1 Introduction
The notion of symmetry-protected topological phases was introduced by Gu and Wen [Reference Gu and WenGW]. It is defined as follows: We consider the set of all Hamiltonians with some symmetry which have a unique gapped ground state in the bulk and can be smoothly deformed into a common trivial gapped Hamiltonian without closing the gap. We say two such Hamiltonians are equivalent if they can be smoothly deformed into each other without breaking the symmetry. We call an equivalence class of this classification a symmetry-protected topological (SPT) phase. Based on tensor network or quantum field theory analysis [Reference Chen, Gu, Liu and WenCGLW, Reference Molnar, Ge, Schuch and CiracMGSC], it is conjectured that SPT phases with on-site finite group G symmetry for $\nu $-dimensional quantum spin systems have an
$H^{\nu +1}(G,{\mathbb T})$-valued invariant. We proved that conjecture affirmatively in [Reference OgataO1] for
$\nu =1$. In this paper, we show that the conjecture is also true for
$\nu =2$.
We start by summarising the standard setup of $2$-dimensional quantum spin systems on the
$2$-dimensional lattice
${\mathbb Z}^{2}$ [Reference Bratteli and RobinsonBR1, Reference Bratteli and RobinsonBR2]. We will freely use the basic notation in Section A. Throughout this paper, we fix some
$2\le d\in \mathbb {N}$. We denote the algebra of
$d\times d$ matrices by
$\mathop {\mathrm {M}}\nolimits _{d}$.
For each subset $\Gamma $ of
${\mathbb Z}^2$, we denote the set of all finite subsets in
$\Gamma $ by
${\mathfrak S}_{\Gamma }$. We introduce the Euclidean metric on
${\mathbb Z}^2$, inherited from
${\mathbb R}^2$. We denote by
$\mathrm {d}(S_1,S_2)$ the distance between
$S_1,S_2\subset {\mathbb Z}^2$. For a subset
$\Gamma $ of
${\mathbb Z}^2$ and
$r\in {\mathbb R}_{\ge 0}$,
$\hat \Gamma {(r)}$ denotes all the points in
${\mathbb R}^{2}$ whose distance from
$\Gamma $ is less than or equal to r. We also set
$\Gamma (r):=\hat \Gamma {(r)}\cap {\mathbb Z}^{2}$. When we take a complement of
$\Gamma \subset {\mathbb Z}^{2}$, it means
$\Gamma ^{c}:={\mathbb Z}^{2}\setminus \Gamma $. For each
$n\in {\mathbb N}$, we denote
$[-n,n]^2\cap {\mathbb Z}^2$ by
$\Lambda _n$.
For each $z\in {\mathbb Z}^2$, let
${\mathcal A}_{\{z\}}$ be an isomorphic copy of
$\mathop {\mathrm {M}}\nolimits _{d}$, and for any finite subset
$\Lambda \subset {\mathbb Z}^2$, we set
${\mathcal A}_{\Lambda } = \bigotimes _{z\in \Lambda }{\mathcal A}_{\{z\}}$. For finite
$\Lambda $, the algebra
${\mathcal A}_{\Lambda } $ can be regarded as the set of all bounded operators acting on the Hilbert space
$\bigotimes _{z\in \Lambda }{{\mathbb C}}^{d}$. We use this identification freely. If
$\Lambda _1\subset \Lambda _2$, the algebra
${\mathcal A}_{\Lambda _1}$ is naturally embedded in
${\mathcal A}_{\Lambda _2}$ by tensoring its elements with the identity. For an infinite subset
$\Gamma \subset {\mathbb Z}^{2}$,
${\mathcal A}_{\Gamma }$ is given as the inductive limit of the algebras
${\mathcal A}_{\Lambda }$ with
$\Lambda \in {\mathfrak S}_{\Gamma }$. We call
${\mathcal A}_{\Gamma }$ the quantum spin system on
$\Gamma $. For simplicity, we denote the
$2$-dimensional quantum spin system
${\mathcal A}_{{\mathbb Z}^{2}}$ by
${\mathcal A}$. We also set
${\mathcal A}_{\text {loc}}:=\bigcup _{\Lambda \in {\mathfrak S}_{{\mathbb Z}^{2}}}{\mathcal A}_{\Lambda } $. For a subset
$\Gamma _1$ of
$\Gamma \subset {\mathbb Z}^{2}$, the algebra
${\mathcal A}_{\Gamma _1}$ can be regarded as a subalgebra of
${\mathcal A}_{\Gamma }$. With this identification, for
$A\in {\mathcal A}_{\Gamma _1}$ we occasionally use the same symbol A to denote
$A\otimes \mathbb I_{{\mathcal A}_{\Gamma \setminus \Gamma _1}}\in {\mathcal A}_\Gamma $. Similarly, an automorphism
$\gamma $ on
${\mathcal A}_{\Gamma _1}$ can be naturally regarded as an automorphism
$\gamma \otimes \mathop {\mathrm {id}}\nolimits _{{\mathcal A}_{\Gamma \setminus \Gamma _1}}$ on
${\mathcal A}_{\Gamma }$. We use this identification freely, and with a slight abuse of notation we occasionally denote
$\gamma \otimes \mathop {\mathrm {id}}\nolimits _{{\mathcal A}_{\Gamma \setminus \Gamma _1}}$ by
$\gamma $. Similarly, for disjoint
$\Gamma _-,\Gamma _+\subset {\mathbb Z}^{2}$ and
$\alpha _\pm \in \mathop {\mathrm {Aut}}\nolimits {\mathcal A}_{\Gamma \pm }$, we occasionally write
$\alpha _-\otimes \alpha _+$ to denote
$\left ( \alpha _-\otimes \mathop {\mathrm {id}}\nolimits _{\Gamma _-^c}\right ) \left ( \alpha _+\otimes \mathop {\mathrm {id}}\nolimits _{\Gamma _+^c}\right )$, under the given identification.
Throughout this paper we fix a finite group G and a unitary representation U on ${\mathbb C}^{d}$. Let
$\Gamma \subset {\mathbb Z}^{2}$ be a nonempty subset. For each
$g\in G$, there exists a unique automorphism
$\beta ^{\Gamma }_g$ on
${\mathcal A}_{\Gamma }$ such that

for any finite subset I of $\Gamma $. We call the group homomorphism
$\beta ^{\Gamma }: G\to \mathop {\mathrm {Aut}}\nolimits {\mathcal A}_{\Gamma }$ the on-site action of G on
${\mathcal A}_{\Gamma }$ given by U. For simplicity, we denote
$\beta ^{{\mathbb Z}^{2}}_{g}$ by
$\beta _{g}$.
A mathematical model of a quantum spin system is fully specified by its interaction $\Phi $. A uniformly bounded interaction on
${\mathcal A}$ is a map
$\Phi : {\mathfrak S}_{{\mathbb Z}^{2}}\to {\mathcal A}_{\text {loc}}$ such that

and

It is of finite range, with interaction length less than or equal to $R\in \mathbb {N}$ if
$\Phi (X)=0$ for any
$X\in {\mathfrak S}_{{\mathbb Z}^{2}}$ whose diameter is larger than R. An on-site interaction – that is, an interaction with
$\Phi (X)=0$ unless X consists of a single point – is said to be trivial. An interaction
$\Phi $ is
$\beta $-invariant if
$\beta _g(\Phi (X))=\Phi (X)$ for any
$X\in {\mathfrak S}_{{\mathbb Z}^{2}}$. For a uniformly bounded and finite-range interaction
$\Phi $ and
$\Lambda \in {\mathfrak S}_{{\mathbb Z}^{2}}$, define the local Hamiltonian

and denote the dynamics

By the uniform boundedness and finite-rangeness of $\Phi $, for each
$A\in {\mathcal A}$ the following limit exists

which defines the dynamics $\tau ^{\Phi }$ on
${\mathcal A}$ [Reference Bratteli and RobinsonBR2]. For a uniformly bounded and finite-range interaction
$\Phi $, a state
$\varphi $ on
${\mathcal A}$ is called a
$\tau ^{\Phi }$-ground state if the inequality
$ -i\,\varphi (A^*{\delta _{\Phi }}(A))\ge 0 $ holds for any element A in the domain
${\mathcal D}({\delta _{\Phi }})$ of the generator
${\delta _\Phi }$. Let
$\varphi $ be a
$\tau ^\Phi $-ground state, with a Gelfand–Naimark–Segal (GNS) triple
$\left ({\mathcal H}_\varphi ,\pi _\varphi ,\Omega _\varphi \right )$. Then there exists a unique positive operator
$H_{\varphi ,\Phi }$ on
${\mathcal H}_\varphi $ such that
$e^{itH_{\varphi ,\Phi }}\pi _\varphi (A)\Omega _\varphi =\pi _\varphi \left (\tau ^t_\Phi (A)\right )\Omega _\varphi $, for all
$A\in {\mathcal A}$ and
$t\in \mathbb R$. We call this
$H_{\varphi ,\Phi }$ the bulk Hamiltonian associated with
$\varphi $.
Definition 1.1. We say that an interaction $\Phi $ has a unique gapped ground state if (i) the
$\tau ^\Phi $-ground state, which we denote as
$\omega _{\Phi }$, is unique and (ii) there exists a
$\gamma>0$ such that
$\sigma \left (H_{\omega _{\Phi },\Phi }\right )\setminus \{0\}\subset [\gamma ,\infty )$, where
$\sigma \left (H_{\omega _{\Phi },\Phi }\right )$ is the spectrum of
$H_{\omega _{\Phi },\Phi }$. We denote by
${\mathcal P}_{UG} $ the set of all uniformly bounded finite-range interactions with unique gapped ground state. We denote by
${\mathcal P}_{UG\beta }$ the set of all uniformly bounded finite-range
$\beta $-invariant interactions with unique gapped ground state.
In this paper we consider a classification problem of a subset of ${\mathcal P}_{UG\beta }$, models with short-range entanglement. To describe the models with short-range entanglement, we need to explain the classification problem of unique gapped ground-state phases without symmetry. For
$\Gamma \subset {\mathbb Z}^{2}$, we denote by
$\Pi _{\Gamma }:{\mathcal A}\to {\mathcal A}_{\Gamma }$ the conditional expectation with respect to the trace state. Let
$f:(0,\infty )\to (0,\infty )$ be a continuous decreasing function with
$\lim _{t\to \infty }f(t)=0$. For each
$A\in {\mathcal A}$, define

