ . We say that $\lambda $ is regular if

$$\begin{align*}\langle \lambda, \alpha \rangle \neq 0 \end{align*}$$

for all $\alpha \in \mathcal {R}_n(\mathfrak {t}, \mathfrak {g})$ . Otherwise, we say $\lambda $ is singular.

Assume that $q = \frac {\dim G/K}{2}$ and $T^{\text {reg}} \subset T$ the set of regular elements in T.

Theorem B.2 (Harish-Chandra)

For any regular $\lambda \in \Lambda ^{*}_{K} +\rho _c$ , there is a discrete series representation $\sigma (\lambda )$ of G with Harish-Chandra parameter $\lambda $ . Its character is given by the following formula:

$$\begin{align*}\Theta( \lambda) \big|_{T^{\operatorname{\mathrm{reg}}}} = (-1)^q \cdot \frac{\sum_{w\in W_K} (-1)^w e^{w \lambda}}{\Delta^G_T}, \end{align*}$$

where

$$\begin{align*}\Delta^G_T = \prod_{\alpha \in \mathcal{R}^+(\mathfrak{t}, \mathfrak{g})} (e^{\frac{\alpha}{2}}-e^{\frac{-\alpha}{2}} ). \end{align*}$$

Next, we consider the case when $\lambda \in \Lambda ^{*}_{K} + \rho _c$ is singular. That is, there exists at least one noncompact root $\alpha $ so that $\langle \lambda , \alpha \rangle = 0$ . Choose a positive root system $\mathcal {R}^+(\mathfrak {t}, \mathfrak {g})$ that makes $\lambda $ dominant; the choices of $\mathcal {R}^+(\mathfrak {t}, \mathfrak {g})$ are not unique when $\lambda $ is singular. For every choice of $\mathcal {R}^+(\mathfrak {t}, \mathfrak {g})$ , we can associate it with a representation, denoted by $\sigma \big (\lambda , \mathcal {R}^+\big )$ . We call $\sigma (\lambda , \mathcal {R}^+)$ a limit of discrete series representation of G. Distinct choices of $\mathcal {R}^+(\mathfrak {t}, \mathfrak {g})$ lead to infinitesimally equivalent versions of $\sigma \big (\lambda , \mathcal {R}^+\big )$ . Let $\Theta \big (\lambda , \mathcal {R}^+\big )$ be the character of $\sigma \big (\lambda , \mathcal {R}^+\big )$ . Then,

$$\begin{align*}\Theta\big(\lambda, \mathcal{R}^+\big)\big|_{T^{\operatorname{\mathrm{reg}}}} = (-1)^\pm \frac{\sum_{w\in W_K} (-1)^w e^{w \lambda}}{\Delta^G_T}. \end{align*}$$

Moreover, for any $w \in W_K$ which fixes $\lambda $ , we have that

(B.1) $$ \begin{align} \Theta\big(\lambda, w\cdot \mathcal{R}^+\big)\big|_{T^{\operatorname{\mathrm{reg}}}} = (-1)^w \cdot \Theta\big(\lambda, w\cdot \mathcal{R}^+\big)\big|_{T^{\operatorname{\mathrm{reg}}}}. \end{align} $$

See [Reference Knapp18, P. 460] for more detailed discussion.

B.2 Discrete series representations of M

Let $P = MAN$ be a cuspidal parabolic subgroup. The subgroup M might not be connected in general. We denote by $M_0$ the connected component of M and set

$$\begin{align*}M^\sharp = M_0 Z_M, \end{align*}$$

where $Z_M$ is the center for M.

Let $\sigma _0$ be a discrete series representation (or limit of discrete series representation) of the connected group $M_0$ and $\chi $ be a unitary character of $Z_M$ . If $\sigma _0$ has a Harish-Chandra parameter $\lambda $ , then we assume that

$$\begin{align*}\chi\big|_{T_M \cap Z_M} = e^{\lambda - \rho_M}\big|_{T_M \cap Z_M}. \end{align*}$$

We have the well-defined representation $\sigma _0 \boxtimes \chi $ of $M^\sharp $ , given by

$$\begin{align*}\sigma_0 \boxtimes \chi(gz) = \sigma(g) \chi(z), \end{align*}$$

for $g \in M_0$ and $z \in Z_M$ .

