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Abstract
Let G be a linear real reductive Lie group. Orbital integrals define traces on the group algebra of G. We introduce a
construction of higher orbital integrals in the direction of higher cyclic cocycles on the Harish-Chandra Schwartz
algebra of G. We analyze these higher orbital integrals via Fourier transform by expressing them as integrals on
the tempered dual of G. We obtain explicit formulas for the pairing between the higher orbital integrals and the
K-theory of the reduced group 𝐶∗-algebra, and we discuss their application to K-theory.
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1. Introduction

Let G be a linear real reductive group and let f be a compactly supported smooth function on G. For
𝑥 ∈ 𝐺, let 𝑍𝐺 (𝑥) be the centralizer of G associated with x and 𝑑𝐺/𝑍𝐺 (𝑥) �𝑔 be the left invariant measure
on 𝐺/𝑍𝐺 (𝑥) determined by a Haar measure 𝑑𝑔 on G. The following integral

Λ𝑍𝐺 (𝑥)
𝑓 :=

∫
𝐺/𝑍𝐺 (𝑥)

𝑓 (𝑔𝑥𝑔−1)𝑑𝐺/𝑍𝐺 (𝑥) �𝑔

is an important tool in representation theory with deep connections to number theory. Harish-Chandra
showed the above integrals extend to all f in the Harish-Chandra Schwartz algebra C (𝐺), and obtained
his famous Plancherel formula [9, 10, 13].

In this paper, we aim to study the noncommutative geometry of the above integral and its gener-
alizations. Let H be a Cartan subgroup of G and K be a maximal compact subgroup of G. The Weyl
group 𝑊 (𝐻,𝐺) = 𝑁𝐾 (𝐻)/𝑍𝐾 (𝐻) is defined as the quotient of the normalizer 𝑁𝐾 (𝐻) by the central-
izer 𝑍𝐾 (𝐻). Let 𝐻reg ⊂ 𝐻 be the subset of regular elements. In particular, for any 𝑥 ∈ 𝐻reg, we have
that 𝑍𝐺 (𝑥) = 𝐻. Following Harish-Chandra, we define the orbital integral associated to H to be

𝐹𝐻 : C (𝐺) → 𝐶∞(𝐻reg)−𝑊 (𝐻,𝐺) , 𝐹𝐻𝑓 (𝑥) := 𝜖𝐻 (𝑥)Δ𝐺𝐻 (𝑥)
∫
𝐺/𝐻

𝑓 (𝑔𝑥𝑔−1)𝑑𝐺/𝐻 �𝑔, (1.1)

where 𝐶∞(𝐻reg)−𝑊 (𝐻,𝐺) is the space of anti-symmetric functions with respect to the Weyl group
𝑊 (𝐻,𝐺) action on H, 𝜖𝐻 (ℎ) is a sign function on H, and Δ𝐺𝐻 is the Weyl denominator for H. Our
starting point is the property that for a given 𝑥 ∈ 𝐻reg, the linear functional on C (𝐺),

𝐹𝐻 (𝑥) : 𝑓 ↦→ 𝐹𝐻𝑓 (𝑥),

is a trace on C (𝐺); cf. [17].
In cyclic cohomology, traces are special examples of cyclic cocycles on an algebra. In noncommutative

geometry, there is a fundamental pairing between the periodic cyclic cohomology and the K-theory of
an algebra. We say that a linear real reductive Lie group G is of equal rank if and only if the dimension
of a Cartan subgroup of G equals the dimension of a Cartan subgroup of the maximal compact subgroup
K of G. In this case, G has discrete series representations [18, Theorem 12.20]. The pairing between the
orbital integrals 𝐹𝐻 (𝑥) and 𝐾0(C (𝐺)) behaves differently between the cases when G is of equal rank and
nonequal rank. More explicitly, we will show in this article that when G has equal rank, 𝐹𝐻 defines an
isomorphism as abelian groups from the K-theory of C (𝐺) to the representation ring of K. Nevertheless,
when G has nonequal rank, 𝐹𝐻 vanishes on K-theory of C (𝐺) completely (cf. [17]). Furthermore,
many numerical invariants for G-equivariant Dirac operators in the literature [1, 8, 17, 21, 31] etc.,
vanish when G has nonequal rank. Our main goal in this article is to introduce generalizations of orbital
integrals in the sense of higher cyclic cocycles on C (𝐺) which will treat equal and nonequal rank groups
in a uniform way and give new interesting numerical invariants for G-equivariant Dirac operators. We

https://doi.org/10.1017/fms.2024.115 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.115


Forum of Mathematics, Sigma 3

remark that orbital integrals and cyclic (co)homology of C (𝐺) were well studied in the literature (e.g.,
[3, 23, 24, 25, 26, 34]). Our approach here differs from prior work in its emphasis on the construction
of explicit cocycles. To understand the nonequal rank case better, we start with the example of the
abelian group 𝐺=R, which turns out to be very instructive. Here, C (R) is the usual algebra of Schwartz
functions on R with the convolution product, and it carries a nontrivial degree one cyclic cohomology.
Indeed, we can define a cyclic cocycle 𝜑 on C (R) as follows (cf. [24, Prop. 1.4]:

𝜑( 𝑓0, 𝑓1) =
∫
R

𝑠 · 𝑓0 (−𝑠) 𝑓1(𝑠) 𝑑𝑠. (1.2)

Under the Fourier transform, the convolution algebra C (R) is transformed into the Schwartz functions
with pointwise multiplication. Accordingly, 𝜑 can be rewritten as a cocycle �̂� on C (R̂):

�̂�( 𝑓0, 𝑓1) =
1

√
−1

∫
R̂

𝑓0𝑑 𝑓1, (1.3)

where 𝑓𝑖 ∈ C (R̂) are the Fourier transforms of 𝑓𝑖 . Equation (1.3) is more familiar. It follows from
the Connes-Hochschild-Kostant-Rosenberg theorem ([7, Theorem 46]) that �̂� generates the degree one
cyclic cohomology of C (R̂), and accordingly 𝜑 generates the degree one cyclic cohomology of C (R).

It is crucial to have the identity function 𝑠 : R→ R in Equation (1.2) to have the integral of 𝑓0𝑑 𝑓1 on
C (R̂). Our key discovery is a natural generalization of the function s on a general linear real reductive
group G. Let 𝑃 = 𝑀𝐴𝑁 be a cuspidal parabolic subgroup of G (sometimes we use 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 to
emphasize that the subgroups are associated to the parabolic subgroup P). By the Iwasawa decomposition
𝐺 = 𝐾𝑀𝐴𝑁 , we can write an element 𝑔 ∈ 𝐺 as

𝑔 = 𝜅(𝑔)𝜇(𝑔)𝑒𝐻 (𝑔)𝑛 ∈ 𝐾𝑀𝐴𝑁 = 𝐺.

Note that the above decomposition might not be unique, but the A-part is always unique. Let dim(𝐴) = 𝑚.
By fixing a basis for the Lie algebra 𝔞, the map

𝐻 = (𝐻1, 𝐻2, . . . , 𝐻𝑚)

provides us the right ingredient to generalize the cocycle 𝜑 in Equation (1.2). We introduce a gener-
alization Φ𝑃,𝑥 for orbital integrals in Definition 3.3. For 𝑓0, ..., 𝑓𝑚 ∈ C (𝐺) and semi-simple element
𝑥 ∈ 𝑀 , Φ𝑃,𝑥 is defined by the following integral:

Φ𝑃,𝑥 ( 𝑓0, 𝑓1, . . . , 𝑓𝑚)

:=
∫
ℎ∈𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

∑
𝜏∈𝑆𝑚

sgn(𝜏) · 𝐻𝜏 (1) (𝑔1...𝑔𝑚𝑘)𝐻𝜏 (2) (𝑔2...𝑔𝑚𝑘) . . . 𝐻𝜏 (𝑚) (𝑔𝑚, 𝑘)

𝑓0
(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1) 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚)𝑑𝑔1 · · · 𝑑𝑔𝑚𝑑𝑘𝑑𝑛𝑑ℎ,

where 𝑍𝑀 (𝑥) is the centralizer of x in M. Though the function 𝐻 is not a group cocycle on G, we show
in Lemma 3.1 that it satisfies a kind of twisted group cocycle property, which leads us to the following
theorem in Section 3.1.

Theorem I (Theorem 3.5). Suppose that G is a linear real reductive Lie group. For any cuspidal
parabolic subgroup 𝑃 = 𝑀𝐴𝑁 and a semi-simple element 𝑥 ∈ 𝑀 , the cochain Φ𝑃,𝑥 is a continuous
cyclic cocycle of degree m on C (𝐺).

Modeling on the above example ofR (e.g., Equation (1.3)), we analyze the higher orbital integralΦ𝑃,𝑥
by computing its Fourier transform. Using Harish-Chandra’s theory of orbital integrals and character
formulas for parabolically induced representations, we introduce in Definition 4.14 a cyclic cocycle
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Φ̂𝑥 defined as an integral on the tempered dual space 𝐺 temp. In Theorem 4.15 and 4.18, we generalize
Equation (1.3) to linear connected real reductive Lie groups.

As an application of our study, we compute the pairing between the K-theory of C (𝐺) and Φ𝑃,𝑥 .
Lafforgue showed in [19] that Harish-Chandra’s Schwartz algebra C (𝐺) is a subalgebra of 𝐶∗

𝑟 (𝐺),
stable under holomorphic functional calculus. Therefore, the K-theory of C (𝐺) is isomorphic to the
K-theory of the reduced group 𝐶∗-algebra 𝐶∗

𝑟 (𝐺). The structure of 𝐶∗
𝑟 (𝐺) is studied by [4, 33]. Under

the assumption that G is connected, we have that [2, (4.11)],

𝐾𝑖
(
C (𝐺)

)
= 0, if 𝑖 ≠ dim(𝐺/𝐾) mod 2.

That is, the K-theory group 𝐾∗
(
C (𝐺)

)
is concentrated in one degree. Replacing G by 𝐺×R if necessary,

we can assume that 𝐾1
(
C (𝐺)

)
is trivial and all the information is contained in 𝐾0

(
C (𝐺)

)
.

In [5, 6], we are able to explicitly identify a set of generators of the K-theory of𝐶∗
𝑟 (𝐺) as a free abelian

group; cf. Theorem C.3. With wave packets (Section 4.2), we construct generators [𝑄𝜆] ∈ 𝐾 (𝐶∗
𝑟 (𝐺))

in Theorem C.3, where 𝑄𝜆 are matrices with entries taking values in C (𝐺). Applying Harish-Chandra’s
theory of orbital integrals, we compute explicitly the index pairing (Section 2.3) between [𝑄𝜆] and
Φ𝑃◦ ,𝑥 , where 𝑃◦ denotes the maximal cuspidal parabolic subgroup. This would be enough for us to
distinguish elements in 𝐾∗

(
C (𝐺)

)
. In [16, Theorem 2.1], we show that the paring between [𝑄𝜆] and

Φ𝑃,𝑥 vanishes for 𝑃 ≠ 𝑃◦ or x does not lie in a compact subgroup of M.

Theorem II (Theorem 5.4). Suppose that G is a linear connected real reductive Lie group and 𝑃◦ =
𝑀◦𝐴◦𝑁◦ is the maximal cuspidal parabolic subgroup. The index pairing between periodic cyclic
cohomology and K-theory

𝐻𝑃even (C (𝐺)
)
⊗ 𝐾0

(
C (𝐺)

)
→ C

is given by the following formulas:

◦ for the identity element 𝑒 ∈ 𝐺,

〈Φ𝑃◦ ,𝑒, [𝑄𝜆]〉 =
1

|𝑊𝑀◦∩𝐾 |
·
∑
𝑤 ∈𝑊𝐾

𝑚
(
𝜎𝑀◦ (𝑤 · 𝜆)

)
,

where 𝜎𝑀◦ (𝑤· 𝜆) is the discrete series representation of 𝑀◦ with Harish-Chandra parameter 𝑤 · 𝜆,
and 𝑚

(
𝜎𝑀◦ (𝑤 · 𝜆)

)
is its Plancherel measure;

◦ for any 𝑡 ∈ 𝑇 reg,

〈Φ𝑃◦ ,𝑡 , [𝑄𝜆]〉 =
∑
𝑤 ∈𝑊𝐾 (−1)𝑤𝑒𝑤 ·𝜆(𝑡)

Δ𝑀◦
𝑇 (𝑡)

.

We refer the readers to Theorem 5.4 for the notations involved in the above formulas. For the case
of equal rank, the first formula was obtained in [8], in which Connes-Moscovici used the 𝐿2-index on
homogeneous spaces to detect the Plancherel measure of discrete series representations. It is interesting
to point out (cf. Remark 3.6) that the higher orbital integrals Φ𝑃◦ ,𝑥 actually extend to a family of Banach
subalgebras of 𝐶∗

𝑟 (𝐺) introduced by Lafforgue, [19, Definition 4.1.1]. However, we have chosen to
work with the Harish-Chandra Schwartz algebra C (𝐺), as our proofs rely crucially on Harish-Chandra’s
theory of orbital integrals and character formulas.

Note that the higher orbital integrals Φ𝑃,𝑥 reduce to the classical ones when G is equal rank.
Nevertheless, our main result, Theorem II for higher orbital integrals, is also new in the equal rank
case. For example, as a corollary to Theorem II, in Corollary 5.5, we are able to detect the character
information of limit of discrete series representations using the higher orbital integrals. This allows
us to identify the contribution of limit of discrete series representations in the K-theory of 𝐶∗

𝑟 (𝐺)
without using geometry of the homogeneous space 𝐺/𝐾 (e.g., the Connes-Kasparov index map). As an
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application, our computation of the index pairing in Theorem II suggests a natural isomorphism F𝑇 ,
Definition 5.7 and Corollary 5.8,

F𝑇 : 𝐾 (𝐶∗
𝑟 (𝐺)) → Rep(𝐾).

In [5, 6], we will prove that F𝑇 is the inverse of the Connes-Kasparov index map,

Ind: Rep(𝐾) → 𝐾 (𝐶∗
𝑟 (𝐺)).

Given a Dirac operator D on 𝐺/𝐾 , the Connes-Kasparov index map gives an element Ind(𝐷)
in 𝐾 (𝐶∗

𝑟 (𝐺)). In this article, Theorem II and its corollaries, we study the representation theoretic
information of the index pairing

〈[Φ𝑃,𝑥], [Ind(𝐷)]〉.

As an application of this paper, in [16], we proved a topological formula for the above pairing for a
G-invariant elliptic operator on a manifold X with proper cocompact G-action, generalizing the Connes-
Moscovici 𝐿2-index theorem [8]. In [27], we extended our study to G-proper manifolds with boundary
and established a generalized Atiyah-Patodi-Singer index theorem.

In this article, motivated by the applications in K-theory, we introduce Φ𝑃,𝑥 as a cyclic cocycle on
C (𝐺). Actually, the construction of Φ𝑃,𝑥 can be generalized to construct a larger class of Hochschild
cocycles for C (𝐺). Our construction is also closely related to the work in [22]. In particular, the definition
of Φ𝑃,𝑥 is compatible with the localization process introduced by Nistor [22, Section 4.2]. It is an
interesting question to extend the construction of Φ𝑃,𝑥 to a cyclic cocycle on 𝐴 �𝐺 considered in [22].
Our preliminary study on examples also suggests that the construction of Φ𝑃,𝑥 in this paper generalizes
to groups beyond linear connected real reductive Lie groups (e.g., real algebraic groups with the Iwasawa
theory), covering of linear connected real reductive Lie groups and some p-adic groups like 𝑆𝐿(2,Q𝑝).
A careful study of the analog of the Harish-Chandra Schwartz algebra is needed to generalize Theorem
I and II to these groups. We plan to report our study in this direction in a separate publication soon.

The article is organized as follows. In Section 2, we review some basics about representation theory
of linear real reductive Lie groups, Harish-Chandra’s Schwartz algebra and cyclic theory. We introduce
the higher orbital integral Φ𝑃,𝑥 in Section 3 and prove Theorem I. The Fourier transform of the higher
orbital integral is studied in Section 4 and provides a key tool in our proof of Theorem II. And in Section
5, we compute the pairing between the higher orbital integrals Φ𝑃,𝑥 and 𝐾 (𝐶∗

𝑟 (𝐺)), proving Theorem
II and its corollaries. For the convenience of readers, we have included in Appendix B and C a review
of background material about related topics in representation theory and 𝐾 (𝐶∗

𝑟 (𝐺)).

2. Preliminaries

In this article, we shall not attempt to strive for the utmost generality in the class of groups we shall
consider. Instead, we shall aim for (relative) simplicity.

2.1. Linear real reductive Lie group and Cartan subgroups

Let 𝐺 ⊆ 𝐺𝐿(𝑛,R) be a self-adjoint group which is also the group of real points of a connected algebraic
group defined over R (we will additionally assume that G is connected in Section 4 and 5.). For brevity,
we shall simply say that G is a linear real reductive Lie group. In this case, the Cartan involution on the
Lie algebra 𝔤 is given by 𝜃 (𝑋) = −𝑋𝑇 , where 𝑋𝑇 denotes the transpose matrix of X.

Let 𝐾 = 𝐺 ∩ 𝑂 (𝑛), which is a maximal compact subgroup of G. Let 𝔨 be the Lie algebra of K. We
have a 𝜃-stable Cartan decomposition 𝔤 = 𝔨 ⊕ 𝔰. Let H be a Cartan subgroup of G. Then, H has a 𝜃-
stable decomposition 𝐻 = 𝑇 × 𝐴, where 𝑇 = 𝐻 ∩ 𝐾 is the compactly embedded part and exp: 𝔞 → 𝐴
is a bijection. Here, the Lie algebra 𝔞 of A is an abelian subalgebra in 𝔰. Any choice of a positive 𝔞-root
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system defines a parabolic subalgebra 𝔭 = 𝔪 +𝔞 +𝔫 in 𝔤 and thus defines a cuspidal parabolic subgroup
𝑃 = 𝑀𝐴𝑁 in G. We say that P is the cuspidal parabolic subgroup associated to the Cartan subgroup H
and vice versa.

Let 𝔥 = 𝔱 ⊕ 𝔞 be an arbitrary 𝜃-stable Cartan subalgebra of 𝔤, where 𝔱 = 𝔥 ∩ 𝔨, 𝔞 = 𝔥 ∩ 𝔰. Let R(𝔥, 𝔤)
be the associated root system. If 𝛼 ∈ R(𝔥, 𝔤) is a real root (that is, 𝛼 |𝔱 ≡ 0), then we can apply the Cayley
transform to 𝔥 and obtain a new Cartan subalgebra 𝔥′ = 𝔱′ ⊕ 𝔞′ such that dim(𝔱′) > dim(𝔱). Let P and
𝑃′ be the two cuspidal parabolic subgroups associated to 𝔥 and 𝔥′, respectively. We say that 𝑃′ is more
compact than P. In this way, we define a partial order on the set of all cuspidal parabolic subgroups of G.

Definition 2.1. We say that a Cartan subgroup H is maximally compact if dim𝑇 is maximal among all
𝜃-stable Cartan subgroups. In other words, T is a Cartan subgroup of K. We denote by 𝐻◦ the maximally
compact Cartan subgroup and 𝑃◦ = 𝑀◦𝐴◦𝑁◦ its associated cuspidal parabolic subgroup. We call 𝑃◦ the
maximal cuspidal parabolic subgroup.

2.2. Harish-Chandra’s Schwartz function

Following Harish-Chandra [12, Lemma 2], we fix a real-valued nondegenerate bilinear symmetric form
B on 𝔤 which is invariant under the adjoint action of G on 𝔤 and also the Cartan involution 𝜃. Moreover,
we can choose B such that 〈, 〉 = −𝐵(·, 𝜃·) defines a K-invariant inner product on 𝔰. Thus, 〈, 〉 induces
a G-invariant Riemannian metric on 𝐺/𝐾 . For 𝑔 ∈ 𝐺, we use ‖𝑔‖ to denote the Riemannian distance
from 𝑒𝐾 to 𝑔𝐾 in 𝐺/𝐾 . For every 𝑛 ≥ 0, 𝑋,𝑌 ∈ 𝑈 (𝔤), and 𝑓 ∈ 𝐶∞(𝐺), set

𝜈𝑋,𝑌 ,𝑛 ( 𝑓 ) := sup
𝑔∈𝐺

{
(1 + ‖𝑔‖))𝑛Ξ(𝑔)−1��𝐿(𝑋)𝑅(𝑌 ) 𝑓 (𝑔)��},

where L and R denote the left and right regular representations, respectively, and Ξ is the Harish-
Chandra’s Ξ-function [11].