We denote by ${\mathcal D}_f$ the set of all
$A\in {\mathcal A}$ such that
$\left \lVert A\right \rVert _f<\infty $.
The classification of unique gapped ground-state phases ${\mathcal P}_{UG} $ without symmetry is the following:
Definition 1.2. Two interactions $\Phi _0,\Phi _1\in {\mathcal P}_{UG} $ are equivalent if there is a path of interactions
$\Phi : [0,1]\to {\mathcal P}_{UG} $ satisfying the following:
1.
$\Phi (0)=\Phi _0$ and
$\Phi (1)=\Phi _1$.
2. For each
$X\in {\mathfrak S}_{{\mathbb Z}^2}$, the map
$[0,1]\ni s\to \Phi (X;s)\in {\mathcal A}_{X}$ is
$C^1$. We denote by
$\dot {\Phi }(X;s)$ the corresponding derivatives. The interaction obtained by differentiation is denoted by
$\dot \Phi (s)$, for each
$s\in [0,1]$.
3. There is a number
$R\in \mathbb {N}$ such that
$X \in {\mathfrak S}_{{\mathbb Z}^2}$ and
$\mathop {\mathrm {diam}}\nolimits {X}\ge R$ imply
$\Phi (X;s)=0$, for all
$s\in [0,1]$.
4. Interactions are bounded as follows:
(1.8)$$ \begin{align} C_b^{\Phi}:=\sup_{s\in\left[0,1\right]}\sup_{X\in {\mathfrak S}_{{\mathbb Z}^2}} \left ( \left \lVert \Phi\left ( X;s\right ) \right \rVert+\left \lVert \dot{\Phi} \left ( X;s\right ) \right \rVert \right )<\infty. \end{align} $$
5. Setting
(1.9)for each$$ \begin{align} b(\varepsilon):=\sup_{Z\in{\mathfrak S}_{{\mathbb Z}^2}} \sup_{s,s_0 \in\left[0,1\right],0<\left \lvert s-s_0\right \rvert<\varepsilon} \left \lVert \frac{\Phi(Z;s)-\Phi(Z;s_0)}{s-s_0}-\dot{\Phi}(Z;s_0) \right \rVert \end{align} $$
$\varepsilon>0$, we have
$\lim _{\varepsilon \to 0} b(\varepsilon )=0$.
6. There exists a
$\gamma>0$ such that
$\sigma \left (H_{\omega _{\Phi (s)},\Phi (s)}\right )\setminus \{0\}\subset [\gamma ,\infty )$ for all
$s\in [0,1]$, where
$\sigma \left (H_{\omega _{\Phi (s)},\Phi (s)}\right )$ is the spectrum of
$H_{\omega _{\Phi (s)},\Phi (s)}$.
7. There exists
$0<\eta <1$ satisfying the following: Set
$\zeta (t):=e^{-t^{ \eta }}$. Then for each
$A\in {\mathcal D}_\zeta $,
$\omega _{\Phi (s)}(A)$ is differentiable with respect to s, and there is a constant
$C_\zeta $ such that
(1.10)for any$$ \begin{align} \left \lvert \frac{d}{ds}\omega_{\Phi(s)}(A) \right \rvert \le C_\zeta\left \lVert A\right \rVert_\zeta, \end{align} $$
$A\in {\mathcal D}_\zeta $. (Recall definition (1.7)).
We write $\Phi _0\sim \Phi _1$ if
$\Phi _0$ and
$\Phi _1$ are equivalent. If
$\Phi _0,\Phi _1\in {\mathcal P}_{UG\beta }$ and we can take the path in
${\mathcal P}_{UG\beta }$ – that is, so that
$\beta _g\left ( \Phi (X;s)\right )=\Phi (X;s)$,
$g\in G$, for all
$s\in [0,1]$ – then we say
$\Phi _0$ and
$\Phi _1$ are
$\beta $-equivalent and write
$\Phi _0\sim _\beta \Phi _1$.
The reason we require these conditions is that we rely on the result in [Reference Moon and OgataMO]. The object we classify in this paper is the following:
Definition 1.3. Fix a trivial interaction $\Phi _0\in {\mathcal P}_{UG} $. We denote by
${\mathcal P}_{SL\beta }$ the set of all
$\Phi \in {\mathcal P}_{UG\beta }$ such that
$\Phi \sim \Phi _0$. Connected components of
${\mathcal P}_{SL\beta }$ with respect to
$\sim _\beta $ are the SPT phases.
Because we have $\Phi _0\sim \tilde \Phi _0$ for any trivial
$\Phi _0,\tilde \Phi _{0}\in {\mathcal P}_{UG} $, the set
${\mathcal P}_{SL\beta }$ does not depend on the choice of
$\Phi _0$.
Remark 1.4. From the automorphic equivalence (Theorem 5.1), $\Phi \sim \Phi _0$ means that the ground state of
$\Phi $ has a short-range entanglement. This is because the automorphisms in Theorem 5.1 can be regarded as a version of a quantum circuit with finite depth, which is regarded as a quantum circuit that does not create long-range entanglement [Reference Bachmann and LangeBL].
The main result of this paper is as follows:
Theorem 1.5. There is an $H^3(G,{\mathbb T})$-valued index on
${\mathcal P}_{SL\beta }$, which is an invariant of the classification
$\sim _\beta $ of
${\mathcal P}_{SL\beta }$.
The paper is organised as follows. In Section 2, we define the $H^{3}(G,{\mathbb T})$-valued index for a class of states which are created from a fixed product state via ‘factorisable’ automorphisms, satisfying some additional condition. This additional condition is the existence of the set of automorphisms which (i) do not move the state and (ii) are almost like
$\beta $-action restricted to the upper half-plane, except for some
$1$-dimensional perturbation. In Section 3, we show that the existence of such set of automorphisms is guaranteed in a suitable situation. Furthermore, in Section 4 we show the stability of the index – that is, a suitably
$\beta $-invariant automorphism does not change this index. Finally, in Section 5 we show our main theorem, Theorem 1.5, and that in our setting of Theorem 1.5, all the conditions required in Sections 2, 3 and 4 are satisfied. Although the index is defined in terms of GNS representations, in some good situation, we can calculate it without going through GNS representation; this is shown in Section 6. Reviews of this article can be found in [Reference OgataO3, Reference OgataO4].
2 The
$H^{3}(G,{\mathbb T})$-valued index in
$2$-dimensional systems
In this section, we associate an $H^{3}(G,{\mathbb T})$-index for some class of states. It will turn out later that this class includes SPT phases. For a nontrivial example of this index, see [Reference OgataO3]. It is also shown there that if a state is of product form of two states on half-planes, then our index is trivial. From the construction to follow, one can easily see that the group structure of
$H^{3}(G,{\mathbb T})$, which is a simple pointwise multiplication, shows up when we tensor two systems.
2.1 An overview
We consider states of the form $\omega =\omega _{0}\circ \alpha $, where
$\omega _{0}$ is a pure infinite tensor product state (see definition (2.18)) and
$\alpha $ an automorphism satisfying some factorisation property (2.8). In equation (2.8),
$\alpha _{L}, \alpha _{R}$ are automorphisms localised to the left and right infinite planes
$H_{L}, H_{R}$, and
$\Theta $ is localised in
$\left ( C_{\theta }\right )^{c}$, where
$C_{\theta }$ is defined by definition (2.2). We then have
$\omega \simeq \left ( \omega _{L}\alpha _{L}\otimes \omega _{R}\alpha _{R}\right )\circ \Theta $ with pure states
$\omega _{L}, \omega _{R}$ on the left and right infinite planes. We further assume that the effective excitation caused by
$( \beta _{g}^{U})^{-1}$ (see formula (2.5)) on
$\omega $ is localised around the x-axis, in the sense that for any
$0<\theta <\frac \pi 2$, there are automorphisms
$\eta _{g}^{L}, \eta _{g}^{R}$ localised in
$C_{\theta }\cap H_{L}, C_{\theta }\cap H_{R}$ such that
$\omega \circ ( \beta _{g}^{U})^{-1}$ is equivalent to
$\omega \circ (\eta _{g}^{L}\otimes \eta _{g}^{R} )$. This corresponds to thinking of
${\mathcal T}(\theta , (\tilde \beta _g) )$ (definition (2.22)) and
$\mathop {\mathrm {IG}}\nolimits (\omega ,\theta )$ (definition (2.24)). Setting
$\gamma _{g}^{R}:=\eta _{g}^{R}\beta _{g}^{UR}, \gamma _{g}^{L}:=\eta _{g}^{L}\beta _{g}^{UL}$, with
$\beta _{g}^{UR}, \beta _{g}^{UL}$ in formula (2.5), the condition given is
$\omega \simeq \omega \circ ( \gamma _{g}^{L}\otimes \gamma _{g}^{R} )$. Repeated use of this formula gives us
$\omega \simeq \omega \circ ( \gamma _{g}^{L}\gamma _{h}^{L}(\gamma _{gh}^{L} )^{-1} \otimes \gamma _{g}^{R}\gamma _{h}^{R} (\gamma _{gh}^{R} )^{-1} )$. Substituting the factorisation of
$\omega $, we then have