Definition B.3. The discrete series representation or limit of discrete series representation $\sigma $ for the possibly disconnected group M induced from $\sigma _0\boxtimes \chi $ is defined as

$$\begin{align*}\sigma= \operatorname{\mathrm{Ind}}^M_{M^\sharp}\big( \sigma_0 \boxtimes \chi\big). \end{align*}$$

Discrete series representations of M are parametrized by a pair of Harish-Chandra parameter $\lambda $ and unitary character $\chi $ . Next, we show that $\chi $ is redundant for the case of $M_\circ $ . Denote

  • $\mathfrak {a} =$ the Lie algebra of A;

  • $\mathfrak {t}_M = $ the Lie algebra of the compact Cartan subgroup of M;

  • $\mathfrak {a}_M = $ the maximal abelian subalgebra of $\mathfrak {s} \cap \mathfrak {m}$ , where $\mathfrak {g} = \mathfrak {k} \oplus \mathfrak {s}$ ;

Then, $\mathfrak {t}_M \oplus \mathfrak {a}$ is a Cartan subalgebra of $\mathfrak {g}$ , and $\mathfrak {a}_{\mathfrak {s}} = \mathfrak {a}_M \oplus \mathfrak {a}$ is a maximal abelian subalgebra in $\mathfrak {s}$ .

Let $\alpha $ be a real root in $\mathcal {R}(\mathfrak {g}, \mathfrak {t}_M \oplus \mathfrak {a})$ . Restrict $\alpha $ to $\mathfrak {a}$ and extend it by $0$ on $\mathfrak {a}_M$ to obtain a restricted root in $\mathcal {R}(\mathfrak {g}, \mathfrak {a}_{\mathfrak {s}})$ . Form an element $H_\alpha \in \mathfrak {a}_{\mathfrak {s}}$ by the following:

$$\begin{align*}\alpha(H) = \langle H, H_\alpha \rangle, \hspace{5mm} H \in \mathfrak{a}_{\mathfrak{s}}. \end{align*}$$

It is direct to check that

$$\begin{align*}\gamma_\alpha = \exp \Big( \frac{2\pi i H_\alpha}{|\alpha|^2} \Big) \end{align*}$$

is a member of the center of M. Denote by $F_M$ the finite group generated by all $\gamma _\alpha $ induced from real roots of $\Delta (\mathfrak {g}, \mathfrak {t}_M \oplus \mathfrak {a})$ . It follows from Lemma 12.30 in [Reference Knapp18] that

(B.2) $$ \begin{align} M^\sharp = M_0 F_M. \end{align} $$

Lemma B.4. For the maximal cuspidal parabolic subgroup $P_\circ = M_\circ A_\circ N_\circ $ , we have that

$$\begin{align*}Z_{M_\circ} \subseteq (M_\circ)_0. \end{align*}$$

Proof. There is no real root in $\mathcal {R}(\mathfrak {h}_\circ , \mathfrak {g})$ since the Cartan subgroup $H_\circ $ is maximally compact. The lemma follows from (B.2).

It follows that discrete series or limit of discrete series representations of $M_\circ $ are para-metrized by Harish-Chandra parameter $\lambda $ . We denote them by $\sigma (\lambda )$ or $\sigma (\lambda , \mathcal {R}^+)$ .

B.3 Induced representations of G

Let $P = MAN$ be a cuspidal parabolic subgroup of G and $L = MA$ as before. For any Cartan subgroup J of L, let $\{ J_1, J_2, \dots , J_k \}$ be a complete set of representatives for distinct conjugacy classes of Cartan subgroups of L for which $J_i$ is conjugate to J in G. Suppose that $x_i \in G$ satisfy $J_i = x_i J x_i^{-1}$ , and for $j \in J$ , write $j_i = x_i j x_i^{-1}$ .

Theorem B.5. Let $\Theta (P, \sigma , \varphi )$ be the character of the basic representation $\operatorname {\mathrm {Ind}}_P^G(\sigma \otimes \varphi )$ . Then,

  • $\Theta (P, \sigma , \varphi )$ is a locally integrable function.