Definition 2.2. The Harish-Chandra Schwartz space C (𝐺) is the space of 𝑓 ∈ 𝐶∞(𝐺) such that for all
𝑛 ≥ 0 and 𝑋,𝑌 ∈ 𝑈 (𝔤), 𝜈𝑋,𝑌 ,𝑛 ( 𝑓 ) < ∞.

The space C (𝐺)is a Fréchet space in the semi- norms 𝜈𝑋,𝑌 ,𝑛. It is closed under convolution, which
is a continuous operation on this space. Moreover, if G has equal rank (thus has discrete series rep-
resentations), then all K-finite matrix coefficients of discrete series representations lie in C (𝐺). It is
proved in [19] that C (𝐺) is a ∗-subalgebra of the reduced group 𝐶∗-algebra 𝐶∗

𝑟 (𝐺) that is closed under
holomorphic functional calculus.

2.3. Cyclic cohomology

Definition 2.3. Let A be an algebra overC.Define the space of Hochschild cochains of degree k of A to be

𝐶𝑘 (𝐴) : = HomC
(
𝐴⊗(𝑘+1) ,C

)
,

consisting of all bounded 𝑘+1-linear functionals on A. Define the Hochschild codifferential 𝑏 : 𝐶𝑘 (𝐴) →
𝐶𝑘+1(𝐴) by the following formula:

𝑏Φ(𝑎0 ⊗ · · · ⊗ 𝑎𝑘+1)

=
𝑘∑
𝑖=0

(−1)𝑖Φ(𝑎0 ⊗ · · · ⊗ 𝑎𝑖𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑘+1) + (−1)𝑘+1Φ(𝑎𝑘+1𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑘 ).

The Hochschild cohomology of A is the cohomology of the complex (𝐶∗(𝐴), 𝑏).
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Definition 2.4. We call a k-cochain Φ ∈ 𝐶𝑘 (𝐴) cyclic if for all 𝑎0, . . . , 𝑎𝑘 ∈ 𝐴, it holds that

Φ(𝑎𝑘 , 𝑎0, . . . , 𝑎𝑘−1) = (−1)𝑘Φ(𝑎0, 𝑎1, . . . , 𝑎𝑘 ).

The subspace𝐶𝑘𝜆 of cyclic cochains is closed under the Hochschild codifferential. The cyclic cohomology
𝐻𝐶∗(𝐴) is defined by the cohomology of the subcomplex of cyclic cochains.

One can define a periodicity map 𝑆 : 𝐻𝐶𝑘 (𝐴) → 𝐻𝐶𝑘+2(𝐴); cf. [20, Section 2.2.5]. And the periodic
cyclic cohomology 𝐻𝑃∗(𝐴) (for ∗=even or odd) is defined to be the inductive limit of 𝐻𝐶2𝑘 (𝐴) (or
𝐻𝐶2𝑘+1(𝐴)). Let 𝑅 = (𝑅𝑖, 𝑗 ), 𝑖, 𝑗 = 1, . . . , 𝑚 be an idempotent in 𝑀𝑚 (𝐴). The following formula

〈[Φ], [𝑅]〉 : =
1
𝑘!

𝑚∑
𝑖0 , · · · ,𝑖2𝑘=1

Φ(𝑅𝑖0𝑖1 , 𝑅𝑖1𝑖2 , ..., 𝑅𝑖2𝑘 𝑖0)

defines a natural pairing between [Φ] ∈ 𝐻𝑃even(𝐴) and 𝐾0(𝐴); that is,

〈 · , · 〉 : 𝐻𝑃even(𝐴) ⊗ 𝐾0(𝐴) → C.

3. Higher orbital integrals

In this section, we construct higher orbital integrals as cyclic cocycles on C (𝐺).

3.1. Higher cyclic cocycles

Let 𝑃 = 𝑀𝐴𝑁 be a cuspidal parabolic subgroup and denote 𝑚 = dim 𝐴. By the Iwasawa decomposition,
we have that

𝐺 = 𝐾𝑀𝐴𝑁.

We define a map 𝐻 : 𝐺 → 𝔞 by the decomposition

𝑔 = 𝜅(𝑔)𝜇(𝑔)𝑒𝐻 (𝑔)𝑛 ∈ 𝐾𝑀𝐴𝑁 = 𝐺.

By fixing a basis for the Lie algebra 𝔞, we write 𝐻 = (𝐻1, . . . , 𝐻𝑚).

Lemma 3.1. For any 𝑔0, 𝑔1 ∈ 𝐺, the function 𝐻𝑖 (𝑔1𝜅(𝑔0)) does not depend on the choice of 𝜅(𝑔0).
Moreover, the following identity holds:

𝐻𝑖 (𝑔0) + 𝐻𝑖 (𝑔1𝜅(𝑔0)) = 𝐻𝑖 (𝑔1𝑔0).

Proof. Using 𝐺 = 𝐾𝑀𝐴𝑁 , we write

𝑔0 = 𝑘0𝑚0𝑎0𝑛0, 𝑔1 = 𝑘1𝑚1𝑎1𝑛1.

Recall that the group 𝑀𝐴 normalizes N and M commutes with A. Thus, for any 𝑘 ∈ 𝐾 ∩𝑀 , there exists
𝑛′1 ∈ 𝑁 such that

𝐻𝑖 (𝑔1𝑘) = 𝐻𝑖 (𝑘1𝑚1𝑎1𝑛1𝑘) = 𝐻𝑖 (𝑘1𝑚1𝑘𝑎1𝑛
′
1) = 𝐻𝑖 (𝑎1) = 𝐻𝑖 (𝑔1).

It follows that 𝐻𝑖 (𝑔1𝜅(𝑔0)) is well defined. Next, by the definition of 𝐻𝑖 ,

𝐻𝑖 (𝑔1𝑔0) = 𝐻𝑖 (𝑎1𝑛1𝑘0𝑎0) = 𝐻𝑖 (𝑎1𝑛1𝑘0) + 𝐻𝑖 (𝑎0).
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The lemma follows from the following identities:

𝐻𝑖 (𝑔1𝜅(𝑔0)) = 𝐻𝑖 (𝑎1𝑛1𝑘0), 𝐻𝑖 (𝑔0) = 𝐻𝑖 (𝑎0).

�

Let 𝑆𝑚 be the permutation group of m elements. For any 𝜏 ∈ 𝑆𝑚, let sgn(𝜏) = ±1 depending on the
parity of 𝜏.
Definition 3.2. We define a function

𝐶 ∈ 𝐶∞ (𝐾 × 𝐺×𝑚)
by

𝐶 (𝑘, 𝑔1, . . . , 𝑔𝑚) : =
∑
𝜏∈𝑆𝑚

sgn(𝜏) · 𝐻𝜏 (1) (𝑔1𝑘)𝐻𝜏 (2) (𝑔2𝑘) . . . 𝐻𝜏 (𝑚) (𝑔𝑚𝑘)

= det
(
𝐻 (𝑔1𝑘), . . . , 𝐻 (𝑔𝑚𝑘)

)
.

Definition 3.3. For any 𝑓0, . . . , 𝑓𝑚 ∈ C (𝐺) and semi-simple element 𝑥 ∈ 𝑀 , we define a Hochschild
cochain on C (𝐺) by the following formula:

Φ𝑃,𝑥 ( 𝑓0, 𝑓1, . . . , 𝑓𝑚) : =
∫
ℎ∈𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

𝐶 (𝑘, 𝑔1𝑔2 . . . 𝑔𝑚, . . . , 𝑔𝑚−1𝑔𝑚, 𝑔𝑚)

𝑓0
(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1) 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚)𝑑𝑔1 · · · 𝑑𝑔𝑚𝑑𝑘𝑑𝑛𝑑ℎ,

(3.1)

where 𝑍𝑀 (𝑥) is the centralizer of x in M.
We prove in Theorem A.5 that the above integral (3.1) is convergent for all semi-simple elements

𝑥 ∈ 𝑀 . A similar estimate leads us to the following property.
Proposition 3.4. For every semi-simple element 𝑥 ∈ 𝑀 , the integral Φ𝑃,𝑥 defines a (continuous)
Hochschild cochain on the Schwartz algebra C (𝐺).

For simplicity, we omit the respective measures 𝑑𝑔1, · · · , 𝑑𝑔𝑚, 𝑑𝑘 , 𝑑𝑛, 𝑑ℎ, in the integral (3.1) for
Φ𝑃,𝑥 .
Theorem 3.5. Let 𝑃 = 𝑀𝐴𝑁 be a cuspidal parabolic subgroup of G and 𝑥 ∈ 𝑀 be a semi-simple
element. The cochain Φ𝑃,𝑥 is a cyclic cocycle and defines an element

[Φ𝑃,𝑥] ∈ 𝐻𝐶𝑚(C (𝐺)).

Remark 3.6. We notice that our proofs in Sections 3.2 and 3.3 also work for the algebra S𝑡 (𝐺) (for
sufficiently large t) introduced in Definition A.3. And we can conclude from Theorem A.5 that Φ𝑃,𝑥
defines a continuous cyclic cocycle on S𝑡 (𝐺) ⊃ C (𝐺) for a sufficiently large t for every 𝑥 ∈ 𝑀 .

The proof of Theorem 3.5 occupies the rest of this section.

3.2. Cocycle condition

In this subsection, we prove that the cochain Φ𝑃,𝑥 introduced in Definition 3.3 is a Hochschild cocycle.
We have the following expression for the codifferential of Φ𝑃,𝑥 :

𝑏Φ𝑃,𝑥 ( 𝑓0, 𝑓1, . . . , 𝑓𝑚, 𝑓𝑚+1)

=
𝑚∑
𝑖=0

(−1)𝑖Φ𝑃,𝑥
(
𝑓0, . . . , 𝑓𝑖 ∗ 𝑓𝑖+1, . . . , 𝑓𝑚+1

)
+ (−1)𝑚+1Φ𝑃,𝑥

(
𝑓𝑚+1 ∗ 𝑓0, 𝑓1, . . . , 𝑓𝑚

)
.

(3.2)
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Here, 𝑓𝑖 ∗ 𝑓𝑖+1 is the convolution product given by

𝑓𝑖 ∗ 𝑓𝑖+1(ℎ) =
∫
𝐺
𝑓𝑖 (𝑔) 𝑓𝑖+1(𝑔−1ℎ)𝑑𝑔.

Lemma 3.7. For 𝑖 = 0, the term on the right-hand side of (3.2) can be computed by the following
integral:

Φ𝑃,𝑥
(
𝑓0 ∗ 𝑓1, 𝑓2, . . . , 𝑓𝑚+1

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×(𝑚+1)

𝐶 (𝑘, 𝑡2𝑡3 . . . 𝑡𝑚+1, . . . , 𝑡𝑚𝑡𝑚+1, 𝑡𝑚+1)

𝑓0
(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑡1 . . . 𝑡𝑚+1)−1) 𝑓1 (𝑡1) 𝑓2(𝑡2) . . . 𝑓𝑚+1(𝑡𝑚+1).

Proof. By definition,

Φ𝑃,𝑥
(
𝑓0 ∗ 𝑓1, 𝑓2, . . . , 𝑓𝑚+1

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺

∫
𝐺×𝑚

𝐶 (𝑘, 𝑔1𝑔2 . . . 𝑔𝑚, . . . , 𝑔𝑚−1𝑔𝑚, 𝑔𝑚)

𝑓0 (𝑔) 𝑓1
(
𝑔−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1) 𝑓2(𝑔1) . . . 𝑓𝑚+1(𝑔𝑚).

By changing variables,

𝑡1 = 𝑔−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1, 𝑡 𝑗 = 𝑔 𝑗−1, 𝑗 = 2, . . . 𝑚 + 1,

we get

𝑔 = 𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑡1 . . . 𝑡𝑚+1)−1.

One can prove the lemma by replacing 𝑔𝑖 by 𝑡𝑖 . �

Lemma 3.8. For 1 ≤ 𝑖 ≤ 𝑚, we have

Φ𝑃,𝑥
(
𝑓0, . . . , 𝑓𝑖 ∗ 𝑓𝑖+1, . . . , 𝑓𝑚+1

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×(𝑚+1)

𝐶 (𝑘, 𝑡1𝑡2 . . . 𝑡𝑚+1, . . . , (𝑡𝑖+1 . . . 𝑡𝑚+1)ˆ, . . . , 𝑡𝑚+1)

𝑓0
(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑡1 . . . 𝑡𝑚+1)−1) 𝑓1(𝑡1) . . . 𝑓𝑚+1(𝑡𝑚+1),

(3.3)

where (𝑡𝑖+1 . . . 𝑡𝑚+1)ˆ means that the term is omitted in the expression.

Proof. The left-hand side of the above equation,

Φ𝑃,𝑥
(
𝑓0, . . . , 𝑓𝑖 ∗ 𝑓𝑖+1, . . . , 𝑓𝑚+1

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺

∫
𝐺×𝑚

𝐶 (𝑘, 𝑔1𝑔2 . . . 𝑔𝑚, . . . , 𝑔𝑚−1𝑔𝑚, 𝑔𝑚)

𝑓0
(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1) 𝑓1(𝑔1) . . . 𝑓𝑖−1(𝑔𝑖−1)(

𝑓𝑖 (𝑔) 𝑓𝑖+1(𝑔−1𝑔𝑖)
)
𝑓𝑖+2(𝑔𝑖+1) . . . 𝑓𝑚+1(𝑔𝑚).

(3.4)

Let 𝑡 𝑗 = 𝑔 𝑗 for 𝑗 = 1, . . . , 𝑖 − 1, and for 𝑗 = 𝑖 + 2, . . . , 𝑚 + 1

𝑡𝑖 = 𝑔, 𝑡𝑖+1 = 𝑔−1𝑔𝑖 , 𝑡 𝑗 = 𝑔 𝑗−1.

�
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Lemma 3.9. The last term in the right-hand side of (3.2) can be computed by the following integral:

Φ𝑃,𝑥
(
𝑓𝑚+1 ∗ 𝑓0, 𝑓1, . . . , 𝑓𝑚

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×(𝑚+1)

𝐶 (𝜅(𝑡𝑚+1𝑘), 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚)

𝑓0
(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑡1 . . . 𝑡𝑚+1)−1) 𝑓1(𝑡1) . . . 𝑓𝑚+1(𝑡𝑚+1).

Proof. By definition,

Φ𝑃,𝑥
(
𝑓𝑚+1 ∗ 𝑓0, 𝑓1, . . . , 𝑓𝑚

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺

∫
𝐺×𝑚

𝐶 (𝑘, 𝑔1𝑔2 . . . 𝑔𝑚, . . . , 𝑔𝑚−1𝑔𝑚, 𝑔𝑚)

𝑓𝑚+1(𝑔) 𝑓0
(
𝑔−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1) 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚).

(3.5)

As before, we write

𝑡 𝑗 = 𝑔 𝑗 , 𝑗 = 1, . . . , 𝑚,

and 𝑡𝑚+1 = 𝑔. We can rewrite Equation (3.5) as

Φ𝑃,𝑥
(
𝑓𝑚+1 ∗ 𝑓0, 𝑓1, . . . , 𝑓𝑚

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×(𝑚+1)

𝐶 (𝑘, 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚)

𝑓0
(
𝑡−1
𝑚+1𝑘ℎ𝑥ℎ

−1𝑛𝑘−1 (𝑡1 . . . 𝑡𝑚)−1) 𝑓1(𝑡1) . . . 𝑓𝑚+1(𝑡𝑚+1).
(3.6)

For all 𝑡𝑚+1 ∈ 𝐺 and 𝑘 ∈ 𝐾 , we decompose

𝑡−1
𝑚+1𝑘 = 𝑘1𝜇1𝑎1𝑛1 ∈ 𝐾𝑀𝐴𝑁.

It follows that 𝑘 = 𝑡𝑚+1𝑘1𝜇1𝑎1𝑛1 and 𝑘 = 𝜅(𝑡𝑚+1𝑘1). We see

Φ𝑃,𝑥
(
𝑓𝑚+1 ∗ 𝑓0, 𝑓1, . . . , 𝑓𝑚

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×(𝑚+1)

𝐶 (𝑘, 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚)

𝑓0
(
𝑘1𝜇1𝑎1𝑛1ℎ𝑥ℎ

−1𝑛𝑛−1
1 𝑎−1

1 𝜇−1
1 𝑘−1

1 𝑡−1
𝑚+1(𝑡1 . . . 𝑡𝑚)

−1) 𝑓1(𝑡1) . . . 𝑓𝑚+1(𝑡𝑚+1).

Since 𝜇1𝑎1 ∈ 𝑀𝐴 normalizes the nilpotent group N, we can find �̃�1, 𝑛
′
1 ∈ 𝑁 such that

𝑓0
(
𝑘1𝜇1𝑎1𝑛1ℎ𝑥ℎ

−1𝑛𝑛−1
1 𝑎−1

1 𝜇−1
1 𝑘−1

1 𝑡−1
𝑚+1(𝑡1 . . . 𝑡𝑚)

−1)
= 𝑓0
(
𝑘1𝜇1ℎ𝑥(𝜇1ℎ)−1�̃�1𝑛𝑛

′−1
1 𝑘−1

1 (𝑡1 . . . 𝑡𝑚+1)−1) .
Renaming �̃�1𝑛𝑛

′−1
1 by n, we conclude that

Φ𝑃,𝑥
(
𝑓𝑚+1 ∗ 𝑓0, 𝑓1, . . . , 𝑓𝑚

)
=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×(𝑚+1)

𝐶 (𝜅(𝑡𝑚+1𝑘1), 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚)

𝑓0
(
𝑘1ℎ𝑥ℎ

−1𝑛𝑘−1
1 (𝑡1 . . . 𝑡𝑚+1)−1) · 𝑓1(𝑡1) . . . 𝑓𝑚+1(𝑡𝑚+1).

This completes the proof. �

Combining Lemmas 3.7, 3.8 and 3.9, we have reached the following equation:

𝑏Φ𝑃,𝑥 ( 𝑓0, 𝑓1, . . . , 𝑓𝑚, 𝑓𝑚+1)

=
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×(𝑚+1)

�̃� (𝑘, 𝑡1, . . . 𝑡𝑚+1) · 𝑓0
(
𝑘1ℎ𝑥ℎ

−1𝑛𝑘−1
1 (𝑡1 . . . 𝑡𝑚+1)−1)

· 𝑓1(𝑡1) . . . 𝑓𝑚+1(𝑡𝑚+1),

(3.7)
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where �̃� ∈ 𝐶∞ (𝐾 × 𝐺×𝑚) is given by

�̃� (𝑘, 𝑡1, . . . , 𝑡𝑚+1) =
𝑚∑
𝑖=0

(−1)𝑖𝐶 (𝑘, 𝑡1𝑡2 . . . 𝑡𝑚+1, . . . , (𝑡𝑖+1 . . . 𝑡𝑚+1)ˆ, . . . , 𝑡𝑚+1)

+ (−1)𝑚+1𝐶 (𝜅(𝑡𝑚+1𝑘), 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚).

Lemma 3.10. We have that

𝑏Φ𝑃,𝑥 ( 𝑓0, 𝑓1, . . . , 𝑓𝑚, 𝑓𝑚+1) = 0.

Proof. We will show that

�̃� (𝑘, 𝑡1, . . . , 𝑡𝑚+1) = 0.

To begin with, we notice the following expression:

𝐶
(
𝜅(𝑡𝑚+1𝑘), 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚

)
=
∑
𝜏∈𝑆𝑚

sgn(𝜏) · 𝐻𝜏 (1)
(
𝑡1 . . . 𝑡𝑚𝜅(𝑡𝑚+1𝑘)

)
𝐻𝜏 (2)

(
𝑡2 . . . 𝑡𝑚𝜅(𝑡𝑚+1𝑘)

)
. . . 𝐻𝜏 (𝑚)

(
𝑡𝑚𝜅(𝑡𝑚+1𝑘)

)
.