However, because conjugation by $\beta _g^U$ does not change the support of automorphisms, we see that this combination
$\gamma _{g}^{R}\gamma _{h}^{R}(\gamma _{gh}^{R} )^{-1}$ is localised in
$C_{\theta }\cap H_{R}$. As a result,
$\gamma _{g}^{R}\gamma _{h}^{R}(\gamma _{gh}^{R})^{-1}$ – and also
$\gamma _{g}^{L}\gamma _{h}^{L}(\gamma _{gh}^{L} )^{-1}$ – commutes with
$\Theta $. Letting them commute, we obtain

from which we can conclude $ \omega _{R}\alpha _{R}\simeq \omega _{R}\alpha _{R} \gamma _{g}^{R}\gamma _{h}^{R}(\gamma _{gh}^{R})^{-1}$. This means that
$\alpha _{R} \gamma _{g}^{R}\gamma _{h}^{R}(\gamma _{gh}^{R})^{-1}\alpha _{R}^{-1}$ is implementable by some unitary
$u(g,h)$ unitary in the GNS representation
$\pi _{R}$ of
$\omega _{R}$ (equation (2.19); see equation (2.27)). On the other hand, substituting the factorisation of
$\omega $ to
$\omega \simeq \omega \circ ( \gamma _{g}^{L}\otimes \gamma _{g}^{R} )$ implies

from which we can derive the implementability of $\Theta \circ ( \gamma _{g}^{L}\otimes \gamma _{g}^{R} )\circ \Theta ^{-1}$ in the representation
$\pi _{L}\alpha _{L}\otimes \pi _{R}\alpha _{R}$ by some unitary
$W_{g}$ (see equation (2.26)). Using the definitions of
$W_{g}$ and
$u(g,h)$, we can see that they satisfy some nontrivial relation (2.52), with some
$U(1)$-phase
$c_{R}(g,h.k)$. In fact, this is quite a similar situation to that of cocycle actions [Reference JonesJ]. As in [Reference JonesJ], we can show that this
$U(1)$-phase
$c_{R}(g,h.k)$ is a
$3$-cocycle and obtain an
$H^{3}(G, {\mathbb T})$-index. The rest of this section is devoted to the proof that our index is independent of the choice of objects we introduced to define it. All of them follow from the fact that the difference of
$W_{g}$ and
$u(g,h)$ caused by the different choice of objects can be implemented by some unitary, and the proof is rather straightforward.
2.2 Definitions and the setting
For $0<\theta <\frac \pi 2$, a (double) cone
$C_\theta $ is defined by

Note that it consists of the left part $x\le -1$ and the right part
$0\le x$. For
$0<\theta _1<\theta _2\le \frac \pi 2$, we use the notation
${\mathcal C}_{\left (\theta _1,\theta _2\right ]}:=C_{\theta _2}\setminus C_{\theta _1}$ and
${\mathcal C}_{\left [0,\theta _1\right ]}:=C_{\theta _1}$. Left, right, upper and lower half-planes are denoted by
$H_L$,
$H_R$,
$H_U$ and
$H_D$:


We use the notation

For each subset S of ${\mathbb Z}^2$, we set

We occasionally write ${\mathcal A}_{S,\sigma }, {\mathcal A}_{S,\zeta }, {\mathcal A}_{S,\sigma ,\zeta }$ to denote
${\mathcal A}_{S_{\sigma }}, {\mathcal A}_{S_{\zeta }}, {\mathcal A}_{S_{\sigma \zeta }}$. For an automorphism
$\alpha $ on
${\mathcal A}$ and
$0<\theta <\frac {\pi }2$, we denote by
${\mathfrak D}^{\theta }_\alpha $ a set of all triples
$(\alpha _L,\alpha _R,\Theta )$ with

decomposing $\alpha $ as

For $(\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{(\theta )}_\alpha $, we set

The class of automorphisms which allow such decompositions for any directions is denoted by


Furthermore, for each

we consider decompositions of $\alpha \in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A})$ such that

with

for

The class of automorphisms on ${\mathcal A}$ which allow such decompositions for any directions
$\theta _{0.8}, \theta _1, \theta _{1.2}, \theta _{1.8},\theta _2,\theta _{2.2}, \theta _{2.8},\theta _3,\theta _{3.2}$ (satisfying formula (2.11)) is denoted by
$\mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$. Note that
$\mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})\subset \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$. The set of all
$\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$ with each of
$\alpha _{I}$ in the decompositions required to commute with
$\beta _g^{U}$,
$g\in G$, is denoted by
$\mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$:

We also define

In Section 5, we will see that quasilocal automorphisms corresponding to paths in symmetric gapped phases belong to the following set:

We fix a reference state $\omega _0$ as follows: We fix a unit vector
${\xi _x}\in {\mathbb C}^d$ and let
$\rho _{\xi _x}$ be the vector state on
$\mathop {\mathrm {M}}\nolimits _d$ given by
${\xi _x}$, for each
$x\in {\mathbb Z}^2$. Then our reference state
$\omega _0$ is given by

Throughout this section this $\omega _0$ is fixed. Let
$({\mathcal H}_0,\pi _0,\Omega _0)$ be a GNS triple of
$\omega _0$. Because of the product structure of
$\omega _0$, it is decomposed as

where $({\mathcal H}_\sigma ,\pi _\sigma ,\Omega _\sigma )$ is a GNS triple of
$\omega _\sigma :=\omega _0\rvert _{{\mathcal A}_{H_\sigma }}$ for
$\sigma =L,R$. As
$\omega _0\rvert _{{\mathcal A}_{H_\sigma }}$ is pure,
$\pi _\sigma $ is irreducible. What we consider in this section is the set of states created via elements in
$\mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$ from our reference state
$\omega _0$:

Because any pure product states can be transformed to each other via an automorphism of product form $\tilde \alpha =\bigotimes _{x\in {\mathbb Z}^{2}}\tilde \alpha _{x}$, and
$\tilde \alpha \alpha $ belongs to
$\mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$ for any
$\alpha \in \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$,
$\mathop {\mathcal {SL}}\nolimits $ does not depend on the choice of
$\omega _0$. For each
$\omega \in \mathop {\mathcal {SL}}\nolimits $, we set

By the definition of $\mathop {\mathcal {SL}}\nolimits $,
$\mathop {\mathrm {EAut}}\nolimits (\omega )$ is not empty.
For $0<\theta <\frac \pi 2$ and a set of automorphisms
$\left (\tilde \beta _g\right )_{g\in G}\subset \mathop {\mathrm {Aut}}\nolimits ({{\mathcal A}})$, we introduce a set

In a word, it is a set of decompositions of $\tilde \beta _g\circ ( \beta _g^{U})^{-1}$ into tensors of
$\mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{( C_\theta )_L} ), \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{( C_\theta )_R} )$ modulo inner automorphisms. For
$(\eta _{g}^\sigma )_{g\in G,\, \sigma =L,R }\in {\mathcal T}(\theta , (\tilde \beta _g ))$, we set

The following set of automorphisms is the key ingredient for the definition of our index: For $\omega \in \mathop {\mathcal {SL}}\nolimits $ and
$0<\theta <\frac \pi 2$, we set