  • $\Theta (P, \sigma , \varphi )$ is nonvanishing only on Cartan subgroups of G that are G-conjugate to Cartan subgroups of L.

  • For any $j \in J$ , we have

    (B.3) $$ \begin{align} \begin{aligned} \Theta(P, \sigma, \varphi)(j) &=\sum_{i=1}^k |W( J_i, L)|^{-1} |\Delta^G_{J_i}(j_i)|^{-1} \Big( \sum_{w \in W(J_i, G)}|\Delta^L_{J_i}(wj_i)| \cdot \Theta^{M}_\sigma\big(wj_i \big|_{M}\big) \varphi(wj_i|_{H_p}) \Big), \end{aligned} \end{align} $$
    where $\Theta ^{M}_\sigma $ is the character for the $M_P$ representation $\sigma $ , and the definition of $\Delta ^G_{J_i}$ (and $\Delta ^L_{J_i}$ ) is explained in Theorem B.2.

Proof. The first two properties of $\Theta (P, \sigma , \varphi )$ can be found in [Reference Knapp18, Proposition 10.19], and the last formula has been given in [Reference Herb15, Equation (2.9)].

Corollary B.6. Suppose that $P_\circ $ is the maximal cuspidal parabolic subgroup of G and $\sigma ^{M_\circ }(\lambda )$ is a (limit of) discrete series representation with Harish-Chandra parameter $\lambda $ . We have that

$$\begin{align*}\Theta \left(P_\circ, \sigma^{M_\circ}\left(\lambda\right), \varphi \right)(h) =\frac{\sum_{w \in K} (-1)^w e^{w\lambda}(h_k) \cdot \varphi(h_p)}{\Delta^G_{H_\circ}(h)}, \end{align*}$$

for any $h \in H_\circ ^{\text {reg}}$ .

Proof. The corollary follows from (B.3) and Theorem B.2.

C Description of $K(C^{*}_r(G))$

Without loss of generality, we assume that $\dim A_\circ = m $ is even. Otherwise, we can replace G by $G \times \mathbb {R}$ .

C.1 Generalized Schmid identity

Suppose that $P = MAN$ is a cuspidal parabolic subgroup of G and $H = TA$ is its associated Cartan subgroup. We assume that P is not maximal, and thus, H is not the most compact. By Cayley transform, we can obtain a more compact Cartan subgroup $H'= T' A'$ . We denote by $P' = M' A' N'$ the corresponding cuspidal parabolic subgroup. Here, $A = A' \times \mathbb {R}$ .

Let $\sigma $ be a (limit of) discrete series representation of M, and

$$\begin{align*}\nu \otimes 1 \in \widehat{A} = \widehat{A'} \times \widehat{\mathbb{R}}. \end{align*}$$

Suppose that

$$\begin{align*}\pi = \operatorname{\mathrm{Ind}}_P^G\big(\sigma \otimes (\nu \otimes 1)\big) \end{align*}$$

is a basic representation. Then, $\pi $ is either irreducible or decomposes as follows:

$$\begin{align*}\operatorname{\mathrm{Ind}}_P^G\big(\sigma \otimes (\nu \otimes 1)\big) = \operatorname{\mathrm{Ind}}^G_{P'}( \delta_1 \otimes \nu) \oplus \operatorname{\mathrm{Ind}}^G_{P'}(\delta_2 \otimes \nu). \end{align*}$$

Here, $\delta _1$ and $\delta _2$ are limit of discrete series representations of $M'$ . Moreover, they share the same Harish-Chandra parameter but correspond to different choices of positive roots. On the right-hand side of the above equation, if $P'$ is not maximal, then one can continue the decomposition for $\operatorname {\mathrm {Ind}}^G_{P'}(\sigma _i' \otimes \nu ), i = 1, 2$ . Eventually, we get

(C.1) $$ \begin{align} \operatorname{\mathrm{Ind}}_P^G\big(\sigma \otimes (\varphi \otimes 1)\big) = \bigoplus_{i} \operatorname{\mathrm{Ind}}^G_{P_\circ}( \delta_i \otimes \varphi), \end{align} $$

where

$$\begin{align*}\varphi \otimes 1 \in \widehat{A}_P =\widehat{A}_\circ \times \widehat{A}_S. \end{align*}$$

The number of components in the above decomposition is closely related to the R-group which we will discuss below. We refer to [Reference Knapp18, Corollary 14.72] for detailed discussion.