By Lemma 3.1, we have

𝐻𝜏 (𝑖)
(
𝑡𝑖 . . . 𝑡𝑚𝜅(𝑡𝑚+1𝑘)

)
= 𝐻𝜏 (𝑖)

(
𝑡𝑖 . . . 𝑡𝑚+1𝑘

)
− 𝐻𝜏 (𝑖) (𝑡𝑚+1𝑘).

It follows that

𝐶
(
𝜅(𝑡𝑚+1𝑘), 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚

)
=
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
(
𝐻𝜏 (1) (𝑡1 . . . 𝑡𝑚+1𝑘) − 𝐻𝜏 (1) (𝑡𝑚+1𝑘)

)
·
(
𝐻𝜏 (2) (𝑡2 . . . 𝑡𝑚+1𝑘) − 𝐻𝜏 (2) (𝑡𝑚+1𝑘)

)
. . .
(
𝐻𝜏 (𝑚) (𝑡𝑚𝑡𝑚+1𝑘) − 𝐻𝜏 (𝑚) (𝑡𝑚+1𝑘)

)
.

As the above sum is invariant with respect to the permutation group 𝑆𝑚, the terms containing more than
one factor 𝐻𝜏 (𝑖) (𝑡𝑚+1𝑘) vanish. Thus,

𝐶
(
𝜅(𝑡𝑚+1𝑘), 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚

)
=

𝑚∑
𝑖=1

∑
𝜏∈𝑆𝑚

sgn(𝜏) · 𝐻𝜏 (1) (𝑡1 . . . 𝑡𝑚+1𝑘) . . .
(
− 𝐻𝜏 (𝑖) (𝑡𝑚+1𝑘)

)
. . . 𝐻𝜏 (𝑚) (𝑡𝑚𝑡𝑚+1𝑘)

+
∑
𝜏∈𝑆𝑚

sgn(𝜏) · 𝐻𝜏 (1) (𝑡1 . . . 𝑡𝑚+1𝑘) . . . 𝐻𝜏 (𝑚) (𝑡𝑚𝑡𝑚+1𝑘).

In the above expression, by changing the permutations(
𝜏(1), . . . , 𝜏(𝑚)

)
↦→
(
𝜏(1), . . . , 𝜏(𝑖 − 1), 𝜏(𝑚), 𝜏(𝑖), . . . , 𝜏(𝑚 − 1)

)
,
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we get ∑
𝜏∈𝑆𝑚

sgn(𝜏) · 𝐻𝜏 (1) (𝑡1 . . . 𝑡𝑚+1𝑘) . . . 𝐻𝜏 (𝑖−1) (𝑡𝑖−1 . . . 𝑡𝑚+1𝑘)(
− 𝐻𝜏 (𝑖) (𝑡𝑚+1𝑘)

)
𝐻𝜏 (𝑖+1) (𝑡𝑖+1 . . . 𝑡𝑚+1𝑘) . . . 𝐻𝜏 (𝑚) (𝑡𝑚𝑡𝑚+1𝑘)

= (−1)𝑛−𝑖
∑
𝜏∈𝑆𝑚

sgn(𝜏) · 𝐻𝜏 (1) (𝑡1 . . . 𝑡𝑚+1𝑘) . . . 𝐻𝜏 (𝑖−1) (𝑡𝑖−1 . . . 𝑡𝑚𝑘)

𝐻𝜏 (𝑚) (𝑡𝑚+1𝑘)𝐻𝜏 (𝑖) (𝑡𝑖+1 . . . 𝑡𝑚+1𝑘) . . . 𝐻𝜏 (𝑚−1) (𝑡𝑚𝑡𝑚+1𝑘).

Putting all the above together, we have

(−1)𝑚+1𝐶
(
𝜅(𝑡𝑚+1𝑘), 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚

)
=

𝑚∑
𝑖=0

(−1)𝑖+1 · 𝐶 (𝑘, 𝑡1𝑡2 . . . 𝑡𝑚+1, . . . , (𝑡𝑖+1 . . . 𝑡𝑚+1)ˆ, . . . , 𝑡𝑚+1),

and

�̃� (𝑘, 𝑡1, . . . 𝑡𝑚+1) =
𝑚∑
𝑖=0

(−1)𝑖𝐶 (𝑘, 𝑡1𝑡2 . . . 𝑡𝑚+1, . . . , (𝑡𝑖+1 . . . 𝑡𝑚+1)ˆ, . . . , 𝑡𝑚+1)

+ (−1)𝑚+1𝐶 (𝜅(𝑡𝑚+1𝑘), 𝑡1𝑡2 . . . 𝑡𝑚, . . . , 𝑡𝑚−1𝑡𝑚, 𝑡𝑚) = 0. �

We conclude from Lemmas 3.7–3.10 that Φ𝑃,𝑥 is a Hochschild cocycle. We will prove that Φ𝑃,𝑥 is
cyclic in the next subsection.

3.3. Cyclic condition

In this subsection, we prove that the cocycle Φ𝑃,𝑥 is cyclic. Recall

Φ𝑃,𝑥 ( 𝑓1, . . . , 𝑓𝑚, 𝑓0) =
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

𝐶 (𝑘, 𝑔1𝑔2 . . . 𝑔𝑚, . . . , 𝑔𝑚−1𝑔𝑚, 𝑔𝑚)

𝑓1
(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1) 𝑓2 (𝑔1) . . . 𝑓𝑚(𝑔𝑚−1) 𝑓0(𝑔𝑚).

(3.8)

By changing the variables,

𝑡1 = 𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1,

and 𝑡 𝑗 = 𝑔 𝑗−1 for 𝑗 = 2, . . . , 𝑚. We have

𝑔𝑚 = (𝑡1 . . . 𝑡𝑚)−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1,

and

𝑔𝑖 . . . 𝑔𝑚 = (𝑡1 . . . 𝑡𝑖)−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1.
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It follows that

Φ𝑃,𝑥 ( 𝑓1, . . . , 𝑓𝑚, 𝑓0) =
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

𝐶
(
𝑘, 𝑡−1

1 𝑘ℎ𝑥ℎ−1𝑛𝑘−1, . . . , (𝑡1 . . . 𝑡𝑚−1)−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1, (𝑡1 . . . 𝑡𝑚)−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1)
𝑓0
(
(𝑡1 . . . 𝑡𝑚)−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1) 𝑓1(𝑡1) 𝑓2(𝑡2) . . . 𝑓𝑚(𝑡𝑚)

=
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

𝐻𝜏 (1) (𝑡−1
1 𝑘ℎ𝑥ℎ−1𝑛) . . . 𝐻𝜏 (𝑚) ((𝑡1 . . . 𝑡𝑚)−1𝑘ℎ𝑥ℎ−1𝑛)

𝑓0
(
(𝑡1 . . . 𝑡𝑚)−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1) 𝑓1(𝑡1) 𝑓2(𝑡2) . . . 𝑓𝑚(𝑡𝑚).

We write

(𝑡1 . . . 𝑡𝑚)−1𝑘 = 𝑘1𝜇1𝑎1𝑛1 ∈ 𝐾𝑀𝐴𝑁.

Then,

𝑘 = (𝑡1 . . . 𝑡𝑚)𝑘1𝜇1𝑎1𝑛1, (3.9)

and

𝑓0
(
(𝑡1 . . . 𝑡𝑚)−1𝑘ℎ𝑥ℎ−1𝑛𝑘−1) = 𝑓0

(
𝑘1𝜇1𝑎1𝑛1ℎ𝑥ℎ

−1𝑛𝑛−1
1 𝑎−1

1 𝜇−1
1 𝑘−1

1 (𝑡1 . . . 𝑡𝑚)−1)
= 𝑓0
(
𝑘1ℎ

′𝑥ℎ′−1𝑛′𝑘−1
1 (𝑡1 . . . 𝑡𝑚)−1) .

Thus, we rewrite the right-hand side of (3.8)

Φ𝑃,𝑥 ( 𝑓1, . . . , 𝑓𝑚, 𝑓0) =
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

𝐻𝜏 (1) (𝑡−1
1 𝑘) . . . 𝐻𝜏 (𝑚) ((𝑡1 . . . 𝑡𝑚)−1𝑘)

𝑓0
(
𝑘1ℎ𝑥ℎ

−1𝑛𝑘−1
1 (𝑡1 . . . 𝑡𝑚)−1) 𝑓1 (𝑡1) 𝑓2(𝑡2) . . . 𝑓𝑚(𝑡𝑚).

(3.10)

By Lemma 3.1 and (3.9), we have, for 1 ≤ 𝑖 ≤ 𝑚 − 1,

𝐻𝜏 (𝑖)
(
(𝑡1 . . . 𝑡𝑖)−1𝑘

)
= −𝐻𝜏 (𝑖)

(
𝑡1 . . . 𝑡𝑖𝜅((𝑡1 . . . 𝑡𝑖)−1𝑘)

)
= −𝐻𝜏 (𝑖)

(
𝑡1 . . . 𝑡𝑖𝜅(𝑡𝑖+1 . . . 𝑡𝑚𝑘1)

)
= 𝐻𝜏 (𝑖)

(
𝑡𝑖+1 . . . 𝑡𝑚𝑘1

)
− 𝐻𝜏 (𝑖)

(
𝑡1 . . . 𝑡𝑚𝑘1)

)
,

(3.11)

and

𝐻𝜏 (𝑚)
(
(𝑡1 . . . 𝑡𝑚)−1𝑘

)
= − 𝐻𝜏 (𝑚)

(
𝑡1 . . . 𝑡𝑚𝜅((𝑡1 . . . 𝑡𝑚)−1𝑘)

)
= − 𝐻𝜏 (𝑚)

(
𝑡1 . . . 𝑡𝑚𝑘1

)
.

(3.12)

Putting (3.10), (3.11) and (3.12) together, we see that

Φ𝑃,𝑥 ( 𝑓1, . . . , 𝑓𝑚, 𝑓0)

=
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
∫
𝑀/𝑍𝑀 (𝑚)

∫
𝐾𝑁

∫
𝐺×𝑚

𝑚−1∏
𝑖=1

(
𝐻𝜏 (𝑖)

(
𝑡𝑖+1 . . . 𝑡𝑚𝑘1

)
− 𝐻𝜏 (𝑖)

(
𝑡1 . . . 𝑡𝑚𝑘1)

) )
(
− 𝐻𝜏 (𝑚) (𝑡1 . . . 𝑡𝑚𝑘1)

)
· 𝑓0
(
𝑘1ℎ𝑥ℎ

−1𝑛𝑘−1
1 (𝑡1 . . . 𝑡𝑚)−1) 𝑓1(𝑡1) 𝑓2(𝑡2) . . . 𝑓𝑚(𝑡𝑚).
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By symmetry, one can check that∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
𝑚−1∏
𝑖=1

(
𝐻𝜏 (𝑖)

(
𝑡𝑖+1 . . . 𝑡𝑚𝑘1

)
− 𝐻𝜏 (𝑖)

(
𝑡1 . . . 𝑡𝑚𝑘1)

) )
· 𝐻𝜏 (𝑚) (𝑡1 . . . 𝑡𝑚𝑘1)

=
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
𝑚−1∏
𝑖=1

𝐻𝜏 (𝑖)
(
𝑡𝑖+1 . . . 𝑡𝑚𝑘1

)
· 𝐻𝜏 (𝑚) (𝑡1 . . . 𝑡𝑚𝑘1).

(3.13)

In the above expression, by changing the permutation(
𝜏(1), . . . , 𝜏(𝑚)

)
↦→
(
𝜏(2), . . . , 𝜏(𝑚), 𝜏(1)

)
,

we can simplify Equation (3.13) to the following one:∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
𝑚−1∏
𝑖=1

(
𝐻𝜏 (𝑖)

(
𝑡𝑖+1 . . . 𝑡𝑚𝑘1

)
− 𝐻𝜏 (𝑖)

(
𝑡1 . . . 𝑡𝑚𝑘1)

) )
· 𝐻𝜏 (𝑚) (𝑡1 . . . 𝑡𝑚𝑘1)

= (−1)𝑚−1 ·
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
𝑚∏
𝑖=1

𝐻𝜏 (𝑖)
(
𝑡𝑖 . . . 𝑡𝑚𝑘1

)
.

Finally, we have obtained the following identity:

Φ𝑃,𝑥 ( 𝑓1, . . . , 𝑓𝑚, 𝑓0) = (−1)𝑚 ·
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
∫
𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

𝑚∏
𝑖=1

𝐻𝜏 (𝑖)
(
𝑡𝑖 . . . 𝑡𝑚𝑘

)
· 𝑓0
(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑡1 . . . 𝑡𝑚)−1) 𝑓1(𝑡1) 𝑓2(𝑡2) . . . 𝑓𝑚(𝑡𝑚)

= (−1)𝑚 · Φ𝑃,𝑥 ( 𝑓0, . . . , 𝑓𝑚).

Hence, we conclude that Φ𝑃,𝑥 is a cyclic cocycle, and we have completed the proof of Theorem 3.5.

4. The Fourier transform of Φ𝑃◦ ,𝑥
In this section, we study the Fourier transform of the cyclic cocycle Φ𝑃,𝑥 introduced in Section 3.
From now on, we additionally assume that G is connected following Knapp’s book [18]. For the reader’s
convenience, we start with recalling the basic material on parabolic induction and the Plancherel formula
in Section 4.1 and 4.2.

4.1. Parabolic induction

A brief introduction to discrete series representations can be found in Appendix B. In this section, we
review the construction of parabolic induction. Let H be a 𝜃-stable Cartan subgroup of G with Lie
algebra 𝔥. Let 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 be a cuspidal parabolic subgroup associated to H as in subsection 2.1.

Definition 4.1. Let 𝜂 be a unitary representation of 𝑀𝑃 and 𝜑 a unitary representation of 𝐴𝑃 . The
product 𝜎 ⊗ 𝜑 defines a unitary representation of 𝐿𝑃 = 𝑀𝑃𝐴𝑃 . A basic representation of G is a
representation by extending 𝜎 ⊗ 𝜑 to P trivially across 𝑁𝑃 then inducing to G:

𝜋𝜂,𝜑 = Ind𝐺𝑃 (𝜂 ⊗ 𝜑).

If 𝜂 = 𝜎 is a discrete series representation, then Ind𝐺𝑃 (𝜎⊗𝜑) will be called a basic representation induced
from the discrete series representation of 𝑀𝑃 and unitary representation of 𝐴𝑃 . This construction is
known as parabolic induction.

https://doi.org/10.1017/fms.2024.115 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.115


Forum of Mathematics, Sigma 15

The character of 𝜋𝜎,𝜑 is given in Theorem B.5, Equation (B.3) and Corollary B.6. Note that basic
representations might not be irreducible. Knapp and Zuckerman completed the classification of tempered
representations by showing which basic representations are irreducible and proved that every tempered
representation of G is basic and every basic representation is tempered.

Now consider a single cuspidal parabolic subgroup 𝑃 ⊆ 𝐺 with 𝐿𝑃 = 𝑀𝑃𝐴𝑃 , and form the group

𝑊 (𝐴𝑃 , 𝐺) = 𝑁𝐾 (𝔞𝑃)/𝑍𝐾 (𝔞𝑃),

where 𝑁𝐾 (𝔞𝑃) and 𝑍𝐾 (𝔞𝑃) are the normalizer and centralizer of 𝔞𝑃 in K, respectively. The group
𝑊 (𝐴𝑃 , 𝐺) acts as an outer automorphism of 𝑀𝑃 , and hence on the set of equivalence classes of
representations of 𝑀𝑃 . For any discrete series representation 𝜎 of 𝑀𝑃 , we define

𝑊𝜎 =
{
𝑤 ∈ 𝑁𝐾 (𝔞𝑃) : Ad∗𝑤 𝜎 � 𝜎

}
/𝑍𝐾 (𝔞𝑃).

Then, the above Weyl group acts on the family of induced representations{
Ind𝐺𝑃 (𝜎 ⊗ 𝜑)

}
𝜑∈𝐴𝑃 .

Definition 4.2. Let 𝑃1 and 𝑃2 be two cuspidal parabolic subgroups of G with 𝐿𝑃𝑖 = 𝑀𝑃𝑖 𝐴𝑃𝑖 . Let 𝜎1
and 𝜎2 be two discrete series representations of 𝑀𝑃𝑖 . We say that

(𝑃1, 𝜎1) ∼ (𝑃2, 𝜎2) (4.1)

if there exists an element w in G that conjugates 𝐿𝑃1 of 𝑃1 to 𝐿𝑃2 of 𝑃2, and conjugates 𝜎1 to a
representation unitarily equivalent to 𝜎2. In this case, there is a unitary G-equivariant isomorphism

Ind𝐺𝑃1
(𝜎1 ⊗ 𝜑) � Ind𝐺𝑃2

(𝜎2 ⊗ (Ad∗𝑤 𝜑))

as Hilbert 𝐶0 (𝐴𝑃𝑗 )-modules that covers the isomorphism

Ad∗𝑤 : 𝐶0 (𝐴𝑃1) → 𝐶0 (𝐴𝑃2).

We denote by [𝑃, 𝜎] the equivalence class of (4.1), and P (𝐺) the set of all equivalence classes.
Finally, we recall the functoriality of parabolic induction.

Lemma 4.3. If 𝑆 = 𝑀𝑆𝐴𝑆𝑁𝑆 is any cuspidal parabolic subgroup of L, then the unipotent radical of
𝑆𝑁𝑃 is 𝑁𝑆𝑁𝑃 , and the product

𝑄 = 𝑀𝑄𝐴𝑄𝑁𝑄 = 𝑀𝑆 (𝐴𝑠𝑎 : 𝑃) (𝑁𝑆𝑁𝑃)

is a cuspidal parabolic subgroup of G.

Proof. See [29, Lemma 4.1.1]. �

Theorem 4.4 (Induction in stages). Let 𝜂 be a unitary representation (not necessarily a discrete series
representation) of 𝑀𝑆 . We decompose

𝜑 = (𝜑1, 𝜑2) ∈ 𝐴𝑆 × 𝐴𝑃 .

There is a canonical equivalence

Ind𝐺𝑃
(
Ind𝑀𝑃𝑆 (𝜂 ⊗ 𝜑1) ⊗ 𝜑2

)
� Ind𝐺𝑄

(
𝜂 ⊗ (𝜑1, 𝜑2)

)
.

Proof. See [18, p. 170]. �
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4.2. Wave packets

Let 𝐺 temp be the set of equivalence classes of irreducible unitary tempered representations of G. For a
Schwartz function f on G, its Fourier transform �̂� is defined by

�̂� (𝜋) =
∫
𝐺
𝑓 (𝑔)𝜋(𝑔)𝑑𝑔, 𝜋 ∈ 𝐺 temp.

Thus, the Fourier transform assigns to f a family of operators on different Hilbert spaces (tempered
representations of G) indexed by 𝜋.

The group 𝐴𝑃 , which consists entirely of positive definite matrices, is isomorphic to its Lie algebra
via the exponential map. So 𝐴𝑃 carries the structure of a vector space, and we can speak of its space
of Schwartz functions in the ordinary sense of harmonic analysis. The same goes for the unitary
(Pontryagin) dual 𝐴𝑃 . By a tempered measure on 𝐴𝑃 , we mean a smooth measure for which integration
extends to a continuous linear functional on the Schwartz space. Recall Harish-Chandra’s Plancherel
formula for G [13].

Theorem 4.5. There is a unique smooth, tempered,𝑊𝜎-invariant function 𝑚𝑃,𝜎 on the spaces 𝐴𝑃 such
that

‖ 𝑓 ‖2
𝐿2 (𝐺) =

∑
[𝑃,𝜎 ] ∈P (𝐺)

∫
𝐴𝑃

��� �̂� (𝜋𝜎,𝜑)���2
𝐻𝑆

𝑚𝑃,𝜎 (𝜑)𝑑𝜑

for every Schwartz function 𝑓 ∈ C (𝐺). We call 𝑚𝑃,𝜎 (𝜑) the Plancherel density of the representation
Ind𝐺𝑃 (𝜎 ⊗ 𝜑).