We also set

In this section we associate some third cohomology $h(\omega )$ for each
$\omega \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $.
2.3 Derivation of elements in
$Z^3(G,{\mathbb T})$
In this subsection, we derive $3$-cocycles out of
$\omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta )$.
Lemma 2.1. Set $\omega \in \mathop {\mathcal {SL}}\nolimits , \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega ), 0<\theta <\frac \pi 2, (\tilde \beta _g)\in \mathop {\mathrm {IG}}\nolimits \left (\omega ,\theta \right ), (\eta _{g}^\sigma )\in {\mathcal T}(\theta , (\tilde \beta _g)), (\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $. Then the following hold:
(i) There are unitaries
$W_g$,
$g\in G$, on
${\mathcal H}_0$ such that
(2.26)with the notation of definitions (2.9) and (2.23).$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits( W_g)\circ\pi_0 =\pi_0\circ\alpha_0\circ\Theta\circ\eta_g\beta_g^U\circ\Theta^{-1}\circ\alpha_0^{-1},\quad g\in G, \end{align} $$
(ii) There exists a unitary
$u_\sigma (g,h)$ on
${\mathcal H}_{\sigma }$, for each
$\sigma =L,R$ and for
$g,h\in G$, such that
(2.27)and$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits\left ( u_\sigma(g,h)\right )\circ\pi_\sigma =\pi_\sigma\circ\alpha_\sigma\circ\eta_g^\sigma\beta_g^{\sigma U} \eta_h^\sigma\left (\beta_g^{\sigma U}\right )^{-1}\left ( \eta_{gh}^\sigma\right )^{-1} \circ\alpha_\sigma^{-1} \end{align} $$
(2.28)Furthermore,$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits\left ( u_L(g,h)\otimes u_R(g,h)\right )\pi_0 =\pi_0\circ\alpha_0\circ\eta_g\beta_g^U\eta_h\left ( \beta_g^U\right )^{-1}\left (\eta_{gh}\right )^{-1} \circ\alpha_0^{-1}. \end{align} $$
$u_{\sigma }(g,h)$ commutes with any element of
$ \pi _\sigma \circ \alpha _\sigma \left ( {\mathcal A}_{\left ( \left ( C_\theta \right )^c\right )_\sigma }\right )$.
Definition 2.2. For $\omega \in \mathop {\mathcal {SL}}\nolimits , \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega ), 0<\theta <\frac \pi 2, (\tilde \beta _g )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta ), (\eta _{g}^\sigma)_{g\in G,\, \sigma =L,R }\in {\mathcal T}\left (\theta , \left (\tilde \beta _g\right )\right ), (\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $, we denote by

the set of $( (W_g)_{g\in G}, (u_\sigma (g,h))_{g,h\in G,\,\sigma =L,R} )$ with
$W_{g}\in {\mathcal U}({\mathcal H}_{0} )$ and
$u_\sigma (g,h)\in {\mathcal U}\left ({\mathcal H}_{\sigma }\right )$ satisfying

and

(Here we used the notation of definition (2.9) and (2.23).) By Lemma 2.1, it is nonempty.
Proof. For a GNS triple $({\mathcal H}_0,\pi _0\circ \alpha ,\Omega _0)$ of
$\omega =\omega _0\circ \alpha $, there are unitaries
$\tilde W_g$ on
${\mathcal H}_0$ such that

because $\omega \circ \tilde \beta _g=\omega $.
Because $(\eta _{g}^\sigma )_{g\in G,\, \sigma =L,R }\in {\mathcal T}(\theta , (\tilde \beta _g ) )$ and
$(\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $, there are unitaries
$v_g, V\in {\mathcal U}\left ({\mathcal A}\right )$ such that

Substituting these, we have

Therefore, setting $W_g:=\pi _0(V)^*( \pi _0\circ \alpha (v_g^*))\tilde W_g\pi _0(V)\in {\mathcal U}({\mathcal H}_0)$, we obtain equation (2.26).
Using equation (2.26), we have

Note that because conjugation by $\beta _g^U$ does not change the support of automorphisms,
$\eta _g\beta _g^U\eta _h( \beta _g^{U} )^{-1} \eta _{gh}^{-1}$ belongs to
$\mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_\theta } )$. On the other hand,
$\Theta $ belongs to
$\mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{ ( C_\theta )^{c}} )$. Therefore, they commute and we obtain

From this and the irreducibility of $\pi _R$, we see that
$\mathop {\mathrm {Ad}}\nolimits ( W_gW_h W_{gh}^* )$ gives rise to a
$*$-isomorphism
$\tau $ on
${\mathcal B}({\mathcal H}_R)$. It is implemented by some unitary
$u_R(g,h)$ on
${\mathcal H}_R$ by the Wigner theorem, and we obtain

for any $A\in {\mathcal A}_{H_{R}}$. Hence we obtain equation (2.27) for
$\sigma =R$.
To see that $u_R(g,h)$ belongs to
$\left ( \pi _R\circ \alpha _R\left ( {\mathcal A}_{\left ( \left ( C_\theta \right )^c\right )_R}\right )\right )'$, set
$A\in {\mathcal A}_{\left ( \left ( C_\theta \right )^c\right )_R}$. Then because
$\eta _g^R\beta _g^{R U} \eta _h^R (\beta _g^{R U} )^{-1} ( \eta _{gh}^R )^{-1}$ belongs to
$\mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{\left ( C_\theta \right )_R}\right )$, we have

This proves that $u_R(g,h)$ belongs to
$\left ( \pi _R\circ \alpha _R\left ( {\mathcal A}_{\left ( \left ( C_\theta \right )^c\right )_R}\right )\right )'$. An analogous statement for
$u_L(g,h)$ can be shown exactly the same way. The last statement of (ii), equation (2.28), is trivial from equation (2.27).
Lemma 2.3. Set $\omega \in \mathop {\mathcal {SL}}\nolimits , \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega ), 0<\theta <\frac \pi 2, \left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits \left (\omega ,\theta \right ), (\eta _{g}^\sigma )\in {\mathcal T}(\theta , (\tilde \beta _g)), (\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $. Let
$( (W_g), (u_R(g,h))) $ be an element of
$\mathop {\mathrm {IP}}\nolimits ( \omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) )$.
Then the following hold:
(i) For any
$g,h,k\in G$,
(2.39)$$ \begin{align} &\mathop{\mathrm{Ad}}\nolimits\left ( W_g\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(h,k)\right ) W_g^*\right )\circ\pi_0 \nonumber \\ &\quad =\pi_0\circ \left ( \mathop{\mathrm{id}}\nolimits_{{\mathcal A}_{H_{L}}}\otimes \alpha_R\eta_g^R\beta_g^{RU} \left ( \eta_h^R\beta_h^{R U} \eta_k^R\left (\beta_h^{R U}\right )^{-1}\left ( \eta_{hk}^R\right )^{-1} \right ) \left ( \eta_g^R\beta_g^{RU}\right )^{-1} \alpha_R^{-1} \right ). \end{align} $$
(ii) For any
$g,h\in G$,
(2.40)on$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits\left ( \left ( u_L(g,h)\otimes u_R(g,h)\right ) W_{gh}\right ) =\mathop{\mathrm{Ad}}\nolimits \left ( W_gW_h\right ) \end{align} $$
${\mathcal B}({\mathcal H}_{0})$.
(iii) For any
$g,h,k\in G$,
(2.41)$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits( W_g) \left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(h,k)\right ) \in{\mathbb C}\mathbb I_{{\mathcal H}_L}\otimes{\mathcal B}({\mathcal H}_R). \end{align} $$
(iv) For any
$g,h,k,f\in G$,
(2.42)$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits\left ( W_g W_h\right )\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(k,f)\right ) =\left ( \mathop{\mathrm{Ad}}\nolimits\left ( \left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(g,h)\right ) W_{gh}\right ) \right ) \left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(k,f)\right ). \end{align} $$
Proof. We use the notation from definitions (2.9) and (2.23).
(i) Substituting equations (2.30) and (2.31), we have

Because $\eta _h^R\beta _h^{R U} \eta _k^R(\beta _h^{R U} )^{-1}( \eta _{hk}^R)^{-1}$ belongs to
$\mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{\left ( C_\theta \right )_R}\right )$, it commutes with
$\Theta \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{\left ( C_\theta \right )^{c}}\right )$. Hence we obtain

Again, the term in parentheses in the last line is localised at $\left ( C_\theta \right )_R$, and it commutes with
$\Theta $. Therefore, we have

(ii) Again by equations (2.30) and (2.31), we have

Here, for the second equality we again used the commutativity of $\eta $s and
$\Theta $, due to their disjoint support. Because
$\pi _0$ is irreducible, we obtain equation (2.40).
(iii) For any $A\in {\mathcal A}_{H_L}$, we have

because $\Theta \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{\left ( C_\theta \right )^{c}}\right )$. Therefore,
$\eta _g^R\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{\left ( C_\theta \right )_R}\right )$ acts trivially on it and we have

As $\Theta $ preserves
${\mathcal A}_{H_L\cup \left ( C_\theta ^c\right )_R }$,

also belongs to ${\mathcal A}_{H_L\cup \left ( C_\theta ^c\right )_R }$. As a result,

belongs to $\pi _L({\mathcal A}_{H_L})\otimes \pi _R\circ \alpha _R( {\mathcal A}_{( C_\theta ^c)_R } )$, and hence commutes with
$\mathbb I_{{\mathcal H}_L}\otimes u_R(h,k)$. Hence
$\mathop {\mathrm {Ad}}\nolimits (W_g)\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(h,k) \right )$ commutes with any elements in
$\pi _L({\mathcal A}_L)\otimes {\mathbb C}\mathbb I_{{\mathcal H}_R}$. Because
$\pi _L$ is irreducible,
$\mathop {\mathrm {Ad}}\nolimits (W_g)\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(h,k) \right )$ belongs to
${\mathbb C}\mathbb I_{{\mathcal H}_L}\otimes {\mathcal B}({\mathcal H}_R)$.
(iv) By (iii), $\mathop {\mathrm {Ad}}\nolimits \left ( W_{gh}\right )\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(k,f)\right )$ belongs to
${\mathbb C}\mathbb I_{{\mathcal H}_L}\otimes {\mathcal B}({\mathcal H}_R)$. Therefore, from (ii), we have

obtaining (iv).
With this preparation, we may obtain some element of $Z^3(G,{\mathbb T})$ from
$\left ((W_g), (u_\sigma (g,h))\right )$.
Lemma 2.4. Set $\omega \in \mathop {\mathcal {SL}}\nolimits , \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega ), 0<\theta <\frac \pi 2, (\tilde \beta _g)\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta ), (\eta _{g}^\sigma )\in {\mathcal T}(\theta , (\tilde \beta _g)), (\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $. Let
$( (W_g), (u_\sigma (g,h)))$ be an element of
$ \mathop {\mathrm {IP}}\nolimits ( \omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) )$. Then there is a
$c_R\in Z^3(G,{\mathbb T})$ such that

for all $g,h,k\in G$.
Definition 2.5. We denote this $3$-cocycle
$c_R$ in Lemma 2.4 by

and its cohomology class by

Proof. First we prove that there is a number $c_R(g,h,k)\in {\mathbb T}$ satisfying equation (2.52). From equation (2.31), we have