As a consequence, we obtain the following lemma immediately.

Lemma C.1. Let $P_\circ = M_\circ A_\circ N_\circ $ be the maximal cuspidal parabolic subgroup. If $\sigma \otimes \varphi $ is an irreducible representation of $ M_\circ A_\circ $ , then the induced representation

$$\begin{align*}\operatorname{\mathrm{Ind}}_{P_\circ}^G \big( \sigma \otimes \varphi\big) \end{align*}$$

is also irreducible.

C.2 Essential representations

Clare-Crisp-Higson proved in [Reference Clare, Crisp and Higson4, Section 6] that the group $C^{*}$ -algebra $C^{*}_r(G)$ has the following decomposition:

(C.2) $$ \begin{align} C^{*}_r(G) \cong \bigoplus_{[P, \sigma] \in \mathcal{P}(G)} C^{*}_r(G)_{[P, \sigma]}, \end{align} $$

where

$$\begin{align*}C^{*}_r(G)_{[P, \sigma]} \cong \mathcal{K}\big(\operatorname{\mathrm{Ind}}_P^G(\sigma)\big)^{W_\sigma}. \end{align*}$$

For principal series representations $\operatorname {\mathrm {Ind}}_P^G(\sigma \otimes \varphi )$ , Knapp and Stein [Reference Knapp18, Chapter 9] showed that the stabilizer $W_\sigma $ admits a semidirect product decomposition

$$\begin{align*}W_\sigma = W^{\prime}_\sigma \rtimes R_\sigma, \end{align*}$$

where the R-group $R_\sigma $ consists of those elements that actually contribute nontrivially to the intertwining algebra of $\operatorname {\mathrm {Ind}}_P^G(\sigma \otimes \varphi )$ . Wassermann notes the following Morita equivalence:

(C.3) $$ \begin{align} \mathcal{K}\big(\operatorname{\mathrm{Ind}}_P^G(\sigma)\big)^{W_\sigma} \sim C_0(\widehat{A}_P/W^{\prime}_\sigma) \rtimes R_\sigma. \end{align} $$

Definition C.2. We say that an equivalence class $[P, \sigma ]$ is essential if $W_\sigma = R_\sigma $ . We denote it by $[P, \sigma ]_{\mathrm {ess}}$ . In this case,

$$\begin{align*}W_\sigma = R_\sigma \cong (\mathbb{Z}_2)^{r} \end{align*}$$

is obtained by application of all combinations of $r = \dim (A_P)- \dim (A_\circ )$ commuting reflections in simple noncompact roots.

As before, let T be the maximal torus of K. We denote by $\Lambda _T^{*}$ and $\Lambda _{K}^{*}$ the weight lattice and its intersection with the positive Weyl chamber of K. The following results can be found in [Reference Clare, Higson and Song5, Reference Clare, Higson, Song and Tang6].

Theorem C.3 [Reference Clare, Higson, Song and Tang6]

There is a bijection between the set of $[P, \sigma ]_{\mathrm {ess}}$ and the set $\Lambda ^{*}_{K}+\rho _c$ such that

  • for regular $\lambda \in \Lambda ^{*}_{K}+\rho _c$ – that is,

    $$\begin{align*}\langle \lambda, \alpha \rangle \neq 0 \end{align*}$$
    for all noncompact roots $\alpha \in \mathcal {R}_n$ – then the correspondent essential class $[P, \sigma ]$ satisfies that $W_\sigma $ is trivial, $P = P_\circ $ , and $\sigma $ is the discrete series representation of $M_\circ $ with Harish-Chandra parameter $\lambda $ . In addition,
    $$\begin{align*}\operatorname{\mathrm{Ind}}_{P_\circ}^G \left(\sigma \otimes \varphi \right) \end{align*}$$
    are irreducible for all $\varphi \in \widehat {A}_\circ $ .
  • Otherwise, if $\langle \lambda , \alpha \rangle = 0$ for some $\alpha \in \mathcal {R}_n$ , then