As 𝜑 ∈ 𝐴𝑃 varies, the induced G-representations

𝜋𝜎,𝜑 = Ind𝐺𝑃 (𝜎 ⊗ 𝜑)

can be identified with one another as representations of K. Denote by Ind𝐺𝑃 (𝜎) this common Hilbert
space, and L(Ind𝐺𝑃 (𝜎)) the space of K-finite Hilbert-Schmidt operators on Ind𝐺𝑃 (𝜎). We shall discuss
the adjoint to the Fourier transform.

Definition 4.6. Let h be a Schwartz-class function from 𝐴𝑃 into operators on Ind𝐺𝑃 (𝜎) that is invariant
under the 𝑊𝜎-action. That is,

ℎ ∈
[
C (𝐴𝑃) ⊗ L2 (Ind𝐺𝑃 (𝜎))

]𝑊𝜎 .
The wave packet associated to h is the scalar function defined by the following formula:

ℎ̌(𝑔) =
∫
𝐴𝑃

Trace
(
𝜋𝜎,𝜑 (𝑔−1) · ℎ(𝜑)

)
· 𝑚𝑃,𝜎 (𝜑)𝑑𝜑.

A fundamental theorem of Harish-Chandra asserts that wave packets are Schwartz functions on G.

Theorem 4.7. The wave packets associated to the Schwartz-class functions from 𝐴𝑃 into L(Ind𝐺𝑃 (𝜎))
all belong to the Harish-Chandra Schwartz space C (𝐺). Moreover, the wave packet operator ℎ → ℎ̌ is
adjoint to the Fourier transform.

Proof. See [30, Theorems 12.7.1 and 13.4.1] and [4, Corollary 9.8]. �

4.3. Derivatives of Fourier transform

Let 𝑃 = 𝑀𝐴𝑁 be a cuspidal parabolic subgroup. Here, P does not have to be maximal. Thus, we
can decompose 𝐴𝑃 = 𝐴◦ × 𝐴𝑆 (see Lemma 4.3). Suppose that 𝜋 = Ind𝐺𝑃 (𝜂𝑀 ⊗ 𝜑), where 𝜂𝑀 is an
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irreducible tempered representation (does not have to be a discrete series representation) of M with
character denoted by Θ𝑀 (𝜂𝑀 ) and

𝜑 ∈ 𝐴𝑃 = 𝐴◦ × 𝐴𝑆 .

We denote 𝑟 = dim(𝐴𝑆) and 𝑚 = dim(𝐴◦). As a vector space, let

𝑥1, . . . , 𝑥dim 𝐴◦ , 𝑥dim 𝐴◦+1, . . . , 𝑥dim 𝐴𝑃

be the coordinates for 𝐴𝑃 . For 𝑖 = 0, . . . , 𝑚, let ℎ𝑖 ∈ C (𝐴𝑃), and 𝑣𝑖 , 𝑤𝑖 be unit K-finite vectors in
Ind𝐺𝑃 (𝜂𝑀 ). We denote by 𝜕ℎ𝑖

𝜕 𝑗 the partial derivative of ℎ𝑖 with respect to 𝑥 𝑗 , 𝑗 = 1, . . . , 𝑚.

Definition 4.8. Suppose that 𝑓𝑖 ∈ C (𝐺) are wave packets associated to

ℎ𝑖 · 𝑣𝑖 ⊗ 𝑤∗
𝑖 ∈ C

(
𝐴𝑃 ,L(Ind𝐺𝑃 (𝜂

𝑀 )
)
.

We define an (𝑚 + 1)-linear map 𝑇𝜋 with an image in C (𝐴𝑃) by

𝑇𝜋 ( �̂�0, . . . , �̂�𝑚)

=

{∑
𝜏∈𝑆𝑚 sgn(𝜏) · ℎ0 (𝜑) ·

∏𝑚
𝑖=1

𝜕ℎ𝑖 (𝜑)
𝜕𝜏 (𝑖)

if 𝑣𝑖 = 𝑤𝑖+1, 𝑖 = 0, . . . , 𝑚 − 1, and 𝑣𝑚 = 𝑤0;
0 otherwise.

(4.2)

Next we want to generalize the above definition to the Fourier transforms of all 𝑓 ∈ C (𝐺). The
induced space 𝜋 = Ind𝐺𝑃 (𝜂𝑀 ⊗ 𝜑) has a dense subspace:{

𝑠 : 𝐾 → 𝑉 𝜂
𝑀

continuous
��𝑠(𝑘𝑚) = 𝜂𝑀 (𝑚)−1𝑠(𝑘) for 𝑘 ∈ 𝐾, 𝑚 ∈ 𝐾 ∩ 𝑀

}
, (4.3)

where𝑉 𝜂𝑀 is the Hilbert space of M-representation 𝜂𝑀 . The group G action on 𝜋 is given by the formula

(𝜋(𝑔)𝑠)(𝑘) = 𝑒−〈log 𝜑+𝜌,𝐻 (𝑔−1𝑘) 〉 · 𝜂𝑀 (𝜇(𝑔−1𝑘))−1 · 𝑠(𝜅(𝑔−1𝑘)), (4.4)

where 𝜌 denotes the half sum of positive roots. By Equation (4.4), the Fourier transform

(𝜋( 𝑓 )𝑠)(𝑘) =
(
�̂� (𝜋)𝑠

)
(𝑘)

=
∫
𝐺
(𝑒−〈log 𝜑+𝜌,𝐻 (𝑔−1𝑘) 〉 · 𝜂𝑀 (𝜇(𝑔−1𝑘))−1 𝑓 (𝑔) · 𝑠(𝜅(𝑔−1𝑘))𝑑𝑔.

Suppose now that 𝑓0, . . . , 𝑓𝑚 are arbitrary Schwartz functions on G and �̂�0, . . . , �̂�𝑚 are their Fourier
transforms.

Definition 4.9. For any 1 ≤ 𝑖 ≤ 𝑛, we define a bounded operator 𝜕 𝑓𝜕𝑖 from 𝜋 = Ind𝐺𝑃 (𝜂𝑀 ⊗ 𝜑) to itself
by the following formula:((

𝜕 �̂� (𝜋)
𝜕𝑖

)
𝑠

)
(𝑘) :=

∫
𝐺
𝐻𝑖 (𝑔−1𝑘) · (𝑒−〈log 𝜑+𝜌,𝐻 (𝑔−1𝑘) 〉 · 𝜂𝑀 (𝜇(𝑔−1𝑘))−1 · 𝑓 (𝑔) · 𝑠(𝜅(𝑔−1𝑘)). (4.5)

We define an (𝑚 + 1)-linear map

𝑇𝜋 : C (𝐺) × · · · × C (𝐺)︸������������������︷︷������������������︸
𝑚+1

→ C
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by

𝑇𝜋 ( �̂�0, . . . , �̂�𝑚) :=
∑
𝜏∈𝑆𝑚

sgn(𝜏) · Trace
(
�̂�0 (𝜋) ·

𝑚∏
𝑖=1

𝜕 �̂�𝑖 (𝜋)
𝜕𝜏 (𝑖)

)
.

The above definition generalizes (4.2).

Proposition 4.10. For any 𝜋 = Ind𝐺𝑃 (𝜂𝑀 ⊗ 𝜑), we have the following identity:

𝑇𝜋 ( �̂�0, . . . , �̂�𝑚) = (−1)𝑚
∑
𝜏∈𝑆𝑚

sgn(𝜏)
∫
𝐾𝑀𝐴𝑁

∫
𝐺×𝑚

𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
. . . 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)

𝑒 〈log 𝜑+𝜌,log 𝑎〉 · Θ𝑀 (𝜂𝑀 ) (𝑚) · 𝑓0(𝑘𝑚𝑎𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1) 𝑓1 (𝑔1) . . . 𝑓𝑚(𝑔𝑚).
(4.6)

Proof. By definition, for any 𝜏 ∈ 𝑆𝑚,(
�̂�0 (𝜋) ·

𝑚∏
𝑖=1

𝜕 �̂�𝑖 (𝜋)
𝜕𝜏 (𝑖)

)
𝑠(𝑘)

=
∫
𝐺×(𝑘+1)

𝐻𝜏 (1) (𝑔−1
1 𝜅(𝑔−1

0 𝑘))𝐻𝜏 (2)
(
𝑔−1

2 𝜅((𝑔0𝑔1)−1𝑘)
)

𝐻𝜏 (𝑚)
(
𝑔−1
𝑚 𝜅((𝑔0𝑔1 . . . 𝑔𝑚−1)−1𝑘)

)
· 𝑒−〈log 𝜑+𝜌,𝐻 ( (𝑔0𝑔1...𝑔𝑚)−1𝑘) 〉

𝜂𝑀 (𝜇((𝑔0𝑔1 . . . 𝑔𝑚)−1𝑘))−1 · 𝑓0(𝑔0) 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚)𝑠
(
𝜅((𝑔0𝑔1 . . . 𝑔𝑚)−1𝑘)

)
.

By setting 𝑔 = (𝑔0𝑔1 . . . 𝑔𝑚)−1𝑘 , we have

𝑔0 = 𝑘𝑔−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1,

and

(𝑔0𝑔1 . . . 𝑔 𝑗 )−1𝑘 = 𝑔 𝑗+1𝑔 𝑗+2 . . . 𝑔𝑚𝑔.

Recall that recall 𝑀𝐴 normalizes N and M centralizes A. We denote

𝑔−1 = 𝜇𝑎𝑛𝑘 ′−1 ∈ 𝑀𝐴𝑁𝐾 = 𝐺.

Thus, (
�̂�0(𝜋) ·

𝑚∏
𝑖=1

𝜕 �̂�𝑖 (𝜋)
𝜕𝜏 (𝑖)

)
𝑠(𝑘)

=
∫
𝐾𝑀𝐴𝑁

∫
𝐺×𝑘

𝐻𝜏 (1)

(
𝑔−1

1 𝜅(𝑔1 . . . 𝑔𝑚𝑘)
)
. . . 𝐻𝜏 (𝑚)

(
𝑔−1
𝑚 𝜅(𝑔𝑚𝑘)

)
𝑒 〈log 𝜑+𝜌,log 𝑎〉 · 𝜂𝑀 (𝜇) · 𝑓0

(
𝑘𝜇𝑎𝑛𝑘 ′−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1

)
𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚)𝑠(𝑘 ′).

(4.7)

By Lemma 3.1,

𝐻𝜏 (𝑖)
(
𝑔−1
𝑖 𝜅(𝑔𝑖 . . . 𝑔𝑚𝑘)

)
= 𝐻𝜏 (𝑖)

(
𝑔𝑖+1 . . . 𝑔𝑚𝑘

)
− 𝐻𝜏 (𝑖)

(
𝑔𝑖 . . . 𝑔𝑚𝑘

)
.
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Thus,∑
𝜏∈𝑆𝑚

sgn(𝜏)𝐻𝜏 (1)
(
𝑔−1

1 𝜅(𝑔1 . . . 𝑔𝑚𝑘)
)
𝐻𝜏 (2)

(
𝑔−1

2 𝜅((𝑔2𝑔3 . . . 𝑔𝑚𝑘)
)
. . . 𝐻𝜏 (𝑚)

(
𝑔−1
𝑚 𝜅(𝑔𝑚𝑘)

)
=
∑
𝜏∈𝑆𝑚

sgn(𝜏)
(
𝐻𝜏 (1) (𝑔2 . . . 𝑔𝑚𝑘) − 𝐻𝜏 (1) (𝑔1𝑔2 . . . 𝑔𝑚𝑘)

) (
𝐻𝜏 (2) (𝑔3 . . . 𝑔𝑚𝑘) − 𝐻𝜏 (2) (𝑔2 . . . 𝑔𝑚𝑘)

)
. . .
(
𝐻𝜏 (𝑚−1) (𝑔𝑚𝑘) − 𝐻𝜏 (𝑚−1) (𝑔𝑚−1𝑔𝑚𝑘)

) (
− 𝐻𝜏 (𝑚) (𝑔𝑚𝑘)

)
.

(4.8)

By induction on m, we can prove that the right-hand side of Equation (4.8) equals

(−1)𝑚
∑
𝜏∈𝑆𝑚

sgn(𝜏)𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
𝐻𝜏 (2)

(
𝑔2𝑔3 . . . 𝑔𝑚𝑘

)
· 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)
.

By (4.7) and (4.8), we conclude that∑
𝜏∈𝑆𝑚

sgn(𝜏)
(
�̂�0(𝜋) ·

𝑚∏
𝑖=1

𝜕 �̂�𝑖 (𝜋)
𝜕𝜏 (𝑖)

)
𝑠(𝑘)

= (−1)𝑚
∑
𝜏∈𝑆𝑚

sgn(𝜏)
∫
𝐾𝑀𝐴𝑁

∫
𝐺×𝑘

𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
𝐻𝜏 (2)

(
𝑔2𝑔3 . . . 𝑔𝑚𝑘

)
· 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)

𝑒 〈log 𝜑+𝜌,log 𝑎〉 · 𝜂𝑀 (𝜇) · 𝑓0
(
𝑘𝜇𝑎𝑛𝑘 ′−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1) 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚)𝑠(𝑘 ′).

Expressing it as a kernel operator, we have∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
(
�̂�0(𝜋) ·

𝑚∏
𝑖=1

𝜕 �̂�𝑖 (𝜋)
𝜕𝜏 (𝑖)

)
𝑠(𝑘) =

∫
𝐾
𝐿(𝑘, 𝑘 ′)𝑠(𝑘 ′)𝑑𝑘 ′,

where

𝐿(𝑘, 𝑘 ′) = (−1)𝑚
∑
𝜏∈𝑆𝑚

sgn(𝜏)
∫
𝑀𝐴𝑁

∫
𝐺×𝑘

𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
𝐻𝜏 (2)

(
𝑔2𝑔3 . . . 𝑔𝑚𝑘

)
· 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)

𝑒 〈log 𝜑+𝜌,log 𝑎〉 · 𝜂𝑀 (𝜇) · 𝑓0(𝑘𝜇𝑎𝑛𝑘 ′−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1) 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚).

The proposition follows from the fact that 𝑇𝜋 =
∫
𝐾
𝐿(𝑘, 𝑘)𝑑𝑘 . �

Suppose that 𝑃1 = 𝑀1𝐴1𝑁1 and 𝑃2 = 𝑀2𝐴2𝑁2 are two cuspidal parabolic subgroups such that 𝑃1
is more noncompact than 𝑃2. Moreover, we assume that the induced representation Ind𝐺𝑃1

(
𝜎1 ⊗ 𝜑1

)
is

reducible and decomposes into

Ind𝐺𝑃1

(
𝜎1 ⊗ 𝜑1

)
=
⊕
𝑘

Ind𝐺𝑃2

(
𝛿𝑘 ⊗ 𝜑2

)
,

where 𝜎1 is a discrete series representation of 𝑀1 and 𝛿𝑘 are different limit of discrete series represen-
tations of 𝑀2. We decompose

𝐴2 = 𝐴◦ × 𝐴𝑆 , 𝐴1 = 𝐴2 × 𝐴12 = 𝐴◦ × 𝐴𝑆 × 𝐴12.

Let ℎ𝑖 ∈ C (𝐴1), and 𝑣𝑖 , 𝑤𝑖 be unit K-finite vectors in Ind𝐺𝑃1
(𝜎1) for 𝑖 = 0, . . . , 𝑚. We put

�̂�𝑖 = ℎ𝑖 · 𝑣𝑖 ⊗ 𝑤∗
𝑖 ∈ C

(
𝐴1,L(Ind𝐺𝑃1

(𝜎1)
)
.
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The following lemma follows from Definition 4.9.

Lemma 4.11. Suppose that 𝜋 = Ind𝐺𝑃2

(
𝛿𝑘 ⊗ 𝜑2

)
. If

𝑣𝑖 = 𝑤𝑖+1, 𝑖 = 0, . . . , 𝑚 − 1,

and 𝑣𝑚 = 𝑤0, then

𝑇𝜋 ( �̂�0, . . . , �̂�𝑚) =
∑
𝜏∈𝑆𝑚

sgn(𝜏) · ℎ0
(
(𝜑2, 0)

)
·
𝑚∏
𝑖=1

𝜕ℎ𝑖
(
(𝜑2, 0)

)
𝜕𝜏 (𝑖)

.

Otherwise, 𝑇𝜋 ( �̂�0, . . . , �̂�𝑚) = 0.

4.4. Cocycles on 𝐺 temp

Let 𝑃◦ = 𝑀◦𝐴◦𝑁◦ be a maximal cuspidal parabolic subgroup (cf. Definition 2.1) and T be the maximal
torus of K. In particular, the Lie algebra 𝔱 of T gives a Cartan subalgebra of 𝔪◦ and 𝑇 ⊆ 𝑀◦.

Definition 4.12. For an irreducible tempered representation 𝜋 of G, we define

A(𝜋) =
{
𝜂𝑀◦ ⊗ 𝜑 ∈ (�𝑀◦𝐴◦)temp

��� Ind𝐺𝑃◦ (𝜂
𝑀◦ ⊗ 𝜑) = 𝜋

}
.

Definition 4.13. Let 𝑚(𝜂𝑀◦ ) be the Plancherel density for the irreducible tempered representations 𝜂𝑀◦

of 𝑀◦. We put

𝜇
(
𝜋
)
=

∑
𝜂𝑀◦ ⊗𝜑∈A(𝜋)

𝑚(𝜂𝑀◦ ).

Recall the Plancherel formula

𝑓 (𝑒) =
∫
𝜋∈𝐺temp

Trace
(
�̂� (𝜋)
)
· 𝑚(𝜋)𝑑𝜋, (4.9)

where 𝑚(𝜋) is the Plancherel density for the G-representation 𝜋.

Definition 4.14. We define Φ̂𝑒 by the following formula:

Φ̂𝑒 ( �̂�0, . . . , �̂�𝑚) =
∫
𝜋∈𝐺temp

𝑇𝜋 ( �̂�0, . . . , �̂�𝑚) · 𝜇(𝜋) · 𝑑𝜋.

Theorem 4.15. For any 𝑓0, . . . , 𝑓𝑚 ∈ C (𝐺),

Φ𝑃◦ ,𝑒 ( 𝑓0, . . . , 𝑓𝑚) = (−1)𝑚Φ̂𝑒 ( �̂�0, . . . , �̂�𝑚).

The proof of Theorem 4.15 is presented in Section 4.5.

Example 4.16. Suppose that 𝐺 = R𝑚. Let

𝑥𝑖 = (𝑥𝑖1, . . . 𝑥
𝑖
𝑚) ∈ R𝑚

be the coordinates of R𝑚. On C (R𝑚), the cocycle Φ𝑃◦ ,𝑒 is given as follows:

Φ𝑃◦ ,𝑒 ( 𝑓0, . . . , 𝑓𝑚)

=
∑
𝜏∈𝑆𝑚

sgn(𝜏)
∫
𝑥1∈R𝑚

· · ·
∫
𝑥𝑚∈R𝑚

𝑥1
𝜏 (1) . . . 𝑥

𝑚
𝜏 (𝑚) 𝑓0

(
− (𝑥1 + · · · + 𝑥𝑚)

)
𝑓1(𝑥1) . . . 𝑓𝑚(𝑥𝑚).
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However, the cocycle Φ̂𝑒 on C (R̂𝑚) is given as follows:

Φ̂𝑒 ( �̂�0, . . . , �̂�𝑚) = (−
√
−1)𝑚

∫
R𝑚

�̂�0𝑑 �̂�1 . . . 𝑑 �̂�𝑚.

To see they are equal, we can compute

Φ𝑃◦ ,𝑒 ( 𝑓0, . . . , 𝑓𝑚) =
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
(
𝑓0 ∗ (𝑥𝜏 (1) 𝑓1) ∗ · · · ∗ (𝑥𝜏 (𝑚) 𝑓𝑚)

)
(0).