On the other hand, using Lemma 2.3(i), we have that

is also equal to the right-hand side of equation (2.55). Because $\pi _0$ is irreducible, this means that there is a number
$c_R(g,h,k)\in {\mathbb T}$ satisfying equation (2.52).
Now let us check that this $c_R$ is a
$3$-cocycle. For any
$g,h,k,f\in G$, by repeated use of equation (2.52), we get


Here and in the following, we apply equation (2.52) for terms in $\left [\cdot \right ]$ to get the succeeding equality. Applying Lemma 2.3(iv) to the
$\{\cdot \}$ part of equation (2.57), we obtain

Hence, we obtain

This means $c_{R}\in Z^{3}(G,{\mathbb T})$.
2.4 The
$H^{3}(G,{\mathbb T})$-valued index
From the previous subsection, we remark the following fact:
Lemma 2.6. For any $\omega \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $, there are

Proof. Because $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $, there is some
$0<\theta <\frac \pi 2$ such that
$\mathop {\mathrm {IG}}\nolimits (\omega ,\theta )\neq \emptyset $, and hence
$\left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta )$ and
$(\eta _g^\sigma )\in {\mathcal T}\left (\theta , \left (\tilde \beta _g\right )\right )$ exist. Because
$\omega \in \mathop {\mathcal {SL}}\nolimits $, by definition there exists some
$\alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$, and by the definition of
$\mathop {\mathrm {EAut}}\nolimits (\omega )$, there is some
$(\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $. The existence of
$( (W_g), (u_R(g,h)))\in \mathop {\mathrm {IP}}\nolimits ( \omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) )$ is given by Lemma 2.1.
By Lemma 2.4, for $\omega \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $ and each choice of (2.60), we can associate some element of
$H^3(G,{\mathbb T})$:

In this subsection, we show that the third cohomology class does not depend on the choice of (2.60):
Theorem 2.7. For any $\omega \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $,

is independent of the choice of

Definition 2.8. Let $\omega \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $. We denote the third cohomology given in Theorem 2.7 by

First we show the independence from $( (W_g), (u_\sigma (g,h)))$.
Lemma 2.9. Set


Then we have

Definition 2.10. From this lemma and because there is always $( (W_g), (u_R(g,h)))$ in
$\mathop {\mathrm {IP}}\nolimits ( \omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) )$ by Lemma 2.1, we may define

for any

independent of the choice of $( (W_g), (u_\sigma (g,h)))$.
Proof. Because


and $\pi _{0}, \pi _{R}$ are irreducible, there are
$b(g),a(g,h)\in {\mathbb T}$,
$g,h\in G$, such that

Set

Then from the definition of these values and equation (2.69), we have

Hence we have $\tilde c_{R}(g,h,k)=c_R(g,h,k)\overline {a(h,k)a(g,hk)}a(g,h)a(gh,k)$, and we get
$[c_{R}]_{H^{3}\left (G,{\mathbb T}\right )}=\left [\tilde c_{R}\right ]_{H^{3}\left (G,{\mathbb T}\right )}$, proving the claim.
Next we show the independence from $\alpha , (\alpha _L,\alpha _R,\Theta )$:
Lemma 2.11. Set


Then we have

Definition 2.12. From this lemma and because there are always $ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ and
$(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta }$ for
$\omega \in \mathop {\mathcal {SL}}\nolimits $ and
$0<\theta <\frac \pi 2$ by the definition, we may define

for any

independent of the choice of $\alpha , (\alpha _L,\alpha _R,\Theta )$.
Proof. By Lemma 2.1, there are

For each $i=1,2$, we have
$\Theta _{i}\in \mathop {\mathrm {Aut}}\nolimits {\mathcal A}_{C_{\theta }^{c}}$ and

setting

Because $\omega _{0}\circ \alpha _{1}=\omega =\omega _{0}\circ \alpha _{2}$, we have
$\omega _{0}\circ \alpha _{2}\circ \alpha _{1}^{-1}=\omega _{0}$. Therefore, there is a unitary
$\tilde V$ on
${\mathcal H}_{0}$ such that
$ \pi _{0}\circ \alpha _{2}\circ \alpha _{1}^{-1}=\mathop {\mathrm {Ad}}\nolimits \left ( \tilde V\right )\circ \pi _{0} $. Substituting equation (2.78) into this, we see that there is a unitary V on
${\mathcal H}_{0}$ satisfying

From this, we obtain

for all $g\in G$. Furthermore, we have

Now, because $\eta _g^R\beta _g^{R U} \eta _h^R\left (\beta _g^{R U}\right )^{-1}\left ( \eta _{gh}^R\right )^{-1}$ is an automorphism on
${\mathcal A}_{C_{\theta }}$ and
$\Theta _{2}\circ \Theta _{1}^{-1}$ is an automorphism on
${\mathcal A}_{C_{\theta }^{c}}$, they commute. Therefore, we have

From this equality and the fact that $\pi _{L}$ is irreducible, we see that
$V\left (\mathbb I_{{\mathcal H}_{L}}\otimes u_{R,1}(g,h)\right ) V^{*}$ is of the form
$\mathbb I_{{\mathcal H}_{L}}\otimes u_{R,2}(g,h)$ with some unitary
$u_{R,2}(g,h)$ on
${\mathcal H}_{R}$. This
$u_{R,2}(g,h)$ satisfies

Analogously, we obtain a unitary $u_{L,2}(g,h)$ on
${\mathcal H}_{L}$ such that


From equations (2.81), (2.84) and (2.85), we see that

Set

It suffices to show that $c_{R,1}=c_{R,2}$. This can be checked directly as follows:

Lemma 2.13. Set

Then we have

Definition 2.14. From this lemma and the definition of $ \mathop {\mathrm {IG}}\nolimits (\omega ,\theta )$, we may define

for any

independent of the choice of $(\eta _{g}^\sigma )$.
Proof. There are $ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ and
$(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta }$ for
$\omega \in \mathop {\mathcal {SL}}\nolimits $ by the definition. We set
$\alpha _0:=\alpha _L\otimes \alpha _R$ and
$\eta _g:=\eta _g^L\otimes \eta _g^R$,
$\tilde \eta _g:=\tilde \eta _g^L\otimes \tilde \eta _g^R$. By Lemma 2.1, there is some

Because $ (\eta _{g}^\sigma ), \left (\tilde \eta _{g}^\sigma \right )\in {\mathcal T}\left (\theta , \left (\tilde \beta _g\right )\right )$, we have

From this, we obtain

hence there are unitaries $v_g^\sigma \in {\mathcal A}_{H_\sigma }$,
$\sigma =L,R$, such that

Because $\tilde \eta _g^\sigma , \eta _g^\sigma $ are automorphisms on
${\mathcal A}_{C_\theta ,\sigma }$,
$v_g^\sigma $ belongs to
${\mathcal A}_{C_\theta ,\sigma }$. (See Lemma B.1.) Setting
$v_g:=v_g^L\otimes v_g^R$, we obtain
$\tilde \eta _g=\mathop {\mathrm {Ad}}\nolimits \left ( v_g\right )\circ \eta _g$.
Set


for each $g,h\in G$ and
$\sigma =L,R$. We claim that

First, we have

For the first equality, we substituted $\tilde \eta _g=\mathop {\mathrm {Ad}}\nolimits \left ( v_g\right )\circ \eta _g$, and for the second equality, we used the fact that
$v_g^\sigma $ belongs to
${\mathcal A}_{C_\theta ,\sigma }$, while
$\Theta $ is an automorphism on
${\mathcal A}_{\left ( C_\theta \right )^c,\sigma }$. The last equality follows from the definition of
$W_g$. On the other hand, we have

for all $g,h\in G$. For the first equality, we substituted
$\tilde \eta _g=\mathop {\mathrm {Ad}}\nolimits \left ( v_g\right )\circ \eta _g$. The third equality is the definition of
$u(g,h)$. Hence we have proven formula (2.100).
Set

In order to show the statement of the lemma, it suffices to show that $c_R=\tilde c_R$. Substituting the definition of
$\tilde u_R$, we obtain

For the fourth equality, we used the definition of $u_R$. From this equation, applying equation (2.52) to the
$[\cdot ]$ part, we have

Now from the definition of $\tilde u_R$, the
$\{\cdot \}$ part becomes

Because $v_g^R$ belongs to
${\mathcal A}_{C_\theta ,R}$ and
$\eta _g^R$ is an automorphism on
${\mathcal A}_{C_\theta ,R}$ while
$\Theta $ is an automorphism on
${\mathcal A}_{\left ( C_\theta \right )^c}$ and
$\beta _g^U\left ( {\mathcal A}_{C_\theta ,R}\right )={\mathcal A}_{C_\theta ,R}$, we have