    (C.4) $$ \begin{align} \operatorname{\mathrm{Ind}}_{P}^G(\sigma \otimes \varphi \otimes 1) = \bigoplus_{i=1}^{2^r} \operatorname{\mathrm{Ind}}_{P_\circ}^G \big(\delta_i \otimes \varphi \big),\end{align} $$
    where $\delta _i$ is a limit of discrete series representation of $M_\circ $ with Harish-Chandra parameter $\lambda $ , $\varphi \in \widehat {A}_\circ $ and $\varphi \otimes 1 \in \widehat {A}_P$ .

The computation of K-theory group of $C_r^{*}(G)$ can be summarized as follows.

Theorem C.4 [Reference Clare, Higson, Song and Tang6]

The K-theory group of $C_r^{*}(G)$ is a free abelian group generated by the following components; that is,

(C.5) $$ \begin{align} \begin{aligned} K_0(C^{*}_r(G))\cong& \bigoplus_{[P, \sigma]^{\mathrm{ess}}} K_0 \left(\mathcal{K}\left(C^{*}_r(G)_{[P, \sigma]}\right)\right)\\ \cong& \bigoplus_{[P, \sigma]^{\mathrm{ess}}} K_0 \left(\mathcal{K}\big(\operatorname{\mathrm{Ind}}_P^G \sigma \big)^{W_\sigma}\right)\\ \cong& \bigoplus_{ \text{regular \ part}}K_0 \big(C_0(\mathbb{R}^{m})\big) \oplus \bigoplus_{ \text{singular \ part}}K_0 \Big( \big(C_0(\mathbb{R})\rtimes \mathbb{Z}_2\big)^r \otimes C_0(\mathbb{R}^{m})\Big) \\ \cong & \bigoplus_{ \lambda \in \Lambda^{*}_{K} +\rho_c} \mathbb{Z}. \end{aligned} \end{align} $$

Example C.5. Let $G = SL(2, \mathbb {R})$ . The principal series representations of $SL(2, \mathbb {R})$ are para-metrized by characters

$$\begin{align*}(\sigma, \lambda) \in \widehat{M A} \cong\{ \pm 1\} \times \mathbb{R} \end{align*}$$

modulo the action of the Weyl group $\mathbb {Z}_2$ . One family of principal series representations is irreducible at $0$ , while the other decomposes as a sum of two limit of discrete series representations. At the level of $C^{*}_r(G)$ , this can be explained as

$$\begin{align*}\begin{aligned} \widehat{M A} / \mathbb{Z}_{2} &\cong\{+1\} \times[0, \infty) \cup\{-1\} \times[0, \infty) \\ & \cong\{+1\} \times \mathbb{R} / \mathbb{Z}_{2} \cup\{-1\} \times \mathbb{R} / \mathbb{Z}_{2}, \end{aligned} \end{align*}$$

and the principal series representations contribute summands to $C^{*}_r (SL(2,\mathbb {R}))$ of the form

$$\begin{align*}C_{0}\left(\mathbb{R} / \mathbb{Z}_{2}\right) \quad \text { and } \quad C_{0}(\mathbb{R}) \rtimes \mathbb{Z}_{2} \end{align*}$$

up to Morita equivalence. In addition, $SL(2, \mathbb {R})$ has discrete series representations each of which contributes a summand of $\mathbb {C}$ to $C^{*}_r (SL(2,\mathbb {R}))$ , up to Morita equivalence. We obtain

$$\begin{align*}C_{r}^{*} (S L(2, \mathbb{R})) \sim C_{0}\left(\mathbb{R} / \mathbb{Z}_{2}\right) \oplus C_{0}(\mathbb{R}) \rtimes \mathbb{Z}_{2} \oplus \bigoplus_{n \in \mathbb{Z} \backslash\{0\}} \mathbb{C}. \end{align*}$$