=
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
∫
R𝑚

(
𝑓0 ∗
(
𝑥𝜏 (1) 𝑓1

)
∗ · · · ∗

(
𝑥𝜏 (𝑚) 𝑓𝑚

)∧)
=
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
∫
R𝑚

(
�̂�0 ·
(
𝑥𝜏 (1) 𝑓1

)∧
. . .
(
𝑥𝜏 (𝑚) 𝑓𝑚

)∧)
=
∑
𝜏∈𝑆𝑚

sgn(𝜏) ·
∫
R𝑚

( 1
−
√
−1

)𝑚
(
�̂�0 ·

𝜕 �̂�1
𝜕𝜏 (1)

. . .
𝜕 �̂�𝑚
𝜕𝜏 (𝑚)

)
= (

√
−1)𝑚

∫
R𝑚

�̂�0𝑑 �̂�1 . . . 𝑑 �̂�𝑚.

To introduce the cocycle Φ̂𝑡 for any 𝑡 ∈ 𝑇 reg, we first recall the formula (C.7) for orbital integrals
splits into three parts:

regular part + singular part + higher part.

Accordingly, for any 𝑡 ∈ 𝑇 reg, we define

◦ regular part: for regular 𝜆 ∈ Λ∗
𝐾 + 𝜌𝑐 (see Definition B.1), we define[

Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)
]
𝜆
=

( ∑
𝑤 ∈𝑊𝐾

(−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡)
)
·
∫
𝜑∈𝐴◦

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦ (𝜆) ⊗𝜑) ( �̂�0, . . . , �̂�𝑚) · 𝑑𝜑,

where 𝜎𝑀◦ (𝜆) is the discrete series representation of 𝑀◦ with Harish-Chandra parameter 𝜆.
◦ singular part: for any singular 𝜆 ∈ Λ∗

𝐾 + 𝜌𝑐 , we define

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
𝜆
=

∑
𝑤 ∈𝑊𝐾 (−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡)

𝑛(𝜆) ·
𝑛(𝜆)∑
𝑖=1

∫
𝜑∈𝐴◦

𝜖 (𝑖) · 𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦
𝑖 (𝜆) ⊗𝜑) ( �̂�0, . . . , �̂�𝑚) · 𝑑𝜑,

where 𝜎𝑀◦
𝑖 are limit of discrete series representations of 𝑀◦ with Harish-Chandra parameter 𝜆 and

𝑛(𝜆) is the number of different limit of discrete series representations with Harish-Chandra parameter
𝜆, and 𝜖 (𝑖) = 1 for 𝑖 = 1, . . . 𝑛(𝜆)2 and 𝜖 (𝑖) = −1 for 𝑖 = 𝑛(𝜆)

2 + 1, . . . 𝑛(𝜆) (compare with the notations
in Theorem C.7).

◦ higher part:

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
high

=
∫
𝜋∈𝐺high

temp

𝑇𝜋 ( �̂�0, . . . , �̂�𝑚) ·
#$%

∑
𝜂𝑀◦ ⊗𝜑∈A(𝜋)

𝜅𝑀◦ (𝜂𝑀◦ , 𝑡)&'( · 𝑑𝜑,
where the functions 𝜅𝑀◦ (𝜂𝑀◦ , 𝑡) are defined in Subsection C.3, and

𝐺
high
temp =

{
𝜋 ∈ 𝐺 temp

��𝜋 = Ind𝐺𝑃◦ (𝜂
𝑀◦ ⊗ 𝜑), 𝜂𝑀◦ ∈ (𝑀◦)high

temp
}
,
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where (𝑀◦)high
temp is the set of irreducible tempered representations of 𝑀◦ which are not (limit of)

discrete series representations.

Definition 4.17. For any element 𝑡 ∈ 𝑇 reg, we define

Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

=
∑

regular 𝜆∈Λ∗
𝐾+𝜌𝑐

[
Φ̂ℎ ( �̂�0, . . . , �̂�𝑚)

]
𝜆
+

∑
singular 𝜆∈Λ∗

𝐾+𝜌𝑐

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
𝜆
+
[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
high

.

Theorem 4.18. For any 𝑡 ∈ 𝑇 reg, and 𝑓0, . . . , 𝑓𝑚 ∈ C (𝐺),

Δ𝑀◦
𝑇 (𝑡)Φ𝑃◦ ,𝑡 ( 𝑓0, . . . , 𝑓𝑚) = (−1)𝑚Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚).

The proof of Theorem 4.18 is presented in Section 4.6.

4.5. Proof of Theorem 4.15

We split the proof into several steps:
Step 1 : Change the integral from 𝐺 temp to (�𝑀◦𝐴◦)temp:

Φ̂𝑒 ( �̂�0, . . . , �̂�𝑚) =
∫
𝜋∈𝐺temp

𝑇𝜋 ( �̂�0, . . . , �̂�𝑚) · 𝜇(𝜋) · 𝑑𝜋

=
∫
𝜂𝑀◦ ⊗𝜑∈()𝑀◦𝐴◦)temp

𝑇Ind𝐺𝑃◦ (𝜂
𝑀◦ ⊗𝜑) ( �̂�0, . . . , �̂�𝑚) · 𝑚(𝜂𝑀◦ ).

Step 2 : Replace 𝑇Ind𝐺𝑃◦ (𝜂
𝑀◦ ⊗𝜑) in the above expression of Φ̂𝑒 by Equation (4.6):

Φ̂𝑒 ( �̂�0, . . . , �̂�𝑚)

= (−1)𝑚
∑
𝜏∈𝑆𝑚

sgn(𝜏)
∫
𝜂𝑀◦ ⊗𝜑∈()𝑀◦𝐴◦)temp

∫
𝐾𝑀◦𝐴◦𝑁◦

∫
𝐺×𝑚

𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
. . . 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)

𝑒 〈log 𝜑+𝜌,log 𝑎〉 · Θ𝑀◦ (𝜂𝑀◦ ) (𝑚) · 𝑓0
(
𝑘𝑚𝑎𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1

)
𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚) · 𝑚(𝜂𝑀◦ ).

Step 3 : Simplify Φ̂𝑒 by Harish-Chandra’s Plancherel formula. We write

Φ̂𝑒 ( �̂�0, . . . , �̂�𝑚)

= (−1)𝑚
∑
𝜏∈𝑆𝑚

sgn(𝜏)
∫
𝐾𝑁◦

∫
𝐺×𝑚

𝐻𝜏 (1) (𝑔1 . . . 𝑔𝑚𝑘) . . . 𝐻𝜏 (𝑚) (𝑔𝑚𝑘) · 𝑓 ′ · 𝑓1 (𝑔1) . . . 𝑓𝑚(𝑔𝑚),

where the function 𝑓 ′ is defined by the following formula:

𝑓 ′(𝑘, 𝑛, 𝑔1, . . . , 𝑔𝑚) =
∫
𝜂𝑀◦ ⊗𝜑∈()𝑀◦𝐴◦)temp

∫
𝑀◦𝐴◦

𝑒 〈log 𝜑+𝜌,log 𝑎〉

Θ𝑀◦ (𝜂𝑀◦ ) (𝑚) · 𝑓0 (𝑘𝑚𝑎𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1) · 𝑚(𝜂𝑀◦ ).

If we put

𝑐(𝑘, 𝑚, 𝑎, 𝑛, 𝑔1, . . . , 𝑔𝑚) = 𝑒 〈𝜌,log 𝑎〉 · 𝑓0
(
𝑘𝑚𝑎𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1

)
,
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then

𝑓 ′(𝑘, 𝑛, 𝑔1, . . . , 𝑔𝑚) =
∫
𝜂𝑀◦ ⊗𝜑∈()𝑀◦𝐴◦)temp

(
Θ𝑀◦ (𝜂𝑀◦ ) ⊗ 𝜑

)
(𝑐) · 𝑚(𝜂𝑀◦ ).

By (4.9),

𝑓 ′ = 𝑐(𝑘, 𝑒, 𝑒, 𝑛, 𝑔1, . . . , 𝑔𝑚) = 𝑓0

(
𝑘𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1

)
.

This completes the proof.

4.6. Proof of Theorem 4.18

Our proof strategy for Theorem 4.18 is similar to the one used to prove Theorem 4.15. We split its proof
into 3 steps as before.

Step 1 : Let Λ∗
𝑇 be the weight lattice for T and Λ∗

𝐾∩𝑀◦
be the intersection of Λ∗

𝑇 and the positive
Weyl chamber for the group 𝑀◦ ∩ 𝐾 . We denote by 𝜌𝑀◦∩𝐾

𝑐 the half sum of positive roots for 𝑀◦ ∩ 𝐾 .
For any 𝜆 ∈ Λ∗

𝐾∩𝑀◦
, we can find an element 𝑤 ∈ 𝑊𝐾 /𝑊𝐾∩𝑀◦ such that 𝑤 · 𝜆 ∈ Λ∗

𝐾 . Moreover, for any
𝑤 ∈ 𝑊𝐾 /𝑊𝐾∩𝑀◦ ,

Ind𝐺𝑃◦ (𝜎
𝑀◦ (𝜆) ⊗ 𝜑) � Ind𝐺𝑃◦ (𝜎

𝑀◦ (𝑤 · 𝜆) ⊗ 𝜑). (4.10)

For the regular part,∑
regular 𝜆∈Λ∗

𝐾+𝜌𝑐

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
𝜆

=
∑

regular 𝜆∈Λ∗
𝐾+𝜌𝑐

( ∑
𝑤 ∈𝑊𝐾

(−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡)
)
·
∫
𝜑∈𝐴◦

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦ (𝜆) ⊗𝜑) ( �̂�0, . . . , �̂�𝑚) · 𝑑𝜑

=
∑

regular 𝜆∈Λ∗
𝐾∩𝑀◦+𝜌𝑐

#$%
∑

𝑤 ∈𝑊𝐾∩𝑀◦

(−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡)&'( ·
∫
𝜑∈𝐴◦

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦ (𝜆) ⊗𝜑) ( �̂�0, . . . , �̂�𝑚) · 𝑑𝜑.

(4.11)

Here, the last equation follows from (4.10). Remembering that the above is anti-invariant under the
𝑊𝐾 -action, we can replace 𝜌𝑐 by 𝜌𝑀◦∩𝐾

𝑐 . That is, (4.11) equals

∑
regular 𝜆∈Λ∗

𝐾∩𝑀◦+𝜌
𝑀◦∩𝐾
𝑐

#$%
∑

𝑤 ∈𝑊𝐾∩𝑀◦

(−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡)&'( ·
∫
𝜑∈𝐴◦

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦ (𝜆) ⊗𝜑) ( �̂�0, . . . , �̂�𝑚) · 𝑑𝜑.

Similarly, for the singular part,

∑
singular 𝜆∈Λ∗

𝐾+𝜌𝑐

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
𝜆
=

∑
singular 𝜆∈Λ∗

𝐾∩𝑀◦+𝜌
𝑀◦∩𝐾
𝑐

#$%
∑

𝑤 ∈𝑊𝐾∩𝑀◦

(−1)𝑤 · 𝑒𝑤 ·𝜆 (𝑡)&'(
×
(
𝑛(𝜆)∑
𝑖=1

𝜖 (𝑖)
𝑛(𝜆) ·

∫
𝜑∈𝐴◦

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦
𝑖 (𝜆) ⊗𝜑) ( �̂�0, . . . , �̂�𝑚)

)
.
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Finally, for the higher part,

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
high

=
∫
𝜋∈𝐺high

temp

𝑇𝜋 ( �̂�0, . . . , �̂�𝑚)
#$%

∑
𝜂𝑀◦ ⊗𝜑∈A(𝜋)

𝜅𝑀◦ (𝜂𝑀◦ , 𝑡)&'( · 𝑑𝜑
=
∫
𝜂𝑀◦ ⊗𝜑∈𝑀 high

temp×𝐴◦

𝑇Ind𝐺𝑃◦ (𝜂
𝑀◦ ⊗𝜑) ( �̂�0, . . . , �̂�𝑚) · 𝜅

𝑀◦ (𝜂𝑀◦ , 𝑡).

Step 2 : We apply Proposition 4.10 and obtain the following.

◦ regular part:

∑
regular 𝜆∈Λ∗

𝐾+𝜌𝑐

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
𝜆

= (−1)𝑚
∑
𝜏∈𝑆𝑚

sgn(𝜏)
∑

regular 𝜆∈Λ∗
𝐾∩𝑀◦+𝜌

𝑀◦∩𝐾
𝑐

#$%
∑

𝑤 ∈𝑊𝐾∩𝑀◦

(−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡)&'(∫
𝜑∈𝐴◦

∫
𝐾𝑀◦𝐴◦𝑁◦

∫
𝐺×𝑚

𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
. . . 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)

𝑒 〈log 𝜑+𝜌,log 𝑎〉 · Θ𝑀◦
(
𝜆
)
(𝑚) · 𝑓0

(
𝑘𝑚𝑎𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1) 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚).

◦ singular part:

∑
singular 𝜆∈Λ∗

𝐾+𝜌𝑐

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
𝜆

= (−1)𝑚
∑
𝜏∈𝑆𝑚

sgn(𝜏)
∑

singular 𝜆∈Λ∗
𝐾∩𝑀◦+𝜌

𝑀◦∩𝐾
𝑐

𝑛(𝜆)∑
𝑖=1

#$% 𝜖 (𝑖)𝑛(𝜆)
∑

𝑤 ∈𝑊𝐾∩𝑀◦

(−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡)&'(∫
𝜑∈𝐴◦

∫
𝐾𝑀◦𝐴◦𝑁◦

∫
𝐺×𝑚

𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
. . . 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)

𝑒 〈log 𝜑+𝜌,log 𝑎〉 · Θ𝑀◦
𝑖 (𝜆) (𝑚) · 𝑓0

(
𝑘𝑚𝑎𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1

)
𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚).

◦ higher part:

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
high

= (−1)𝑚
∫
𝜂𝑀◦ ⊗𝜑∈𝑀 high

temp×𝐴◦

∫
𝐾𝑀◦𝐴◦𝑁◦

∫
𝐺×𝑚

𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
. . . 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)

𝑒 〈log 𝜑+𝜌,log 𝑎〉 · Θ𝑀◦
(
𝜂𝑀◦
)
(𝑚) · 𝑓0

(
𝑘𝑚𝑎𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1)

𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚) · 𝜅𝑀◦ (𝜂𝑀◦ , 𝑡).
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Step 3 : All the above computations imply that

Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

=
∑

regular 𝜆∈Λ∗
𝐾+𝜌𝑐

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
𝜆
+

∑
singular 𝜆∈Λ∗

𝐾+𝜌𝑐

[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
𝜆
+
[
Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

]
high

= (−1)𝑚
∫
𝐾𝑁◦

∫
𝐺×𝑚

𝑓 ′ ·
( ∑
𝜏∈𝑆𝑚

sgn(𝜏) · 𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
. . . 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)
· 𝑓1 (𝑔1) . . . 𝑓𝑚(𝑔𝑚)

)
,

(4.12)

where

𝑓 ′(𝑡, 𝑘, 𝑛, 𝑔1, . . . , 𝑔𝑚)

=
∑

regular 𝜆∈Λ∗
𝐾∩𝑀◦+𝜌

𝑀◦∩𝐾
𝑐

#$%
∑

𝑤 ∈𝑊𝐾∩𝑀◦

(−1)𝑤 · 𝑒𝑤 ·𝜆 (𝑡)&'( ·
∫
𝜑∈𝐴◦

(
Θ𝑀◦ (𝜆) ⊗ 𝜑

)
(𝑐)

+
∑

singular 𝜆∈Λ∗
𝐾∩𝑀◦+𝜌

𝑀◦∩𝐾
𝑐

(∑
𝑤 ∈𝑊𝐾∩𝑀◦

(−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡)
𝑛(𝜆)

)
·
𝑛(𝜆)∑
𝑖=1

𝜖 (𝑖) ·
∫
𝜑∈𝐴◦

(
Θ𝑀◦
𝑖 (𝜆) ⊗ 𝜑

)
(𝑐)

+
∫
𝜂𝑀◦ ⊗𝜑∈𝑀 high

temp⊗𝐴◦

(
Θ𝑀◦ (𝜂𝑀◦ ) ⊗ 𝜑

)
(𝑐) · 𝜅𝑀◦ (𝜂𝑀◦ , 𝑡),

where

𝑐(𝑘, 𝑚, 𝑎, 𝑛, 𝑔1, . . . , 𝑔𝑚) = 𝑒 〈𝜌,log 𝑎〉 · 𝑓0
(
𝑘𝑚𝑎𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1) .

Because T is a compact Cartan subgroup of 𝑀◦, the sign function in the definition of Harish-Chandra’s
orbital integral (1.1) is trivial [32, Section 8.1.1]. Hence, we apply Theorem C.7 to the function c and
obtain

𝑓 ′ = 𝐹𝑇𝑐 (𝑡) = Δ𝑀◦
𝑇 (𝑡) ·

∫
ℎ∈𝑀◦/𝑇◦

𝑓0

(
𝑘ℎ𝑡ℎ−1𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1

)
. (4.13)

By (4.12) and (4.13), we conclude that

Φ̂𝑡 ( �̂�0, . . . , �̂�𝑚)

= Δ𝑀◦
𝑇 (𝑡) · (−1)𝑚

∑
𝜏∈𝑆𝑚

sgn(𝜏)
∫
ℎ∈𝑀◦/𝑇◦

∫
𝐾𝑁◦

∫
𝐺×𝑚

𝐻𝜏 (1)
(
𝑔1 . . . 𝑔𝑚𝑘

)
. . . 𝐻𝜏 (𝑚)

(
𝑔𝑚𝑘
)

𝑓0
(
𝑘ℎ𝑡ℎ−1𝑛𝑘−1 (𝑔1𝑔2 . . . 𝑔𝑚)−1) 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚)

= (−1)𝑚Δ𝑀◦
𝑇 (𝑡) · Φ𝑃◦ ,𝑡 ( 𝑓0, . . . , 𝑓𝑚).

This completes the proof of Theorem 4.18.

5. Higher Index Pairing

In this section, we study the K-theory of the reduced group 𝐶∗-algebra of G by computing its pairing
with Φ𝑃◦ ,𝑡 for 𝑡 ∈ 𝑇 reg ∩ 𝑀◦ and Φ𝑃◦ ,𝑒. Moreover, we construct a group isomorphism

F : 𝐾∗(𝐶∗
𝑟 (𝐺)) → Rep(𝐾),
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where Rep(𝐾) is the character ring of the compact Lie group K. By replacing G with 𝐺 ×R if necessary,
we may assume that dim(𝐴◦) is even.

5.1. Generators of 𝐾0(𝐶∗
𝑟 (𝐺))

In Theorem C.4, we explain that the K-theory group of 𝐶∗
𝑟 (𝐺) is a free abelian group generated by the

following components:

𝐾0(𝐶∗
𝑟 (𝐺)) �

⊕
[𝑃,𝜎 ]ess

𝐾0
(
K
(
𝐶∗
𝑟 (𝐺)[𝑃,𝜎 ]

) )
�
⊕

𝜆∈Λ∗
𝐾+𝜌𝑐

Z.
(5.1)

Let [𝑃, 𝜎] ∈ P (𝐺) be an essential class corresponding to𝜆 ∈ Λ∗
𝐾+𝜌𝑐 . In this subsection, we construct

a generator of 𝐾0(𝐶∗
𝑟 (𝐺)) associated to 𝜆. We decompose 𝐴𝑃 = 𝐴𝑆 × 𝐴◦ and denote 𝑟 = dim 𝐴𝑆 and

𝑚 = dim 𝐴◦. Let V be an r-dimensional complex vector space and W an m-dimensional Euclidean
space. Take

𝑧 = (𝑥1, · · · , 𝑥𝑟 , 𝑦1, . . . 𝑦𝑚), 𝑥𝑖 ∈ C, 𝑦 𝑗 ∈ R

to be coordinates on𝑉 ⊕𝑊 . Assume that the finite group (Z2)𝑟 acts on V by simple reflections. In terms
of coordinates,

(𝑥1, · · · , 𝑥𝑟 , 𝑦1, . . . , 𝑦𝑚) ↦→ (±𝑥1, · · · ,±𝑥𝑟 , 𝑦1, . . . , 𝑦𝑚).