Substituting this into equation (2.106), we obtain

Substituting this to the $\{ \}$ part and the
$\{\cdot \}$ part of equation (2.105), we obtain

Because of Lemma 2.3(iii), the $\{\cdot \}$ part of the last equation is equal to
$\mathop {\mathrm {Ad}}\nolimits \tilde W_g\left (\mathbb I_{{\mathcal H}_L}\otimes \tilde u_R( h,k)\right )$. Hence we obtain

This proves $c_R=\tilde c_R$, completing the proof.
Lemma 2.15. Set

Then we have

Definition 2.16. From this lemma we may define

for any

independent of the choice of $\left (\tilde \beta _g\right )$.
Proof. By the definition of $\mathop {\mathrm {IG}}\nolimits (\omega ,\theta )$, there are

We set $\eta _{g,i}:=\eta _{g,i}^L\otimes \eta _{g,i}^R$, for
$i=1,2$. There are
$ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ and
$(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta }$ for
$\omega \in \mathop {\mathcal {SL}}\nolimits $ by the definition. Setting
$\alpha _0:=\alpha _L\otimes \alpha _R$, we have
$\alpha =({\textrm {{inner}}})\circ \alpha _0\circ \Theta $. By Lemma 2.1, there is some

Set

We claim that there are unitaries $V_g^\sigma $,
$g\in G, \ \sigma =L,R$, on
${\mathcal H}_\sigma $ such that

To see this, note that

Therefore, we have

and then using the facts that $\Theta \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{C_\theta ^c}\right )$ and
$K_g\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{C_\theta }\right )$,

This implies that $\omega _\sigma $ and
$ \omega _\sigma \circ \alpha _\sigma K_g^\sigma \left ( \alpha _\sigma \right )^{-1}$ are quasiequivalent. Because
$\pi _\sigma $ is irreducible, this implies the existence of a unitary
$V_g^\sigma $ on
${\mathcal H}_\sigma $ satisfying equation (2.118), proving the claim.
Next we claim that there are unitaries $v^\sigma _{g,h}$ on
${\mathcal H}_\sigma $, for
$g,h\in G$ and
$\sigma =L,R$, such that

and

for any $g,h\in G$ and
$\sigma =L,R$. To see this, first we calculate

In the fourth and sixth equalities, we used the fact that $K_h^R, \eta _{g,1}^R\beta _g^{RU} K_h^R \left ( \eta _{g,1}^R\beta _g^{RU}\right )^{-1}\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{C_\theta }\right )$ and
$\Theta \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{C_\theta ^c}\right )$ commute, in order to remove
$\Theta $. Equation (2.124) and the fact that
$\pi _L$ is irreducible imply that there is a unitary
$v^R_{g,h}$ satisfying equation (2.122). The same argument implies the existence of
$v^L_{g,h}$ satisfying equation (2.122).
For this $v^R_{g,h}$, we would like to show equation (2.123). Rewriting

we obtain

substituting equations (2.118), (2.124) and (2.122). This proves equation (2.123) for $\sigma =R$. An analogous result for
$\sigma =L$ can be proven by the same argument. Hence we have proven the claim (2.124) and (2.123).
Setting

we have

In the last equality, we used the definition of $K_g$ and the commutativity of
$\Theta $ and
$K_g$ again. From equations (2.128) and (2.123), setting

we see that

and

Now we set

To prove the Lemma, it suffices to show $c_{R,1}=c_{R,2}$. By equation (2.131), we have

We used equation (2.52) for the $[\cdot ]$ part and Lemma 2.3(ii) and equation (2.122) for the
$\{\cdot \}$ part in the fourth equality. Again using equation (2.131), we have

In the last line we used formula (2.130) and Lemma 2.3(iii) to remove ${V_g^L}^*$. From this, we see that
$c_{R,1}=c_{R,2}$, completing the proof.
Lemma 2.17. Set

Then we have

Definition 2.18. From this lemma, for any $\omega \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $, we may define

independent of the choice of $\theta $. This is the index we associate to
$\omega \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $.
Proof. By the assumption, there are some $\left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta _1)$ and
$(\eta _g^\sigma )\in {\mathcal T}\left ( \left (\theta _1, \tilde \beta _g\right )\right )$. Because
$\omega \in \mathop {\mathcal {SL}}\nolimits $, there are
$ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ and
$(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta _2}$ by the definition. Setting
$\alpha _0:=\alpha _L\otimes \alpha _R$, we have
$\alpha =({\textrm {{inner}}})\circ \alpha _0\circ \Theta $. Because
$0<\theta _1<\theta _2<\frac \pi 2$, we also have
$(\eta _g^\sigma )\in {\mathcal T}( (\theta _2, \tilde \beta _g ))$, and
$\left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta _2)$. For the same reason, we also have
$(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta _1}$.
By Lemma 2.1, there is some

However, we also have

Therefore, we obtain $h^{(5)} \left ( \omega , \theta _1 \right ) = h^{(5)} \left ( \omega , \theta _2 \right ) $.
This completes the proof of Theorem 2.7.
3 The existence of
$\tilde \beta $ for SPT phases
In this section, we give a sufficient condition for $\mathop {\mathrm {IG}}\nolimits (\omega )$ to be nonempty. We consider the same setting as in Section 2.2.
Theorem 3.1. For any $0<\theta <\frac \pi 2$ and
$\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$ satisfying
$ \omega _0\circ \alpha \circ \beta _g=\omega _0\circ \alpha $ for all
$g\in G$,
$\mathop {\mathrm {IG}}\nolimits (\omega _0\circ \alpha ,\theta )$ is not empty.
The strategy is as follows. Our infinite tensor product state $\omega _{0}$ can be written as
$\omega _{0}=\omega _{U}\otimes \omega _{D}$, with pure states
$\omega _{U}, \omega _{D}$ on
${\mathcal A}_{H_{U}}, {\mathcal A}_{H_{D}}$. Using the factorisation property of
$\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$, we can show that


with $\tilde Y_{g,U}:=\beta _{g}^{C_{\left (\theta _{0.8},\frac \pi 2\right ],U}}\xi _U, \tilde Y_{g,D}:=\beta _{g}^{C_{\left (\theta _{0.8},\frac \pi 2\right ],U}}\xi _D$ automorphisms on
$\left ( C_{\theta _{0.8}}\right )^c\cap H_{U}, \left ( C_{\theta _{0.8}}\right )^c\cap H_{D}$, respectively. The ‘automorphism localised at
$C_{\theta _2}$’ can be split into left and right parts. (See equation (3.28).) From the latter equation and
$\omega _0\circ \alpha \circ \beta _g=\omega _0\circ \alpha $, one can show that
$\omega _{U} \tilde Y_{g,U}$ is quasiequivalent to a state of the form
$\varphi _{L}\otimes \varphi _{R}\otimes \omega _{C_{\theta _{2}}^{c}}$, where
$\varphi _{L}, \varphi _{R}$ are states on
${\mathcal A}_{C_{\theta _{2}\cap H_{L}}}, {\mathcal A}_{C_{\theta _{2}\cap H_{R}}}$ and
$\omega _{C_{\theta _{2}}^{c}}$ is the pure state given as the restriction of
$\omega _{0}$ to
${\mathcal A}_{{C_{\theta _{2}}^{c}}}$ (with
$\theta _{0.8}<\theta _{2}$). A general lemma proven in the following (Lemma 3.2), derived from the homogeneity of pure state spaces on UHF-algebras, then allows us to show the existence of automorphisms
$Z_{g,L}, Z_{g,R}$ on
${\mathcal A}_{C_{\theta _{2}\cap H_{L}}}, {\mathcal A}_{C_{\theta _{2}\cap H_{R}}}$ satisfying
$\omega _{U} \tilde Y_{g,U}\simeq \omega _{U}\circ \left ( Z_{g,L}\otimes Z_{g,R}\otimes \mathop {\mathrm {id}}\nolimits _{C_{\theta _{2}}^{c}}\right )$. Combining this with equation (3.1) basically gives the Theorem.
Now let us start with a precise mathematical proof. We first prepare the general lemma just mentioned.
Lemma 3.2. Let ${\mathfrak A},{\mathfrak B}$ be UHF-algebras. Let
$\omega $ be a pure state on
${\mathfrak A}\otimes {\mathfrak B}$ and
$\varphi _{{\mathfrak A}}, \varphi _{{\mathfrak B}}$ states on
${\mathfrak A}, {\mathfrak B}$, respectively. Assume that
$\omega $ is quasiequivalent to
$\varphi _{{\mathfrak A}}\otimes \varphi _{{\mathfrak B}}$. Then for any pure states
$\psi _{{\mathfrak A}}, \psi _{{\mathfrak B}}$ on
${\mathfrak A}, {\mathfrak B}$, there are automorphisms
$\gamma _{{\mathfrak A}}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}\right ), \gamma _{{\mathfrak B}}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak B}\right )$ and a unitary
$u\in {\mathcal U}\left ({\mathfrak A}\otimes {\mathfrak B}\right )$ such that