Here, the part $ C_{0}\left (\mathbb {R} / \mathbb {Z}_{2}\right )$ corresponds to the family of spherical principal series representations, which are not essential. Then, (C.5) can be read as follows:

$$\begin{align*}\begin{aligned} K_0(C^{*}_r(SL(2,\mathbb{R})))\cong K_0 \Big( \big(C_0(\mathbb{R})\rtimes \mathbb{Z}_2\big) \Big) \oplus \bigoplus_{n \neq 0}K_0 \big(\mathbb{C}\big). \end{aligned} \end{align*}$$

C.3 The formula for orbital integrals

In this subsection, we summarize the formulas and results in [Reference Herb14, Reference Herb15]. If P is the minimal parabolic subgroup with the most noncompact Cartan subgroup H, then the Fourier transform of orbital integral equals the character of representation. That is, for any $h \in H^{\mathrm {reg}}$ ,

$$\begin{align*}\widehat{F}^H_f(\chi) = \int_{h\in H} \chi(h) \cdot F^{H}_f(h) \cdot dh= \Theta(P, \chi)(f)\end{align*}$$

or equivalently,

$$\begin{align*}F^H_f(h) = \int_{\chi \in \widehat{H}} \Theta(P, \chi)(f)\cdot \overline{\chi(h)} \cdot d\chi. \end{align*}$$

For any arbitrary cuspidal parabolic subgroup P, the formula for orbital integral is much more complicated, given as follows:

(C.6) $$ \begin{align} F_f^{H}(h) = \sum_{Q \in \mathrm{Par}(G, P)} \int_{\chi \in \widehat{J}} \Theta(Q, \chi)(f) \cdot \kappa^G(Q, \chi, h) d\chi. \end{align} $$

Remark C.6. In the above formula,

  • the sum ranges over the set

    $$\begin{align*}\mathrm{Par}(G, P) = \big\{ \text{cuspidal parabolic subgroup } Q \text{ of } G\big| Q \ \text{is no more compact than} \ P \big\}. \end{align*}$$
  • J is the Cartan subgroup associated to the cuspidal parabolic subgroup Q.

  • $\chi $ is a unitary character of J, and $\Theta (Q, \chi )$ is a tempered invariant eigen-distribution defined in [Reference Herb14]. In particular, $\Theta (Q, \chi )$ is the character of parabolic induced representation or an alternating sum of characters which can be embedded in a reducible unitary principal series representation associated to a different parabolic subgroup.

  • The function $\kappa ^G$ is rather complicated to compute. Nevertheless, for the purpose of this paper, we only need to know the existence of functions $\kappa ^G$ , which has been verified in [Reference Sally and Warner28].

In a special case when $P = G$ and $H =T$ , the formula (C.6) has the following more explicit form.

Theorem C.7. For any $t \in T^{\text {reg}}$ , the orbital integral

(C.7) $$ \begin{align} \begin{aligned} F^{T}_f(t) &= \sum_{ \mathrm{regular} \ \lambda \in \Lambda^{*}_{K} + \rho_c} \sum_{w \in W_K} (-1)^w \cdot e^{w \cdot \lambda}(t)\cdot\Theta(\lambda)(f)\\ &\quad + \sum_{ \mathrm{singular} \ \lambda \in \Lambda^{*}_{K} + \rho_c} \sum_{w \in W_K} (-1)^w \cdot e^{w \cdot \lambda}(t)\cdot \Theta(\lambda)(f)\\ &\quad + \int_{\pi \in \widehat{G}^{\mathrm{high}}_{\mathrm{temp}}} \Theta(\pi)(f) \cdot \kappa^G(\pi, t) d\chi. \end{aligned} \end{align} $$

In the above formula, there are three parts:

  • regular part: $\Theta (\lambda )$ is the character of the discrete series representation with Harish-Chandra parameter $\lambda $ ;