Let us consider the Clifford algebra

Clifford(𝑉) ⊗ Clifford(𝑊)

together with the spinor module 𝑆 = 𝑆𝑉 ⊗𝑆𝑊 . Here, the spinor modules are equipped with a Z2-grading:

𝑆+ = 𝑆+𝑉 ⊗ 𝑆+𝑊 ⊕ 𝑆−𝑉 ⊗ 𝑆−𝑊 , 𝑆− = 𝑆+𝑉 ⊗ 𝑆−𝑊 ⊕ 𝑆−𝑉 ⊗ 𝑆+𝑊 .

Let C (𝑉), C (𝑊) and C (𝑉 ⊕ 𝑊) be the algebra of Schwartz functions on V, W and 𝑉 ⊕ 𝑊 . For any
𝑧 ∈ 𝑉 ⊕𝑊 , the Clifford action 𝑐(𝑧) : 𝑆± → 𝑆∓ is defined as follows.

Let 𝑒1, . . . 𝑒2𝑟−1 be a basis for 𝑆+𝑉 , let 𝑒2𝑟−1+1, . . . 𝑒2𝑟 be a basis for 𝑆−𝑉 , and let 𝑓1, . . . 𝑓2𝑚2 be a basis
for 𝑆𝑊 . We write

𝑐𝑖, 𝑗 ,𝑘,𝑙 (𝑧) = 〈𝑐(𝑧)𝑒𝑖 ⊗ 𝑓𝑙 , 𝑒 𝑗 ⊗ 𝑓𝑘〉, 1 ≤ 𝑖, 𝑗 ≤ 2𝑟 , 1 ≤ 𝑘, 𝑙 ≤ 2
𝑚
2

and define

𝑇 := #$% 𝑒
−|𝑧 |2 · id𝑆+ 𝑒−

|𝑧 |2
2 (1 − 𝑒−|𝑧 |

2) · 𝑐 (𝑧)|𝑧 |2

𝑒−
|𝑧 |2

2 𝑐(𝑧) (1 − 𝑒−|𝑧 |
2) · id𝑆−

&'( −
(

0 0
0 id𝑆−

)
,

which is a 2𝑟+𝑚2 × 2𝑟+𝑚2 matrix:(
𝑡𝑖, 𝑗 ,𝑘,𝑙

)
, 1 ≤ 𝑖, 𝑗 ≤ 2𝑟 , 1 ≤ 𝑘, 𝑙 ≤ 2

𝑚
2 ,

with 𝑡𝑖, 𝑗 ,𝑘,𝑙 ∈ C (𝑉 ⊕𝑊).
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Definition 5.1. On the m-dimensional Euclidean space W, we can define

𝐵𝑚 =
#$%
𝑒−|𝑦 |

2 · id𝑆+𝑊 𝑒−
|𝑦 |2

2 (1 − 𝑒−|𝑦 |
2) · 𝑐 (𝑦)|𝑦 |2

𝑒−
|𝑦 |2

2 𝑐(𝑦) (1 − 𝑒−|𝑦 |
2) · id𝑆−𝑊

&'( −
(

0 0
0 id𝑆−𝑊

)
,

which is a 2𝑚2 × 2𝑚2 matrix: (
𝑏𝑘,𝑙
)
, 1 ≤ 𝑘, 𝑙 ≤ 2

𝑚
2 ,

with 𝑏𝑘,𝑙 ∈ C (𝑊). By straightforward computation, one can check that both the two matrices

#$%
𝑒−|𝑦 |

2 · id𝑆+𝑊 𝑒−
|𝑦 |2

2 (1 − 𝑒−|𝑦 |
2) · 𝑐 (𝑦)|𝑦 |2

𝑒−
|𝑦 |2

2 𝑐(𝑦) (1 − 𝑒−|𝑦 |
2) · id𝑆−𝑊

&'(,
(

0 0
0 id𝑆−𝑊

)
are idempotents. In fact, 𝐵𝑚 is the Bott generator in 𝐾0(𝐶0 (𝑊)) � Z.

Lemma 5.2. If we restrict to 𝑊 ⊂ 𝑉 ⊕𝑊 (that is, 𝑥 = 0), then

𝑇
��
𝑥=0 =

(
id𝑆+𝑉 0

0 −id𝑆−𝑉

)
⊗ 𝐵𝑚.

Proof. By definition, we have that

◦ 𝑡𝑖, 𝑗 ,𝑘,𝑙 = 𝑒−𝑧
2 when 𝑒𝑖 , 𝑒 𝑗 , 𝑓𝑘 , 𝑓𝑙 ∈ 𝑆+;

◦ 𝑡𝑖, 𝑗 ,𝑘,𝑙 = −𝑒−𝑧2 when 𝑒𝑖 , 𝑒 𝑗 , 𝑓𝑘 , 𝑓𝑙 ∈ 𝑆−;

◦ 𝑡𝑖, 𝑗 ,𝑘,𝑙 = 𝑒−
|𝑧 |2

2 (1 − 𝑒−|𝑧 |
2) · 𝑐𝑖, 𝑗,𝑘,𝑙 (𝑧)|𝑧 |2 when 𝑒𝑖 , 𝑓𝑘 , ∈ 𝑆+ and 𝑒 𝑗 , 𝑓𝑙 , ∈ 𝑆−;

◦ 𝑡𝑖, 𝑗 ,𝑘,𝑙 = 𝑒−|𝑧 |
2 · 𝑐𝑖, 𝑗 ,𝑘,𝑙 (𝑧) when 𝑒𝑖 , 𝑓𝑘 , ∈ 𝑆− and 𝑒 𝑗 , 𝑓𝑙 , ∈ 𝑆+.

Moreover, the Clifford action 𝑐(𝑧) equals

𝑐(𝑥) ⊗ 1 + 1 ⊗ 𝑐(𝑦) ∈ End(𝑆𝑉 ) ⊗ End(𝑆𝑊 )

for 𝑧 = (𝑥, 𝑦) ∈ 𝑉 ⊕𝑊 . Thus, 𝑐𝑖, 𝑗 ,𝑘,𝑙 (𝑧)
��
𝑥=0 = 𝑐𝑘,𝑙 (𝑦). This completes the proof. �

Let 𝜎 be a discrete series representation of 𝑀𝑃 and 𝜑 ∈ 𝐴◦. Then,

𝜑 ⊗ 1 ∈ 𝐴◦ × 𝐴𝑆 = 𝐴𝑃 .

Because [𝑃, 𝜎] is essential, the induced representation decomposes as

Ind𝐺𝑃 (𝜎 ⊗ 𝜑 ⊗ 1) =
2𝑟⊕
𝑖=1

Ind𝐺𝑃◦
(
𝛿𝑖 ⊗ 𝜑

)
,

where 𝛿𝑖 are limit of discrete series representations of 𝑀◦. By Equation (B.1), the characters of the limit
of discrete series representations of 𝛿𝑖 are all the same up to a sign after restricting to a compact Cartan
subgroup of 𝑀𝑃 . We can organize the numbering so that

𝛿𝑖 , 𝑖 = 1, . . . 2𝑟−1

https://doi.org/10.1017/fms.2024.115 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.115


28 Y. Song and X. Tang

have the same character after restriction and

𝛿𝑖 , 𝑖 = 2𝑟−1 + 1, . . . 2𝑟

have the same character. In particular, 𝛿𝑖 with 1 ≤ 𝑖 ≤ 2𝑟−1 and 𝛿 𝑗 with 2𝑟−1 + 1 ≤ 𝑗 ≤ 2𝑟 have the
opposite characters after restriction.

We fix 2𝑟 unit K-finite vectors 𝑣𝑖 ∈ Ind𝐺𝑃
(
𝛿𝑖
)

and define

𝑆𝜆 :=
(
𝑡𝑖, 𝑗 ,𝑘,𝑙 · 𝑣𝑖 ⊗ 𝑣∗𝑗

)
. (5.2)

The matrix

𝑆𝜆 ∈
[
C
(
𝐴𝑃 ,L(Ind𝐺𝑃 𝜎)

) ]𝑊𝜎
,

and it is an idempotent. By the Morita equivalence (C.3),

K
(
Ind𝐺𝑃 𝜎

)𝑊𝜎 ∼
(
𝐶0 (R) � Z2

)𝑟 ⊗ 𝐶0 (R𝑚).

Definition 5.3. We define

𝑄𝜆 ∈ 𝑀2𝑟+𝑚 (C (𝐺))

to be the wave packet associated to 𝑆𝜆. Then, [𝑄𝜆] is the generator in 𝐾0
(
𝐶∗
𝑟 (𝐺)[𝑃,𝜎 ]

)
for essential

class [𝑃, 𝜎] ∈ P (𝐺).

5.2. The main results

Let G be a linear connected real reductive Lie group with maximal compact subgroup K. We choose a
maximal torus T of K, and 𝑃◦ a maximal cuspidal parabolic subgroup of G. It follows from Appendix
C that for any 𝜆 ∈ Λ∗

𝐾 + 𝜌𝑐 , there is a generator

[𝑄𝜆] ∈ 𝐾
(
𝐶∗
𝑟 (𝐺)

)
.

In Section 3, we defined a family of cyclic cocycles

Φ𝑃◦ ,𝑒, Φ𝑃◦ ,𝑡 ∈ 𝐻𝐶
(
C (𝐺)

)
for all 𝑡 ∈ 𝑇 reg and the maximal compact cuspidal parabolic subgroup 𝑃◦.

Theorem 5.4. The index pairing between periodic cyclic cohomology and K-theory

𝐻𝑃even (C (𝐺)
)
⊗ 𝐾0

(
C (𝐺)

)
→ C

is given by

◦ we have

〈Φ𝑃◦ ,𝑒, [𝑄𝜆]〉 =
1

|𝑊𝑀◦∩𝐾 |
·
∑
𝑤 ∈𝑊𝐾

𝑚
(
𝜎𝑀◦ (𝑤 · 𝜆)

)
,

where 𝜎𝑀◦ (𝑤· 𝜆) is the discrete series representation with Harish-Chandra parameter 𝑤 · 𝜆, and
𝑚
(
𝜎𝑀◦ (𝑤 · 𝜆)

)
is its Plancherel measure;
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◦ for any 𝑡 ∈ 𝑇 reg,

〈Φ𝑃◦ ,𝑡 , [𝑄𝜆]〉 =
∑
𝑤 ∈𝑊𝐾 (−1)𝑤𝑒𝑤 ·𝜆(𝑡)

Δ𝑀◦
𝑇 (𝑡)

. (5.3)

The proof of Theorem 5.4 is presented in Sections 5.3 and 5.4.

Corollary 5.5. The index paring of [𝑄𝜆] and normalized higher orbital integral equals the character
of the representation Ind𝐺𝑃◦ (𝜎

𝑀◦ (𝜆) ⊗ 𝜑) at 𝜑 = 1. That is,〈
Δ𝑀◦
𝑇

Δ𝐺𝑇
· Φ𝑃◦ ,𝑡 , [𝑄𝜆]

〉
= Θ(𝑃◦, 𝜎

𝑀◦ (𝜆), 1) (𝑡).

Proof. It follows from applying the character formula, Corollary B.6, to the right side of Equation
(5.3). �

Remark 5.6. If the group G is of equal rank, then the normalization factor is trivial. And the above
corollary says that the orbital integral equals the character of a (limit of) discrete series representations.
This result in the equal rank case is also obtained by Hochs-Wang in [17] using a fixed point theorem
and the Connes-Kasparov isomorphism. In contrast to the Hochs-Wang approach, our proof is based
on representation theory and does not use any geometry of the homogenous space 𝐺/𝐾 or the Connes-
Kasparov theory.

We notice that though the cocycles Φ𝑃◦ ,𝑡 introduced in Definition 3.3 are only defined for regular
elements in T, Theorem 5.4 suggests that the pairing Δ𝑀◦

𝑇 (𝑡)〈Φ𝑃◦ ,𝑡 , [𝑄𝜆]〉 is a well-defined smooth
function on T. This inspires us to introduce the following map.

Definition 5.7. Define a map F𝑇 : 𝐾0(𝐶∗
𝑟 (𝐺)) → 𝐶∞(𝑇) by

F𝑇 ([𝑄𝜆]) (𝑡) : = Δ𝑀◦
𝑇 · 〈Φ𝑃◦ ,𝑡 , [𝑄𝜆]〉, 𝜆 ∈ Λ∗

𝐾 + 𝜌𝑐 .

The map F𝑇 is first defined on the regular part 𝑇 reg but can be extended smoothly to all elements in
T as the right-hand side of the above equation extends to a smooth function on T.

By the Weyl character formula, for any irreducible K-representation 𝑉𝜆 with highest weight 𝜆 ∈ Λ∗
𝐾 ,

its character is given by

Θ𝜆 (𝑡) =
∑
𝑤 ∈𝑊𝐾 (−1)𝑤𝑒𝑤 · (𝜆+𝜌𝑐) (𝑡)

Δ𝐾𝑇 (𝑡)
.

Multiplying by Δ𝐾𝑇 , we can identify Rep(𝐾) with the following subset of 𝐶∞(𝑇):⎧⎪⎪⎨⎪⎪⎩ 𝑓 ∈ 𝐶∞(𝑇)
�� 𝑓 (𝑡) = ∑

𝜆∈Λ∗
𝐾+𝜌𝑐

𝑛𝜆 ·
( ∑
𝑤 ∈𝑊𝐾

(−1)𝑤𝑒𝑤 · (𝜆) (𝑡)
)
, 𝑛𝜆 ∈ Z

⎫⎪⎪⎬⎪⎪⎭.
Under the above identification, we have the following corollary.

Corollary 5.8. The map F𝑇 : 𝐾0(𝐶∗
𝑟 (𝐺)) → Rep(𝐾) is an isomorphism of abelian groups.

In [5, 6], we use the above property of F𝑇 to show that F𝑇 is actually the inverse of the Connes-
Kasparov Dirac index map, index : Rep(𝐾) → 𝐾 (𝐶∗

𝑟 (𝐺)).
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Remark 5.9. The cyclic homology of the algebra C (𝐺) was studied by Wassermann [34]. Wassermann’s
result and the unpublished description of the decomposition of C (𝐺) analogous to Equation (C.2) implies
that the Connes-Chern character

ch : 𝐾0
(
C (𝐺)

)
→ 𝐻𝑃even

(
C (𝐺)

)
induces an isomorphism

𝐾0
(
C (𝐺)

)
⊗Z C � 𝐻𝑃even

(
C (𝐺)

)
.

Corollary 5.8 shows that higher orbital integrals Φ𝑃◦ ,𝑡 , 𝑡 ∈ 𝑇 reg distinguish 𝐾0(C (𝐺)). We can conclude
from this fact that Φ𝑃◦ ,𝑡 , 𝑡 ∈ 𝑇 reg actually spans 𝐻𝑃even (C (𝐺)

)
. As this outline of arguments involve

some nontrivial unpublished works, we will not state this result as a ‘theorem’.

5.3. Regular case

Suppose that 𝜆 ∈ Λ∗
𝐾 + 𝜌𝑐 is regular and 𝜎𝑀◦ (𝜆) is the discrete series representation of 𝑀◦ with Harish-

Chandra parameter 𝜆. We consider the generator [𝑄𝜆], the wave packet associated to the matrix 𝑆𝜆
introduced in (5.2), corresponding to

Ind𝐺𝑃◦ (𝜎
𝑀◦ (𝜆) ⊗ 𝜑), 𝜑 ∈ 𝐴◦.

According to Theorem 4.15,

(−1)𝑚〈Φ𝑃◦ ,𝑒, 𝑄𝜆〉 =
∫
𝜋∈𝐺temp

𝑇𝜋
#$$%Trace

#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸
𝑚+1

&''(
&''( · 𝜇(𝜋)

=
∫
𝐴◦

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦ (𝜆) ⊗𝜑) ·

#$$%Trace
#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸

𝑚+1

&''(
&''( · 𝜇
(
Ind𝐺𝑃 (𝜎

𝑀◦ (𝜆) ⊗ 𝜑)
)
.

By Definition 4.13,

𝜇
(
Ind𝐺𝑃◦ (𝜎

𝑀◦ (𝜆) ⊗ 𝜑)
)
= 𝜇
(
Ind𝐺𝑃◦ (𝜎

𝑀◦ (𝜆) ⊗ 1
)

=
∑

𝑤 ∈𝑊𝐾 /𝑊𝐾∩𝑀◦

𝑚
(
𝜎𝑀◦ (𝑤 · 𝜆)

)
=

1
|𝑊𝐾∩𝑀◦ |

·
∑
𝑤 ∈𝑊𝐾

𝑚
(
𝜎𝑀◦ (𝑤 · 𝜆)

)
.

Moreover, in the case of regular 𝜆, 𝑆𝜆 = [𝐵𝑚 · (𝑣 ⊗ 𝑣∗)], where 𝐵𝑚 is the Bott generator for 𝐾0(C (𝐴◦))
and v is a unit K-finite vector in Ind𝐺𝑃◦ (𝜎

𝑀◦ (𝜆)). By (4.2),

∫
𝐴◦

𝑇Ind𝐺𝑃◦ (𝜎 (𝜆) ⊗𝜑)
#$$%Trace

(
𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸

𝑚+1

)&''( = 〈𝐵𝑚, 𝑏𝑚〉 = 1,
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where [𝑏𝑚] ∈ 𝐻𝐶𝑚(C (R𝑚)) is the cyclic cocycle on C (R𝑚) of degree m; cf. Example 4.16. We conclude
that

〈Φ𝑃◦ ,𝑒, [𝑄𝜆]〉 =
(−1)𝑚

|𝑊𝐾∩𝑀◦ |
·
∑
𝑤 ∈𝑊𝐾

𝑚
(
𝜎𝑀◦ (𝑤 · 𝜆)

)
.

For the orbital integral Φ𝑃◦ ,𝑡 , only the regular part will contribute. The computation is similar as
above, and we conclude that

〈Φ𝑃◦ ,𝑡 , 𝑄𝜆〉 = (−1)𝑚
∑
𝑤 ∈𝑊𝐾

(−1)𝑤𝑒𝑤 ·𝜆(𝑡) ·
∫
𝐴◦

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦ (𝜆) ⊗𝜑)

#$$%Trace
#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸

𝑚+1

&''(
&''(

= (−1)𝑚
∑
𝑤 ∈𝑊𝐾

(−1)𝑤𝑒𝑤 ·𝜆(𝑡).

5.4. Singular case

Suppose now that 𝜆 ∈ Λ∗
𝐾 + 𝜌𝑐 is singular. We decompose

𝐴𝑃 = 𝐴◦ × 𝐴𝑆 , 𝜑 = (𝜑1, 𝜑2).

We denote 𝑟 = dim(𝐴𝑆) and 𝑚 = dim(𝐴◦) as before. In this case, we have that

Ind𝐺𝑃 (𝜎
𝑀 ⊗ 𝜑1 ⊗ 1) =

2𝑟⊕
𝑖=1

Ind𝐺𝑃◦
(
𝜎𝑀◦
𝑖 ⊗ 𝜑1

)
,

where 𝜎𝑀 is a discrete series representation of M and 𝜎𝑀◦
𝑖 , 𝑖 = 1, ..., 2𝑟 , are limit of discrete series

representations of 𝑀◦ with Harish-Chandra parameter 𝜆.
Recall that the generator 𝑄𝜆 is the wave packet associated to 𝑆𝜆. The index paring equals

(−1)𝑚〈Φ𝑃◦ ,𝑒, 𝑄𝜆〉 =
∫
𝐴𝑃

𝑇Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑)
#$$%Trace

#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸
𝑚+1

&''(
&''( · 𝜇
(
Ind𝐺𝑃 (𝜎

𝑀 ⊗ 𝜑)
)
.

By the definition of 𝜇,

𝜇
(
Ind𝐺𝑃 (𝜎

𝑀 ⊗ 𝜑)
)
=

∑
𝜂𝑀◦ ⊗𝜑1∈A( (Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑))

𝑚(𝜂𝑀◦ ).