If $\psi _{{\mathfrak A}}$ and
$\varphi _{{\mathfrak A}}$ are quasiequivalent, then we may set
$\gamma _{{\mathfrak A}}=\mathop {\mathrm {id}}\nolimits _{{\mathfrak A}}$.
Proof. Let $({\mathcal H}_{\omega },\pi _{\omega },\Omega _{\omega }), \left ({\mathcal H}_{\varphi _{{\mathfrak A}}},\pi _{\varphi _{{\mathfrak A}}},\Omega _{\varphi _{{\mathfrak A}}}\right ), \left ({\mathcal H}_{\varphi _{{\mathfrak B}}},\pi _{\varphi _{{\mathfrak B}}},\Omega _{\varphi _{{\mathfrak B}}}\right )$ be GNS triples of
$\omega , \varphi _{{\mathfrak A}}, \varphi _{{\mathfrak B}}$, respectively. Then
$\left ({\mathcal H}_{\varphi _{{\mathfrak A}}}\otimes {\mathcal H}_{\varphi _{{\mathfrak B}}},\pi _{\varphi _{{\mathfrak A}}}\otimes \pi _{\varphi _{{\mathfrak B}}},\Omega _{\varphi _{{\mathfrak A}}}\otimes \Omega _{\varphi _{{\mathfrak B}}}\right )$ is a GNS triple of
$\varphi _{{\mathfrak A}}\otimes \varphi _{{\mathfrak B}}$. As
$\omega $ is quasiequivalent to
$\varphi _{{\mathfrak A}}\otimes \varphi _{{\mathfrak B}}$, there is a
$*$-isomorphism
$\tau :\pi _{\omega }\left ({\mathfrak A}\otimes {\mathfrak B}\right )''\to \pi _{\varphi _{{\mathfrak A}}}({\mathfrak A})''\otimes \pi _{\varphi _{{\mathfrak B}}}({\mathfrak B})''$ such that
$\tau \circ \pi _{\omega }=\pi _{\varphi _{{\mathfrak A}}}\otimes \pi _{\varphi _{{\mathfrak B}}}$. Because
$\omega $ is pure, we have
$\pi _{\omega }\left ({\mathfrak A}\otimes {\mathfrak B}\right )''={\mathcal B}({\mathcal H}_{\omega })$, and from the isomorphism
$\tau $, we have that
$\pi _{\varphi _{{\mathfrak A}}}({\mathfrak A})''\otimes \pi _{\varphi _{{\mathfrak B}}}({\mathfrak B})''$ is also a type I factor. Then from [Reference TakesakiT, Theorem 2.30V], both
$\pi _{\varphi _{{\mathfrak A}}}({\mathfrak A})''$ and
$\pi _{\varphi _{{\mathfrak B}}}({\mathfrak B})''$ are type I factors. The restriction of
$\tau $ to
$\pi _{\omega }\left ({\mathfrak A}\otimes {\mathbb C}\mathbb I_{{\mathfrak B}}\right )''$ implies a
$*$-isomorphism from
$\pi _{\omega }\left ({\mathfrak A}\otimes {\mathbb C}\mathbb I_{{\mathfrak B}}\right )''$ onto the type I factor
$\pi _{\varphi _{{\mathfrak A}}}({\mathfrak A})''$. Hence we see that
$\pi _{\omega }\left ({\mathfrak A}\otimes {\mathbb C}\mathbb I_{{\mathfrak B}}\right )''$ is a type I factor. Therefore, from [Reference TakesakiT, Theorem 1.31V], there are Hilbert spaces
${\mathcal K}_{{\mathfrak A}},{\mathcal K}_{{\mathfrak B}}$ and a unitary
$W: {\mathcal H}_\omega \to {\mathcal K}_{{\mathfrak A}}\otimes {\mathcal K}_{{\mathfrak B}}$ such that
$\mathop {\mathrm {Ad}}\nolimits \left ( W\right )\left ( \pi _{\omega }\left ({\mathfrak A}\otimes {\mathbb C}\mathbb I_{{\mathfrak B}}\right )''\right )= {\mathcal B}\left ( {\mathcal K}_{{\mathfrak A}}\right )\otimes {\mathbb C}\mathbb I_{{\mathcal K}_{{\mathfrak B}}} $. Because
$\omega $ is pure, we also have
$\mathop {\mathrm {Ad}}\nolimits \left ( W\right )\left ( \pi _{\omega }\left ({\mathbb C}\mathbb I_{{\mathfrak A}} \otimes {\mathfrak B}\right )''\right )={\mathbb C}\mathbb I_{{\mathcal K}_{{\mathfrak A}}}\otimes {\mathcal B}({\mathcal K}_{{\mathfrak B}})$. From this, we see that there are irreducible representations
$\rho _{{\mathfrak A}}, \rho _{{\mathfrak B}}$ of
${\mathfrak A}$ and
${\mathfrak B}$ on
${\mathcal K}_{{\mathfrak A}}, {\mathcal K}_{{\mathfrak B}}$ such that
$\mathop {\mathrm {Ad}}\nolimits (W)\circ \pi _{\omega }=\rho _{{\mathfrak A}}\otimes \rho _{{\mathfrak B}}$. Fix some unit vectors
$\xi _{{\mathfrak A}}\in {\mathcal K}_{{\mathfrak A}}, \xi _{{\mathfrak B}}\in {\mathcal K}_{{\mathfrak B}}$. Then because of the irreducibility of
$\rho _{{\mathfrak B}}$ and
$\rho _{{\mathfrak B}}$, we have that
$\omega _{{\mathfrak A}}:=\left \langle \xi _{{\mathfrak A}},\rho _{{\mathfrak A}}\left (\cdot \right )\xi _{{\mathfrak A}}\right \rangle $ and
$\omega _{{\mathfrak B}}:=\left \langle \xi _{{\mathfrak B}},\rho _{{\mathfrak B}}\left (\cdot \right )\xi _{{\mathfrak B}}\right \rangle $ are pure states on
${\mathfrak A}, {\mathfrak B}$. By [Reference Kishimoto, Ozawa and SakaiKOS, Theorem 1.1] (originally proved by Powers [Reference PowersP] for UHF-algebras), for any pure states
$\psi _{{\mathfrak A}}, \psi _{{\mathfrak B}}$ on
${\mathfrak A}, {\mathfrak B}$, there exist automorphisms
$\gamma _{{\mathfrak A}}\in \mathop {\mathrm {Aut}}\nolimits ({\mathfrak A}), \gamma _{{\mathfrak B}}\in \mathop {\mathrm {Aut}}\nolimits ({\mathfrak B})$ such that
$\omega _{{\mathfrak A}}=\psi _{{\mathfrak A}}\circ \gamma _{{\mathfrak A}}$
$\omega _{{\mathfrak B}}=\psi _{{\mathfrak B}}\circ \gamma _{{\mathfrak B}}$. Now for unit vectors
$W^{*}\left (\xi _{{\mathfrak A}}\otimes \xi _{{\mathfrak B}}\right ),\Omega _{\omega }\in {\mathcal H}_{\omega }$, by Kadison’s transitivity theorem and the irreducibility of
$\pi _\omega $ there exists a unitary
$u\in {\mathcal U}\left ( {\mathfrak A}\otimes {\mathfrak B}\right )$ such that
$\pi _{\omega }(u)\Omega _{\omega }=W^{*}\left (\xi _{{\mathfrak A}}\otimes \xi _{{\mathfrak B}}\right )$. Substituting this, we obtain

Now assume that $\psi _{{\mathfrak A}}$ and
$\varphi _{{\mathfrak A}}$ are quasiequivalent – that is, the GNS representations of
$\psi _{{\mathfrak A}}, \varphi _{{\mathfrak A}}$, denoted by
$\pi _{\psi _{{\mathfrak A}}}$ and
$\pi _{\varphi _{{\mathfrak A}}}$ are quasiequivalent. From the foregoing argument,
$\pi _{\omega }\rvert _{{\mathfrak A}}$ and
$\pi _{\varphi _{{\mathfrak A}}}$ are quasiequivalent. At the same time,
$\pi _{\omega }\rvert _{{\mathfrak A}}$ and
$\rho _{{\mathfrak A}}$ are quasiequivalent. Therefore,
$\pi _{\psi _{{\mathfrak A}}}$ and
$\rho _{{\mathfrak A}}$ are quasiequivalent. Because both of them are irreducible, we see that a pure state
${\psi _{{\mathfrak A}}}$ can be represented by a unit vector
$\zeta \in {\mathcal K}_{{\mathfrak A}}$, as
${\psi _{{\mathfrak A}}}=\left \langle \zeta ,\rho _{{\mathfrak A}}\left (\cdot \right ) \zeta \right \rangle $. Because
$\rho _{{\mathfrak A}}$ is irreducible, by Kadison’s transitivity theorem there exists a unitary
$w\in {\mathcal U}\left ( {\mathfrak A}\right )$ such that
$\rho _{{\mathfrak A}}(w^{*})\zeta =\xi _{{\mathfrak A}}$. Hence we obtain
${\psi _{{\mathfrak A}}}\circ \mathop {\mathrm {Ad}}\nolimits (w)=\omega _{{\mathfrak A}}$. Substituting this instead of
$\omega _{{\mathfrak A}}=\psi _{{\mathfrak A}}\circ \gamma _{{\mathfrak A}}$ in equation (3.4), we obtain