  • singular part: for singular $\lambda \in \Lambda ^{*}_{K} + \rho _c$ , we denote by $n(\lambda )$ the number of different limit of discrete series representations with Harish-Chandra parameter $\lambda $ . By (B.1), we can organize them so that

    $$\begin{align*}\Theta_1(\lambda)\big|_{T^{\text{reg}}} = \dots = \Theta_{\frac{n(\lambda)}{2}}(\lambda)\big|_{T^{\text{reg}}} = -\Theta_{\frac{n(\lambda)}{2}+1}(\lambda) \big|_{T^{\text{reg}}}= \dots = -\Theta_{n(\lambda)}(\lambda)\big|_{T^{\text{reg}}}. \end{align*}$$
    We put
    $$\begin{align*}\Theta(\lambda) \colon = \frac{1}{n(\lambda)} \cdot \Big( \sum_{i=1}^{\frac{n(\lambda)}{2}} \Theta_i(\lambda) - \sum_{i=\frac{n(\lambda)}{2} + 1}^{n(\lambda)} \Theta_i(\lambda)\Big). \end{align*}$$
  • higher part: $\widehat {G}^{\mathrm {high}}_{\mathrm {temp}}$ is a subset of $\widehat {G}_{\mathrm {temp}}$ consisting of irreducible tempered representations which are not (limit of) discrete series representations.

Acknowledgements

We would like to thank Nigel Higson, Peter Hochs, Markus Pflaum, Hessel Posthuma and Hang Wang for inspiring discussions. Our research is partially supported by the National Science Foundation. We would like to thank the Shanghai Center of Mathematical Sciences for hosting our visits, where parts of this work were completed.

Competing interest

The authors have no competing interest to declare.