Thus, the function 𝜇
(
Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑1⊗𝜑2)

)
is constant with respect to 𝜑1 ∈ 𝐴◦. It follows from (4.2) that

(−1)𝑚〈Φ𝑃◦ ,𝑒, 𝑄𝜆〉

=
∫
𝐴𝑆

#$$%𝜇
(
Ind𝐺𝑃 (𝜎

𝑀 ⊗ 𝜑)
)
·
∫
𝐴◦

𝑇Ind𝐺𝑃 (𝜎𝑀 ,𝜑)
#$$%Trace(𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸

𝑚+1

)
&''(
&''(

=
∑
𝜏∈𝑆𝑚

∑
𝑗0=𝑖1 ,... 𝑗𝑚−1=𝑖𝑚 , 𝑗𝑚=𝑖0∫

𝐴𝑆

(
𝜇
(
Ind𝐺𝑃 (𝜎

𝑀 ⊗ 𝜑)
∫
𝐴◦

(−1)𝜏 · 𝑠𝑖0 , 𝑗0 (𝜑)
𝜕𝑠𝑖1 , 𝑗1 (𝜑)
𝜕𝜏 (1)

. . .
𝜕𝑠𝑖𝑚 , 𝑗𝑚 (𝜑)

𝜕𝜏 (𝑚)

)
,
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where 𝑠𝑖, 𝑗 ∈ C (𝐴◦ × 𝐴𝑆) with 1 ≤ 𝑖, 𝑗 ≤ 2𝑟+𝑚2 is the coefficient of the (𝑖, 𝑗)-th entry in the matrix 𝑆𝜆.
We notice that the dimension of 𝐴𝑃 is 𝑚 +𝑟 . It follows from the Connes-Hochschild-Kostant-Rosenberg
theorem ([7, Theorem 46]) that the periodic cyclic cohomology of the algebra C (𝐴𝑃) is spanned by a
cyclic cocycle of degree 𝑚 + 𝑟 . Accordingly, we conclude that

〈[Φ𝑃◦ ,𝑒], 𝑄𝜆〉 = 0

because it equals the pairing of the Bott element 𝐵𝑚+𝑟 ∈ 𝐾 (𝐴𝑃) and a cyclic cocycle in 𝐻𝐶 (𝐴𝑃) with
degree only 𝑚 < 𝑚 + 𝑟 .

Next, we turn to the index pairing of orbital integrals Φ𝑃◦ ,𝑡 for 𝑡 ∈ 𝑇 reg. In this singular case, it is
clear that the regular part of higher orbital integrals will not contribute. For the higher part,

(−1)𝑚〈[Φ𝑃◦ ,𝑡 ]high, 𝑄𝜆〉

=
∫
𝜑∈𝐴𝑃

𝑇Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑)
#$$%Trace

#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸
𝑚+1

&''(
&''( ·
#$$%

∑
𝜂𝑀◦ ⊗𝜑1∈A(Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑))

𝜅𝑀◦ (𝜂𝑀◦ , 𝑡)
&''(.

Note that the function ∑
𝜂𝑀◦ ⊗𝜑1∈A(Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑))

𝜅𝑀◦ (𝜂𝑀◦ , 𝑡)

is constant in 𝜑1 ∈ 𝐴◦. By (4.2), we see that

∫
𝐴𝑆

#$$%
∑

𝜂𝑀◦ ⊗𝜑1∈A(Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑))
𝜅𝑀◦
(
𝜂𝑀◦ , 𝑡

)
·
∫
𝐴◦

𝑇Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑)Trace
#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸

𝑚+1

&''(
&''(

=
∑
𝜏∈𝑆𝑚

∑
𝜂𝑀◦ ⊗𝜑1∈A(Ind𝐺𝑃 (𝜎𝑀 ⊗𝜑))

∑
𝑗0=𝑖1 ,... 𝑗𝑚−1=𝑖𝑚 , 𝑗𝑚=𝑖0∫

𝐴𝑆

∫
𝐴◦

(
𝜅𝑀◦ (𝜂𝑀◦ , 𝑡) (−1)𝜏 · 𝑠𝑖0 , 𝑗0 (𝜑)

𝜕𝑠𝑖1 , 𝑗1 (𝜑)
𝜕𝜏 (1)

. . .
𝜕𝑠𝑖𝑚 , 𝑗𝑚 (𝜑)

𝜕𝜏 (𝑚)

)
.

We conclude that

〈[Φ𝑃◦ ,𝑡 ]high, 𝑄𝜆〉 = 0

because it equals the paring of the Bott element 𝐵𝑚+𝑟 ∈ 𝐾 (𝐴𝑃) and a cyclic cocycle on C (𝐴𝑃) of
degree m, which is trivial in 𝐻𝑃even(C (𝐴𝑃)).

For the singular part, by the Schur’s orthogonality, we have 〈[Φ𝑃◦ ,𝑡 ]𝜆′ , 𝑄𝜆〉 = 0 unless 𝜆′ = 𝜆. When
𝜆′ = 𝜆, Theorem 4.18 gives us the following computation:

(−1)𝑚〈[Φ𝑃◦ ,𝑡 ]𝜆, 𝑄𝜆〉

=

(
1
2𝑟
∑
𝑤 ∈𝑊𝐾

(−1)𝑤𝑒𝑤 ·𝜆(𝑡)
)
·

2𝑟∑
𝑘=1

∫
𝜑∈𝐴𝑃

𝜖 (𝑘) · 𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦
𝑘

⊗𝜑1)
#$$%Trace

#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸
𝑚+1

&''(
&''(.
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For each fixed k, it follows from Lemma 5.2 and Lemma 4.11 that

∫
𝜑∈𝐴𝑃

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦
𝑘

⊗𝜑1)
#$$%Trace

#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸
𝑚+1

&''(
&''(

=
∫
𝜑∈𝐴𝑃

𝑇Ind𝐺𝑃◦ (𝜎
𝑀◦
𝑘

⊗𝜑1)
#$$%Trace

#$$%𝑆𝜆 ⊗ · · · ⊗ 𝑆𝜆︸�����������︷︷�����������︸
𝑚+1

&''(
���
𝜑2=0

&''(
=

∑
𝑗0=𝑖1 ,... 𝑗𝑚−1=𝑖𝑚 , 𝑗𝑚=𝑖0=𝑘

∑
𝜏∈𝑆𝑚

∫
𝜑1∈𝐴◦

(−1)𝜏 · 𝑠𝑖0 , 𝑗0 (𝜑1)
𝜕𝑠𝑖1 , 𝑗1 (𝜑1)

𝜕𝜏 (1)
. . .

𝜕𝑠𝑖𝑚 , 𝑗𝑚 (𝜑1)
𝜕𝜏 (𝑚)

=

{
〈𝐵𝑚, 𝑏𝑚〉 = 1 if 𝑘 = 1, . . . 2𝑟−1

−〈𝐵𝑚, 𝑏𝑚〉 = 1 if 𝑘 = 2𝑟−1 + 1, . . . 2𝑟 .

Combining all the above together and the fact that 𝜖 (𝑘) = 1 for 𝑘 = 1, . . . 2𝑟−1 and 𝜖 (𝑘) = −1 for
𝑘 = 2𝑟−1 + 1, . . . 2𝑟 , we conclude that

〈[Φ𝑃◦ ,𝑡 ], 𝑄𝜆〉 = 〈[Φ𝑃◦ ,𝑡 ]𝜆, 𝑄𝜆〉 = (−1)𝑚
∑
𝑤 ∈𝑊𝐾

(−1)𝑤𝑒𝑤 ·𝜆(𝑡).

Appendix

A. Integration of Schwartz functions

Let 𝔞 ⊆ 𝔰 be the maximal abelian subalgebra of 𝔰 and 𝔥 = 𝔱 ⊕ 𝔞 be the most noncompact Cartan
subalgebra of 𝔤. Let 𝔲 = 𝔨 ⊕ 𝑖𝔰 and U be the compact Lie group with Lie algebra 𝔲. Take 𝑣 ∈ 𝔞∗ an
integral weight. Let �̃� ∈ 𝔱∗ ⊕ 𝑖𝔞∗ be an integral weight so that its restriction �̃�

��
𝑖𝔞∗ = 𝑖 · 𝑣. Let 𝐺C be the

complexification of G. Suppose that V is a finite-dimensional irreducible holomorphic representation
of 𝐺C with highest weight �̃�. Introduce a Hermitian inner product V so that U acts on V unitarily.

We take 𝑢𝑣 to be a unit vector in the sum of the weight spaces for weights that restrict to v on 𝔞.

Lemma A.1. For any 𝑔 ∈ 𝐺, we have that

𝑒 〈𝑣,𝐻 (𝑔) 〉 = ‖𝑔 · 𝑢𝑣 ‖.

Proof. The proof is borrowed from [18, Proposition 7.17]. By the Iwasawa decomposition, we write
𝑔 = 𝑘𝑎𝑛 with 𝑎 = exp(𝑋) and 𝑋 ∈ 𝔞. Since 𝑢𝑣 is the highest vector for the action of 𝔞, 𝔫 annihilates
𝑢𝑣 . Thus,

‖𝑔𝑢𝑣 ‖ = ‖𝑘𝑎𝑢𝑣 ‖ = 𝑒 〈𝑣,𝑋 〉 ‖𝑘𝑢𝑣 ‖ = 𝑒 〈𝑣,𝑋 〉 .

The last equation follows from the fact that 𝐾 ⊆ 𝑈 acts on V in a unitary way. However, we have that
𝐻 (𝑔) = 𝑋 . This completes the proof. �

Proposition A.2. There exists a constant 𝐶𝑣 > 0 such that

〈𝑣, 𝐻 (𝑔)〉 ≤ 𝐶𝑣 · ‖𝑔‖,

where ‖𝑔‖ is the distance from 𝑔 · 𝐾 to 𝑒 · 𝐾 on 𝐺/𝐾 .
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Proof. Since 𝐺 = 𝐾 exp(𝔞+)𝐾 , we write 𝑔 = 𝑘 ′ exp(𝑋)𝑘 with 𝑋 ∈ 𝔞+. By definition,

‖𝑔‖ = ‖𝑋 ‖, and 𝐻 (𝑔) = 𝐻 (𝑎𝑘).

By the above lemma, we have that

𝑒 〈𝑣,𝐻 (𝑎𝑘) 〉 = ‖𝑎𝑘 · 𝑢𝑣 ‖.

We decompose 𝑘 · 𝑢𝑣 into the weight spaces of 𝔞-action. That is,

𝑘 · 𝑢𝑣 =
𝑛∑
𝑖=1

𝑐𝑖 · 𝑢𝑖 ,

where 𝑐𝑖 ∈ C, ‖𝑐𝑖 ‖ ≤ 1 and 𝑢𝑖 is a unit vector in the weight spaces for weights that restricts to 𝜆𝑖 ∈ 𝔞∗.
It follows that

‖𝑎𝑘 · 𝑢𝑣 ‖ = ‖
𝑛∑
𝑖=1

𝑐𝑖 · 𝑎 · 𝑢𝑖 ‖

≤
𝑛∑
𝑖=1

‖𝑎 · 𝑢𝑖 ‖ =
𝑛∑
𝑖=1

𝑒 〈𝜆𝑖 ,𝑋 〉 ‖𝑢𝑖 ‖ ≤ 𝑒𝐶𝑣 · ‖𝑋 ‖ ,

(A.1)

where

𝐶𝑣 = 𝑛 · sup
𝑌 ∈𝔞,with ‖𝑌 ‖=1

{
〈𝜆𝑖 , 𝑌〉

��1 ≤ 𝑖 ≤ 𝑛
}
.

This completes the proof. �

Now let us fix a cuspidal parabolic subgroup 𝑃 = 𝑀𝐴𝑁 . To prove the integral in the definition
of Φ𝑃,𝑥 defines a continuous cochain on C (𝐺), we consider a family of Banach subalgebras S𝑡 (𝐺),
𝑡 ∈ [0,∞], of 𝐶∗

𝑟 (𝐺), which was introduced and studied by Lafforgue, [19, Definition 4.1.1].

Definition A.3. For 𝑡 ∈ [0,∞], let S𝑡 (𝐺) be the completion of 𝐶𝑐 (𝐺) with respect to the norm 𝜈𝑡
defined as follows:

𝜈𝑡 ( 𝑓 ) := sup
𝑔∈𝐺

{
(1 + ‖𝑔‖))𝑡Ξ(𝑔)−1�� 𝑓 (𝑔)��}.

Proposition A.4. The family of Banach spaces {S𝑡 (𝐺)}𝑡≥0 satisfies the following properties.

1. For every 𝑡 ∈ [0,∞), S𝑡 (𝐺) is a dense subalgebra of 𝐶∗
𝑟 (𝐺) stable under holomorphic functional

calculus.
2. For 0 ≤ 𝑡1 < 𝑡2 < ∞, ‖ 𝑓 ‖𝑡1 ≤ ‖ 𝑓 ‖𝑡2 , for 𝑓 ∈ S𝑡2 (𝐺). Therefore, C (𝐺) ⊂ S𝑡2 (𝐺) ⊂ S𝑡1 (𝐺).
3. There exists a number 𝑑0 > 0 such that the integral

𝑓 ↦→ 𝑓 𝑃 (𝑥𝑎) :=
∫
𝐾𝑁

𝑓 (𝑘𝑥𝑎𝑛𝑘−1), 𝑥 ∈ 𝑀, 𝑎 ∈ 𝐴

is a continuous linear map from S𝑡+𝑑0 (𝐺) to S𝑡 (𝑀𝐴) for 𝑡 ∈ [0,∞).
4. There exists 𝑇0 > 0 such that the orbital integral

𝑓 ↦→
∫
𝐺/𝑍𝐺 (𝑥)

𝑓 (𝑔𝑥𝑔−1)

is a continuous linear functional on S𝑡 (𝐺) for 𝑡 ≥ 𝑇0, ∀𝑥 ∈ 𝐺.
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Proof. Property 1 is from [19, Proposition 4.1.2]; Property 2 follows from the definition of the norm
𝜈𝑡 ; Property 3 follows from [10, Lemma 21]; Property 4 follows from [10, Theorem 6]. �

Theorem A.5. For any 𝑓0, . . . 𝑓𝑚 ∈ S𝑇0+𝑑0+1(𝐺) for 𝑡 ≥ 𝑇 , and 𝑥 ∈ 𝑀 , the following integral∫
ℎ∈𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

𝐻1 (𝑔1𝑘) . . . 𝐻𝑚(𝑔𝑚𝑘)

𝑓0

(
𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1

)
· 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚)

is finite and defines a continuous n-linear functional on S𝑑0+𝑇0+1(𝐺).

Proof. We put

𝑓𝑖 (𝑔𝑖) = sup
𝑘∈𝐾

{��𝐻𝑖 (𝑔𝑖𝑘) 𝑓𝑖 (𝑔𝑖)��}.
By Proposition A.2, we find constants 𝐶𝑖 > 0 so that

|𝐻𝑖 (𝑔𝑖𝑘) | ≤ 𝐶𝑖 ‖𝑔𝑖𝑘 ‖ = 𝐶𝑖 ‖𝑔𝑖 ‖.

It shows from Definition A.3 that 𝑓𝑖 belongs to S𝑑0+𝑇0 (𝐺), 𝑖 = 1, ...𝑛. Thus, the integration in (A.1) is
bounded by the following:∫

ℎ∈𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

∫
𝐺×𝑚

��� 𝑓0 (𝑘ℎ𝑥ℎ−1𝑛𝑘−1 (𝑔1 . . . 𝑔𝑚)−1
)
· 𝑓1(𝑔1) . . . 𝑓𝑚(𝑔𝑚)

���
=
∫
ℎ∈𝑀/𝑍𝑀 (𝑥)

∫
𝐾𝑁

𝐹 (𝑘ℎ𝑥ℎ−1𝑛𝑘−1),
(A.2)

where by Proposition A.4.2,

𝐹 =
�� 𝑓0 ∗ 𝑓1 ∗ · · · ∗ 𝑓𝑚

�� ∈ S𝑑0+𝑇0 (𝐺).

For any 𝑥 ∈ 𝑀, 𝑎 ∈ 𝐴, we introduce

𝐹 (𝑃) (𝑥𝑎) =
∫
𝐾𝑁

𝐹 (𝑘𝑥𝑎𝑛𝑘−1).

By Proposition A.4.3, we have that 𝐹 (𝑃) belongs to S𝑇0 (𝑀𝐴). Applying Proposition A.4.4 to the group
𝑀𝐴, we conclude the orbital integral∫

𝑀/𝑍𝑀 (𝑥)
𝐹 (𝑃) (ℎ𝑥ℎ−1) < +∞,

from which we obtain the desired finiteness of the integral (A.2). Furthermore, with the continuity of
the above maps,

𝑓𝑖 ↦→ 𝑓𝑖 , 𝑓0 ⊗ 𝑓1 ⊗ ... ⊗ 𝑓𝑚 ↦→ 𝐹, 𝐹 ↦→ 𝐹 (𝑃) , 𝐹 (𝑃) ↦→
∫
𝑀/𝑍𝑀 (𝑥)

𝐹 (𝑃) (ℎ𝑥ℎ−1),

and we conclude that the integral (A.2) is a continuous n-linear functional on S𝑑0+𝑇0+1 (𝐺). �
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B. Characters of representations of G

B.1. Discrete series representation of G

Suppose that rank𝐺 = rank𝐾 . Then, G has a compact Cartan subgroup T with Lie algebra denoted by
𝔱. Moreover, dim(𝐺/𝐾) and dim(𝐴◦) are automatically even. We can decompose the roots into compact
roots and noncompact roots; that is,

R(𝔱, 𝔤) = R𝑐 (𝔱, 𝔤) ∪R𝑛 (𝔱, 𝔤).

We choose a set of positive roots R+(𝔱, 𝔤) and define

𝜌𝑐 =
1
2

∑
𝛼∈R+

𝑐 (𝔱,𝔤)
𝛼, 𝜌𝑛 =

1
2

∑
𝛼∈R+

𝑛 (𝔱,𝔤)
𝛼, 𝜌 = 𝜌𝑐 + 𝜌𝑛.

The choice of R+
𝑐 (𝔱, 𝔨) determines a positive Weyl chamber 𝔱∗+. Let Λ∗

𝑇 be the weight lattice in 𝔱∗. Then,
the set

Λ∗
𝐾 = Λ∗

𝑇 ∩ 𝔱∗+

parametrizes the set of irreducible K-representations. In addition, we denote by𝑊𝐾 the Weyl group of the
compact subgroup K. For any 𝑤 ∈ 𝑊𝐾 , let 𝑙 (𝑤) be the length of w, and we denote by (−1)𝑤 = (−1)𝑙 (𝑤) .

Definition B.1. Let 𝜆 ∈ Λ∗
𝐾 + 𝜌𝑐 . We say that 𝜆 is regular if

〈𝜆, 𝛼〉 ≠ 0

for all 𝛼 ∈ R𝑛 (𝔱, 𝔤). Otherwise, we say 𝜆 is singular.

Assume that 𝑞 = dim𝐺/𝐾
2 and 𝑇 reg ⊂ 𝑇 the set of regular elements in T.

Theorem B.2 (Harish-Chandra). For any regular 𝜆 ∈ Λ∗
𝐾 + 𝜌𝑐 , there is a discrete series representation

𝜎(𝜆) of G with Harish-Chandra parameter 𝜆. Its character is given by the following formula:

Θ(𝜆)
��
𝑇 reg = (−1)𝑞 ·

∑
𝑤 ∈𝑊𝐾 (−1)𝑤𝑒𝑤𝜆

Δ𝐺𝑇
,

where

Δ𝐺𝑇 =
∏

𝛼∈R+ (𝔱,𝔤)
(𝑒

𝛼
2 − 𝑒

−𝛼
2 ).

Next, we consider the case when 𝜆 ∈ Λ∗
𝐾 + 𝜌𝑐 is singular. That is, there exists at least one noncompact

root 𝛼 so that 〈𝜆, 𝛼〉 = 0. Choose a positive root system R+(𝔱, 𝔤) that makes 𝜆 dominant; the choices
of R+(𝔱, 𝔤) are not unique when 𝜆 is singular. For every choice of R+(𝔱, 𝔤), we can associate it with a
representation, denoted by 𝜎

(
𝜆,R+) . We call 𝜎(𝜆,R+) a limit of discrete series representation of G.