References

Barbasch, D. and Moscovici, H., ‘ ${L}^2$ -index and the Selberg trace formula’, J. Funct. Anal. 53(2) (1983), 151201.CrossRefGoogle Scholar
Baum, P., Connes, A. and Higson, N., ‘Classifying space for proper actions and $K$ -theory of group ${C}^{\ast }$ -algebras’, in ${C}^{\ast }$ -algebras: 1943–1993 (San Antonio, TX, 1993) (Contemp. Math.) vol. 167 (American Mathematical Society, Providence, RI, 1994), 240291.Google Scholar
Blanc, P. and Brylinski, J.-L., ‘Cyclic homology and the Selberg principle’, J. Funct. Anal. 109(2) (1992), 289330.CrossRefGoogle Scholar
Clare, P., Crisp, T. and Higson, N., ‘Parabolic induction and restriction via ${C}^{\ast }$ -algebras and Hilbert ${C}^{\ast }$ -modules’, Compos. Math. 152(6) (2016), 12861318.CrossRefGoogle Scholar
Clare, P., Higson, N. and Song, Y., ‘On the Connes-Kasparov isomorphism II. The Vogan classification of essential components in the tempered dual’, Preprint, 2022, arXiv:2202.02857.Google Scholar
Clare, P., Higson, N., Song, Y. and Tang, X., ‘On the Connes-Kasparov isomorphism I. The reduced ${C}^{\ast }$ -algebra of a real reductive group and the K-theory of the tempered dual’, Preprint, 2022, arXiv:2202.02855.Google Scholar
Connes, A., ‘Noncommutative differential geometry’, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257360.CrossRefGoogle Scholar
Connes, A. and Moscovici, H., ‘The ${L}^2$ -index theorem for homogeneous spaces of Lie groups’, Ann. of Math. (2) 115(2) (1982), 291330.CrossRefGoogle Scholar
Harish-Chandra, , ‘Some results on an invariant integral on a semisimple Lie algebra’, Ann. of Math. (2) 80 (1964), 551593.CrossRefGoogle Scholar
Harish-Chandra, , ‘Discrete series for semisimple Lie groups. II. Explicit determination of the characters’, Acta Math. 116 (1966), 1111.CrossRefGoogle Scholar
Harish-Chandra, , ‘Two theorems on semi-simple Lie groups’, Ann. of Math. (2) 83 (1966), 74128.CrossRefGoogle Scholar
Harish-Chandra, , ‘Harmonic analysis on real reductive groups. I. The theory of the constant term’, J. Functional Analysis 19 (1975), 104204.CrossRefGoogle Scholar
Harish-Chandra, , ‘Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula’, Ann. of Math. (2) 104(1) (1976), 117201.CrossRefGoogle Scholar
Herb, R. A., ‘Fourier inversion of invariant integrals on semisimple real Lie groups’, Trans. Amer. Math. Soc. 249(2) (1979), 281302.Google Scholar
Herb, R. A., ‘Fourier inversion and the Plancherel theorem for semisimple real Lie groups’, Amer. J. Math. 104(1) (1982), 958.CrossRefGoogle Scholar
Hochs, P., Song, Y. and Tang, X., ‘An index theorem for higher orbital integrals’, Math. Ann. 382(1–2) (2022), 169202.CrossRefGoogle Scholar
Hochs, P. and Wang, H., ‘Orbital integrals and K-theory classes’, Ann. K-Theory 4(2) (2019), 185209.CrossRefGoogle Scholar
Knapp, A. W., Representation Theory of Semisimple Groups (Princeton Landmarks in Mathematics) (Princeton University Press, Princeton, NJ, 2001). An overview based on examples. Reprint of the 1986 original.Google Scholar
Lafforgue, V., ‘ $K$ -théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes’, Invent. Math. 149(1) (2002), 195.CrossRefGoogle Scholar
Loday, J.-L., Cyclic Homology (Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]) vol. 301, second edn. (Springer-Verlag, Berlin, 1998). Appendix E by Ronco, María O., chapter 13 by the author in collaboration with Teimuraz Pirashvili.Google Scholar
Mathai, V. and Zhang, W., ‘Geometric quantization for proper actions’, Adv. Math. 225(3) (2010), 12241247. With an appendix by Ulrich Bunke.CrossRefGoogle Scholar
Nistor, V., ‘Cyclic cohomology of crossed products by algebraic groups’, Invent. Math. 112(3) (1993), 615638.CrossRefGoogle Scholar
Nistor, V., ‘Higher orbital integrals, Shalika germs, and the Hochschild homology of Hecke algebras’, Int. J. Math. Math. Sci. 26(3) (2001), 129160.CrossRefGoogle Scholar
Pflaum, M., Posthuma, H. and Tang, X., ‘The localized longitudinal index theorem for Lie groupoids and the van Est map’, Adv. Math. 270 (2015), 223262.CrossRefGoogle Scholar
Pflaum, M., Posthuma, H. and Tang, X., ‘The transverse index theorem for proper cocompact actions of Lie groupoids’, J. Differential Geom. 99(3) (2015), 443472.CrossRefGoogle Scholar
Piazza, P. and Posthuma, H., ‘Higher genera for proper actions of lie groups’, Ann. K-Theory, to appear.Google Scholar
Piazza, P., Posthuma, H., Song, Y. and Tang, X., ‘Higher orbital integrals, rho numbers and index theory’, Preprint, 2021, arXiv: 2108.0982.Google Scholar
Sally, P. J. Jr. and Warner, G., ‘The Fourier transform on semisimple Lie groups of real rank one’, Acta Math. 131 (1973), 126.CrossRefGoogle Scholar
Vogan, D. A. Jr., Representations of Real Reductive Lie Groups (Progress in Mathematics) vol. 15 (Birkhäuser, Boston, 1981).Google Scholar
Wallach, N. R., Real Reductive Groups. II (Pure and Applied Mathematics) vol. 132 (Academic Press, Inc., Boston, MA, 1992).Google Scholar
Wang, H., ‘ ${L}^2$ -index formula for proper cocompact group actions’, J. Noncommut. Geom. 8(2) (2014), 393432.CrossRefGoogle Scholar
Warner, G., Harmonic Analysis on Semi-Simple Lie Groups. II (Die Grundlehren der mathematischen Wissenschaften) Band 189 (Springer-Verlag, New York-Heidelberg, 1972).Google Scholar
Wassermann, A., ‘Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs’, C. R. Acad. Sci. Paris Sér. I Math. 304(18) (1987), 559562.Google Scholar
Wassermann, A., ‘Cyclic cohomology of algebras of smooth functions on orbifolds’, in Operator Algebras and Applications, Vol. 1 (London Math. Soc. Lecture Note Ser.) vol. 135 (Cambridge Univ. Press, Cambridge, 1988), 229244.CrossRefGoogle Scholar