Distinct choices of R+(𝔱, 𝔤) lead to infinitesimally equivalent versions of 𝜎
(
𝜆,R+) . Let Θ

(
𝜆,R+) be

the character of 𝜎
(
𝜆,R+) . Then,

Θ
(
𝜆,R+) ��

𝑇 reg = (−1)±
∑
𝑤 ∈𝑊𝐾 (−1)𝑤𝑒𝑤𝜆

Δ𝐺𝑇
.
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Moreover, for any 𝑤 ∈ 𝑊𝐾 which fixes 𝜆, we have that

Θ
(
𝜆, 𝑤 ·R+) ��

𝑇 reg = (−1)𝑤 · Θ
(
𝜆, 𝑤 ·R+) ��

𝑇 reg . (B.1)

See [18, P. 460] for more detailed discussion.

B.2. Discrete series representations of M

Let 𝑃 = 𝑀𝐴𝑁 be a cuspidal parabolic subgroup. The subgroup M might not be connected in general.
We denote by 𝑀0 the connected component of M and set

𝑀♯ = 𝑀0𝑍𝑀 ,

where 𝑍𝑀 is the center for M.
Let 𝜎0 be a discrete series representation (or limit of discrete series representation) of the connected

group 𝑀0 and 𝜒 be a unitary character of 𝑍𝑀 . If 𝜎0 has a Harish-Chandra parameter 𝜆, then we assume
that

𝜒
��
𝑇𝑀∩𝑍𝑀 = 𝑒𝜆−𝜌𝑀

��
𝑇𝑀∩𝑍𝑀 .

We have the well-defined representation 𝜎0 � 𝜒 of 𝑀♯, given by

𝜎0 � 𝜒(𝑔𝑧) = 𝜎(𝑔)𝜒(𝑧),

for 𝑔 ∈ 𝑀0 and 𝑧 ∈ 𝑍𝑀 .

Definition B.3. The discrete series representation or limit of discrete series representation 𝜎 for the
possibly disconnected group M induced from 𝜎0 � 𝜒 is defined as

𝜎 = Ind𝑀
𝑀 ♯

(
𝜎0 � 𝜒

)
.

Discrete series representations of M are parametrized by a pair of Harish-Chandra parameter 𝜆 and
unitary character 𝜒. Next, we show that 𝜒 is redundant for the case of 𝑀◦. Denote

◦ 𝔞 = the Lie algebra of A;
◦ 𝔱𝑀 = the Lie algebra of the compact Cartan subgroup of M;
◦ 𝔞𝑀 = the maximal abelian subalgebra of 𝔰 ∩𝔪, where 𝔤 = 𝔨 ⊕ 𝔰;

Then, 𝔱𝑀 ⊕ 𝔞 is a Cartan subalgebra of 𝔤, and 𝔞𝔰 = 𝔞𝑀 ⊕ 𝔞 is a maximal abelian subalgebra in 𝔰.
Let 𝛼 be a real root in R(𝔤, 𝔱𝑀 ⊕ 𝔞). Restrict 𝛼 to 𝔞 and extend it by 0 on 𝔞𝑀 to obtain a restricted

root in R(𝔤, 𝔞𝔰). Form an element 𝐻𝛼 ∈ 𝔞𝔰 by the following:

𝛼(𝐻) = 〈𝐻, 𝐻𝛼〉, 𝐻 ∈ 𝔞𝔰 .

It is direct to check that

𝛾𝛼 = exp
(2𝜋𝑖𝐻𝛼

|𝛼 |2
)

is a member of the center of M. Denote by 𝐹𝑀 the finite group generated by all 𝛾𝛼 induced from real
roots of Δ (𝔤, 𝔱𝑀 ⊕ 𝔞). It follows from Lemma 12.30 in [18] that

𝑀♯ = 𝑀0𝐹𝑀 . (B.2)
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Lemma B.4. For the maximal cuspidal parabolic subgroup 𝑃◦ = 𝑀◦𝐴◦𝑁◦, we have that

𝑍𝑀◦ ⊆ (𝑀◦)0.

Proof. There is no real root in R(𝔥◦, 𝔤) since the Cartan subgroup 𝐻◦ is maximally compact. The
lemma follows from (B.2). �

It follows that discrete series or limit of discrete series representations of 𝑀◦ are para-metrized by
Harish-Chandra parameter 𝜆. We denote them by 𝜎(𝜆) or 𝜎(𝜆,R+).

B.3. Induced representations of G

Let 𝑃 = 𝑀𝐴𝑁 be a cuspidal parabolic subgroup of G and 𝐿 = 𝑀𝐴 as before. For any Cartan subgroup
J of L, let {𝐽1, 𝐽2, . . . , 𝐽𝑘 } be a complete set of representatives for distinct conjugacy classes of Cartan
subgroups of L for which 𝐽𝑖 is conjugate to J in G. Suppose that 𝑥𝑖 ∈ 𝐺 satisfy 𝐽𝑖 = 𝑥𝑖𝐽𝑥

−1
𝑖 , and for

𝑗 ∈ 𝐽, write 𝑗𝑖 = 𝑥𝑖 𝑗𝑥
−1
𝑖 .

Theorem B.5. Let Θ(𝑃, 𝜎, 𝜑) be the character of the basic representation Ind𝐺𝑃 (𝜎 ⊗ 𝜑). Then,

◦ Θ(𝑃, 𝜎, 𝜑) is a locally integrable function.
◦ Θ(𝑃, 𝜎, 𝜑) is nonvanishing only on Cartan subgroups of G that are G-conjugate to Cartan subgroups

of L.
◦ For any 𝑗 ∈ 𝐽, we have

Θ(𝑃, 𝜎, 𝜑) ( 𝑗) =
𝑘∑
𝑖=1

|𝑊 (𝐽𝑖 , 𝐿) |−1 |Δ𝐺𝐽𝑖 ( 𝑗𝑖) |
−1
( ∑
𝑤 ∈𝑊 (𝐽𝑖 ,𝐺)

|Δ𝐿𝐽𝑖 (𝑤 𝑗𝑖) | · Θ𝑀𝜎
(
𝑤 𝑗𝑖
��
𝑀

)
𝜑(𝑤 𝑗𝑖 |𝐻𝑝 )

)
,

(B.3)

where Θ𝑀𝜎 is the character for the 𝑀𝑃 representation 𝜎, and the definition of Δ𝐺𝐽𝑖 (and Δ𝐿𝐽𝑖 ) is
explained in Theorem B.2.

Proof. The first two properties of Θ(𝑃, 𝜎, 𝜑) can be found in [18, Proposition 10.19], and the last
formula has been given in [15, Equation (2.9)]. �

Corollary B.6. Suppose that 𝑃◦ is the maximal cuspidal parabolic subgroup of G and 𝜎𝑀◦ (𝜆) is a
(limit of) discrete series representation with Harish-Chandra parameter 𝜆. We have that

Θ
(
𝑃◦, 𝜎

𝑀◦ (𝜆), 𝜑
)
(ℎ) =

∑
𝑤 ∈𝐾 (−1)𝑤𝑒𝑤𝜆(ℎ𝑘 ) · 𝜑(ℎ𝑝)

Δ𝐺𝐻◦
(ℎ)

,

for any ℎ ∈ 𝐻
reg
◦ .

Proof. The corollary follows from (B.3) and Theorem B.2. �

C. Description of 𝐾 (𝐶∗
𝑟 (𝐺))

Without loss of generality, we assume that dim 𝐴◦ = 𝑚 is even. Otherwise, we can replace G by 𝐺 ×R.

C.1. Generalized Schmid identity

Suppose that 𝑃 = 𝑀𝐴𝑁 is a cuspidal parabolic subgroup of G and 𝐻 = 𝑇𝐴 is its associated Cartan
subgroup. We assume that P is not maximal, and thus, H is not the most compact. By Cayley transform, we
can obtain a more compact Cartan subgroup 𝐻 ′ = 𝑇 ′𝐴′. We denote by 𝑃′ = 𝑀 ′𝐴′𝑁 ′ the corresponding
cuspidal parabolic subgroup. Here, 𝐴 = 𝐴′ × R.
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Let 𝜎 be a (limit of) discrete series representation of M, and

𝜈 ⊗ 1 ∈ 𝐴 = �̂�′ × R̂.

Suppose that

𝜋 = Ind𝐺𝑃
(
𝜎 ⊗ (𝜈 ⊗ 1)

)
is a basic representation. Then, 𝜋 is either irreducible or decomposes as follows:

Ind𝐺𝑃
(
𝜎 ⊗ (𝜈 ⊗ 1)

)
= Ind𝐺𝑃′ (𝛿1 ⊗ 𝜈) ⊕ Ind𝐺𝑃′ (𝛿2 ⊗ 𝜈).

Here, 𝛿1 and 𝛿2 are limit of discrete series representations of 𝑀 ′. Moreover, they share the same Harish-
Chandra parameter but correspond to different choices of positive roots. On the right-hand side of the
above equation, if 𝑃′ is not maximal, then one can continue the decomposition for Ind𝐺𝑃′ (𝜎′

𝑖 ⊗𝜈), 𝑖 = 1, 2.
Eventually, we get

Ind𝐺𝑃
(
𝜎 ⊗ (𝜑 ⊗ 1)

)
=
⊕
𝑖

Ind𝐺𝑃◦ (𝛿𝑖 ⊗ 𝜑), (C.1)

where

𝜑 ⊗ 1 ∈ 𝐴𝑃 = 𝐴◦ × 𝐴𝑆 .

The number of components in the above decomposition is closely related to the R-group which we will
discuss below. We refer to [18, Corollary 14.72] for detailed discussion.

As a consequence, we obtain the following lemma immediately.

Lemma C.1. Let 𝑃◦ = 𝑀◦𝐴◦𝑁◦ be the maximal cuspidal parabolic subgroup. If 𝜎 ⊗ 𝜑 is an irreducible
representation of 𝑀◦𝐴◦, then the induced representation

Ind𝐺𝑃◦
(
𝜎 ⊗ 𝜑

)
is also irreducible.

C.2. Essential representations

Clare-Crisp-Higson proved in [4, Section 6] that the group 𝐶∗-algebra 𝐶∗
𝑟 (𝐺) has the following decom-

position:

𝐶∗
𝑟 (𝐺) �

⊕
[𝑃,𝜎 ] ∈P (𝐺)

𝐶∗
𝑟 (𝐺)[𝑃,𝜎 ] , (C.2)

where

𝐶∗
𝑟 (𝐺)[𝑃,𝜎 ] � K

(
Ind𝐺𝑃 (𝜎)

)𝑊𝜎 .
For principal series representations Ind𝐺𝑃 (𝜎 ⊗ 𝜑), Knapp and Stein [18, Chapter 9] showed that the
stabilizer 𝑊𝜎 admits a semidirect product decomposition

𝑊𝜎 = 𝑊 ′
𝜎 � 𝑅𝜎 ,
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where the R-group 𝑅𝜎 consists of those elements that actually contribute nontrivially to the intertwining
algebra of Ind𝐺𝑃 (𝜎 ⊗ 𝜑). Wassermann notes the following Morita equivalence:

K
(
Ind𝐺𝑃 (𝜎)

)𝑊𝜎 ∼ 𝐶0 (𝐴𝑃/𝑊 ′
𝜎) � 𝑅𝜎 . (C.3)

Definition C.2. We say that an equivalence class [𝑃, 𝜎] is essential if 𝑊𝜎 = 𝑅𝜎 . We denote it by
[𝑃, 𝜎]ess. In this case,

𝑊𝜎 = 𝑅𝜎 � (Z2)𝑟

is obtained by application of all combinations of 𝑟 = dim(𝐴𝑃) − dim(𝐴◦) commuting reflections in
simple noncompact roots.

As before, let T be the maximal torus of K. We denote by Λ∗
𝑇 and Λ∗

𝐾 the weight lattice and its
intersection with the positive Weyl chamber of K. The following results can be found in [5, 6].

Theorem C.3 [6]. There is a bijection between the set of [𝑃, 𝜎]ess and the set Λ∗
𝐾 + 𝜌𝑐 such that

◦ for regular 𝜆 ∈ Λ∗
𝐾 + 𝜌𝑐 – that is,

〈𝜆, 𝛼〉 ≠ 0

for all noncompact roots 𝛼 ∈ R𝑛 – then the correspondent essential class [𝑃, 𝜎] satisfies that 𝑊𝜎 is
trivial, 𝑃 = 𝑃◦, and 𝜎 is the discrete series representation of 𝑀◦ with Harish-Chandra parameter 𝜆.
In addition,

Ind𝐺𝑃◦ (𝜎 ⊗ 𝜑)

are irreducible for all 𝜑 ∈ 𝐴◦.
◦ Otherwise, if 〈𝜆, 𝛼〉 = 0 for some 𝛼 ∈ R𝑛, then

Ind𝐺𝑃 (𝜎 ⊗ 𝜑 ⊗ 1) =
2𝑟⊕
𝑖=1

Ind𝐺𝑃◦
(
𝛿𝑖 ⊗ 𝜑

)
, (C.4)

where 𝛿𝑖 is a limit of discrete series representation of 𝑀◦ with Harish-Chandra parameter 𝜆, 𝜑 ∈ 𝐴◦
and 𝜑 ⊗ 1 ∈ 𝐴𝑃 .

The computation of K-theory group of 𝐶∗
𝑟 (𝐺) can be summarized as follows.

Theorem C.4 [6]. The K-theory group of 𝐶∗
𝑟 (𝐺) is a free abelian group generated by the following

components; that is,

𝐾0(𝐶∗
𝑟 (𝐺)) �

⊕
[𝑃,𝜎 ]ess

𝐾0
(
K
(
𝐶∗
𝑟 (𝐺)[𝑃,𝜎 ]

) )
�
⊕

[𝑃,𝜎 ]ess

𝐾0

(
K
(
Ind𝐺𝑃 𝜎

)𝑊𝜎 )
�
⊕

regular part
𝐾0
(
𝐶0 (R𝑚)

)
⊕

⊕
singular part

𝐾0

( (
𝐶0 (R) � Z2

)𝑟 ⊗ 𝐶0 (R𝑚)
)

�
⊕

𝜆∈Λ∗
𝐾+𝜌𝑐

Z.

(C.5)
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Example C.5. Let 𝐺 = 𝑆𝐿(2,R). The principal series representations of 𝑆𝐿(2,R) are para-metrized
by characters

(𝜎, 𝜆) ∈ 𝑀𝐴 � {±1} × R

modulo the action of the Weyl group Z2. One family of principal series representations is irreducible at
0, while the other decomposes as a sum of two limit of discrete series representations. At the level of
𝐶∗
𝑟 (𝐺), this can be explained as

𝑀𝐴/Z2 � {+1} × [0,∞) ∪ {−1} × [0,∞)
� {+1} × R/Z2 ∪ {−1} × R/Z2,

and the principal series representations contribute summands to 𝐶∗
𝑟 (𝑆𝐿(2,R)) of the form

𝐶0 (R/Z2) and 𝐶0 (R) � Z2

up to Morita equivalence. In addition, 𝑆𝐿(2,R) has discrete series representations each of which
contributes a summand of C to 𝐶∗

𝑟 (𝑆𝐿(2,R)), up to Morita equivalence. We obtain

𝐶∗
𝑟 (𝑆𝐿(2,R)) ∼ 𝐶0 (R/Z2) ⊕ 𝐶0 (R) � Z2 ⊕

⊕
𝑛∈Z\{0}

C.

Here, the part 𝐶0 (R/Z2) corresponds to the family of spherical principal series representations, which
are not essential. Then, (C.5) can be read as follows:

𝐾0(𝐶∗
𝑟 (𝑆𝐿(2,R))) � 𝐾0

( (
𝐶0 (R) � Z2

) )
⊕
⊕
𝑛≠0

𝐾0
(
C
)
.

C.3. The formula for orbital integrals

In this subsection, we summarize the formulas and results in [14, 15]. If P is the minimal parabolic
subgroup with the most noncompact Cartan subgroup H, then the Fourier transform of orbital integral
equals the character of representation. That is, for any ℎ ∈ 𝐻reg,

𝐹𝐻𝑓 (𝜒) =
∫
ℎ∈𝐻

𝜒(ℎ) · 𝐹𝐻𝑓 (ℎ) · 𝑑ℎ = Θ(𝑃, 𝜒) ( 𝑓 )

or equivalently,

𝐹𝐻𝑓 (ℎ) =
∫
𝜒∈𝐻

Θ(𝑃, 𝜒) ( 𝑓 ) · 𝜒(ℎ) · 𝑑𝜒.

For any arbitrary cuspidal parabolic subgroup P, the formula for orbital integral is much more compli-
cated, given as follows:

𝐹𝐻𝑓 (ℎ) =
∑

𝑄∈Par(𝐺,𝑃)

∫
𝜒∈𝐽

Θ(𝑄, 𝜒) ( 𝑓 ) · 𝜅𝐺 (𝑄, 𝜒, ℎ)𝑑𝜒. (C.6)

Remark C.6. In the above formula,

◦ the sum ranges over the set

Par(𝐺, 𝑃) =
{
cuspidal parabolic subgroup 𝑄 of 𝐺

��𝑄 is no more compact than 𝑃
}
.
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◦ J is the Cartan subgroup associated to the cuspidal parabolic subgroup Q.
◦ 𝜒 is a unitary character of J, and Θ(𝑄, 𝜒) is a tempered invariant eigen-distribution defined in [14].

In particular, Θ(𝑄, 𝜒) is the character of parabolic induced representation or an alternating sum of
characters which can be embedded in a reducible unitary principal series representation associated
to a different parabolic subgroup.

◦ The function 𝜅𝐺 is rather complicated to compute. Nevertheless, for the purpose of this paper, we
only need to know the existence of functions 𝜅𝐺 , which has been verified in [28].

In a special case when 𝑃 = 𝐺 and 𝐻 = 𝑇 , the formula (C.6) has the following more explicit form.

Theorem C.7. For any 𝑡 ∈ 𝑇 reg, the orbital integral

𝐹𝑇𝑓 (𝑡) =
∑

regular 𝜆∈Λ∗
𝐾+𝜌𝑐

∑
𝑤 ∈𝑊𝐾

(−1)𝑤 · 𝑒𝑤 ·𝜆 (𝑡) · Θ(𝜆) ( 𝑓 )

+
∑

singular 𝜆∈Λ∗
𝐾+𝜌𝑐

∑
𝑤 ∈𝑊𝐾

(−1)𝑤 · 𝑒𝑤 ·𝜆(𝑡) · Θ(𝜆) ( 𝑓 )

+
∫
𝜋∈𝐺high

temp

Θ(𝜋) ( 𝑓 ) · 𝜅𝐺 (𝜋, 𝑡)𝑑𝜒.

(C.7)

In the above formula, there are three parts:

◦ regular part: Θ(𝜆) is the character of the discrete series representation with Harish-Chandra param-
eter 𝜆;

◦ singular part: for singular 𝜆 ∈ Λ∗
𝐾 + 𝜌𝑐 , we denote by 𝑛(𝜆) the number of different limit of discrete

series representations with Harish-Chandra parameter 𝜆. By (B.1), we can organize them so that

Θ1(𝜆)
��
𝑇 reg = · · · = Θ 𝑛(𝜆)

2
(𝜆)
��
𝑇 reg = −Θ 𝑛(𝜆)

2 +1(𝜆)
��
𝑇 reg = · · · = −Θ𝑛(𝜆) (𝜆)

��
𝑇 reg .

We put

Θ(𝜆) : =
1

𝑛(𝜆) ·
( 𝑛(𝜆)2∑
𝑖=1

Θ𝑖 (𝜆) −
𝑛(𝜆)∑

𝑖= 𝑛(𝜆)2 +1

Θ𝑖 (𝜆)
)
.

◦ higher part: 𝐺high
temp is a subset of 𝐺 temp consisting of irreducible tempered representations which are

not (limit of) discrete series representations.
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