proving the last claim.
Lemma 3.3. Let ${\mathfrak B},{\mathfrak A}_{1,L},{\mathfrak A}_{2,L},{\mathfrak A}_{1,R},{\mathfrak A}_{2,R}$ be UHF-algebras. Set
${\mathfrak A}_{1}:={\mathfrak A}_{1,L}\otimes {\mathfrak A}_{1,R}$,
${\mathfrak A}_{2}:={\mathfrak A}_{2,L}\otimes {\mathfrak A}_{2,R}$,
${\mathfrak A}_{L}:={\mathfrak A}_{1,L}\otimes {\mathfrak A}_{2,L}$ and
${\mathfrak A}_{R}:={\mathfrak A}_{1,R}\otimes {\mathfrak A}_{2,R}$. Let
$\omega , \varphi _{L}^{\left (1,2\right )}, \varphi _{R}^{\left (1,2\right )}, \psi $ be pure states on
${\mathfrak B}\otimes {\mathfrak A}_{1}, {\mathfrak A}_{L}, {\mathfrak A}_{R}, {\mathfrak B}$, respectively. Suppose that
$\omega $ is quasiequivalent to
$\left .\left ( \psi \otimes \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak B}\otimes {\mathfrak A}_{1}}$. Then for any pure states
$\varphi _{L}^{(1)}, \varphi _{R}^{(1)}$ on
${\mathfrak A}_{1,L}, {\mathfrak A}_{1,R}$, respectively, there are automorphisms
$\gamma _{L}^{(1)}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}_{1,L}\right ), \gamma _{R}^{(1)}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}_{1,R}\right )$ and a unitary
$u\in {\mathcal U}\left ({\mathfrak B}\otimes {\mathfrak A}_{1}\right )$ such that

Proof. Because the pure state $\omega $ is quasiequivalent to
$\left .\left ( \psi \otimes \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak B}\otimes {\mathfrak A}_{1}} =\psi \otimes \left .\left ( \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak A}_{1}}$, applying Lemma 3.2 means that for any pure states
$\varphi _{L}^{(1)}, \varphi _{R}^{(1)}$ on
${\mathfrak A}_{1,L}, {\mathfrak A}_{1,R}$, there exist an automorphism
$S\in \mathop {\mathrm {Aut}}\nolimits {\mathfrak A}_1$ and a unitary
$v\in {\mathcal U}\left ( {\mathfrak B}\otimes {\mathfrak A}_1\right )$ such that

From equation (3.7) and $\omega \sim _{\text {q.e.}}\left .\left ( \psi \otimes \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak B}\otimes {\mathfrak A}_{1}}$, we get
$ \left ( \psi \otimes \left ( \left ( \varphi _{L}^{(1)} \otimes \varphi _{R}^{(1)}\right )\circ S\right ) \right )\sim _{\text {q.e.}} \left .\left ( \psi \otimes \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak B}\otimes {\mathfrak A}_{1}}$, which implies

Applying Lemma 3.2 to formula (3.8), there are automorphisms $\gamma _{L}^{(1)}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}_{1,L}\right ), \gamma _{R}^{(1)}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}_{1,R}\right )$ and a unitary
$w\in {\mathcal U}\left ( {\mathfrak A}_{1}\right )$ such that

Substituting this into equation (3.7), we obtain equation (3.6).
Lemma 3.4. Let ${\mathfrak A}_L, {\mathfrak A}_R, {\mathfrak B}_{LU}, {\mathfrak B}_{LD}, {\mathfrak B}_{RU}, {\mathfrak B}_{RD}, {\mathfrak C}_U, {\mathfrak C}_D$ be UHF-algebras, and set

Let $\omega _X$ be a pure state on each
$X={\mathfrak A}_L, {\mathfrak A}_R, {\mathfrak B}_{LU}, {\mathfrak B}_{LD}, {\mathfrak B}_{RU}, {\mathfrak B}_{RD}, {\mathfrak C}_U, {\mathfrak C}_D$, and set

Let $\alpha ,\hat \alpha $ be automorphisms on
${\mathfrak D}$ which allow the following decompositions:


Here, $\rho _{{\mathfrak B}{\mathfrak C}}^U, \rho _{{\mathfrak B}{\mathfrak C}}^D$ are automorphisms on
${\mathfrak B}_U\otimes {\mathfrak C}_U, {\mathfrak B}_D\otimes {\mathfrak C}_D$, respectively. For each
$\sigma =L,R$,
$\gamma _{{\mathfrak A}{\mathfrak B}}^{\sigma },\hat \gamma _{{\mathfrak A}{\mathfrak B}}^{\sigma }$ are automorphisms on
${\mathfrak A}_{\sigma }\otimes {\mathfrak B}_{{\sigma }D}\otimes {\mathfrak B}_{{\sigma }U}$. Suppose that
$\omega _0\circ \hat \alpha =\omega _0$. Then there are automorphisms
$\eta _L,\eta _R$ on
${\mathfrak A}_L\otimes {\mathfrak B}_{LD}\otimes {\mathfrak B}_{LU}, {\mathfrak A}_R\otimes {\mathfrak B}_{RD}\otimes {\mathfrak B}_{RU}$ such that
$\omega _0\circ \alpha $ is quasiequivalent to
$\omega _0\circ \left (\mathop {\mathrm {id}}\nolimits _{{\mathfrak C}_U}\otimes \eta _L\otimes \eta _R\otimes \mathop {\mathrm {id}}\nolimits _{{\mathfrak C}_D}\right )$.
Proof. First we claim that there are automorphisms $\theta _{\mathfrak B}^{LU}\in \mathop {\mathrm {Aut}}\nolimits {{\mathfrak B}_{LU}}, \theta _{\mathfrak B}^{RU}\in \mathop {\mathrm {Aut}}\nolimits {\mathfrak B}_{RU}$ and a unitary
$u\in {\mathcal U}\left ( {\mathfrak B}^U\otimes {\mathfrak C}^U\right )$ such that

To prove this, we first note that from $\omega _0\circ \hat \alpha =\omega _0$ and the decomposition (3.12), we have

From this, because both states are pure (hence the restrictions of their GNS representations onto ${\mathfrak C}_U\otimes {\mathfrak B}_U$ are factors), we have

We apply Lemma 3.3 for ${\mathfrak B}, {\mathfrak A}_{1L}, {\mathfrak A}_{1R}, {\mathfrak A}_{2L}, {\mathfrak A}_{2R}, \omega , \varphi _L^{(1,2)}, \varphi _R^{(1,2)}, \psi $, replaced by
${\mathfrak C}_U, {\mathfrak B}_{LU}, {\mathfrak B}_{RU}, {\mathfrak A}_{L}\otimes {\mathfrak B}_{LD}, {\mathfrak A}_R\otimes {\mathfrak B}_{RD}, \omega _{{\mathfrak B}{\mathfrak C}}^U\circ \rho _{{\mathfrak B}{\mathfrak C}}^U, \omega _{{\mathfrak A}{\mathfrak B}}^L\circ \left (\widehat {\gamma _{{\mathfrak A}{\mathfrak B}}^L}\right )^{-1}, \omega _{{\mathfrak A}{\mathfrak B}}^R\circ \left ( \widehat {\gamma _{{\mathfrak A}{\mathfrak B}}^R}\right )^{-1}, \omega _{{\mathfrak C}_U}$, respectively. From equation (3.16), they satisfy the conditions in Lemma 3.3. Applying Lemma 3.3 – for pure states
$\varphi _L^{(1)}=\omega _{{\mathfrak B}_{LU}}$ and
$\varphi _R^{(1)}=\omega _{{\mathfrak B}_{RU}}$ – we obtain automorphisms
$\theta _{{\mathfrak B}}^{LU}\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathfrak B}_{LU}\right ), \theta _{{\mathfrak B}}^{RU}\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathfrak B}_{RU}\right )$ and a unitary
$u\in {\mathcal U}\left ({\mathfrak B}_U\otimes {\mathfrak C}_U\right )$ satisfying equation (3.14).
We set

Then we have

This completes the proof.
Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1.
Set $0<\theta <\frac \pi 2$ and
$\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$ satisfying
$ \omega _0\circ \alpha \circ \beta _g=\omega _0\circ \alpha $ for all
$g\in G$. We would like to show that
$\mathop {\mathrm {IG}}\nolimits (\omega _0\circ \alpha ,\theta )$ is not empty.
Let us set $\theta _{2.2}:=\theta $ and consider
$\theta _{0.8}, \theta _1, \theta _{1.2}, \theta _{1.8}, \theta _2, \theta _{2.8}, \theta _3, \theta _{3.2}$ satisfying formula (2.11) for this
$\theta _{2.2}$. Because
$\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$, there is a decomposition given by formulas (2.12), (2.13) and (2.14). Using this decomposition, set

We have $\alpha =({\textrm {{inner}}})\circ \alpha _2\circ \alpha _1$.
We would like to show that $\left (\alpha \circ \beta _g^U\circ \alpha ^{-1}, \alpha \circ \beta _g\circ \alpha ^{-1}\right )$ satisfy the conditions of
$(\alpha ,\hat \alpha )$ in Lemma 3.4. We first show that they satisfy a decomposition corresponding to equations (3.12) and (3.13). For
$\Gamma ={\mathbb Z}^2, H_U$, we have

The latter part, $\left ( \alpha _1\beta _g^\Gamma \alpha _1^{-1}\right )^{-1} \alpha _2\alpha _1\beta _g^{\Gamma }\alpha _1^{-1}\alpha _2^{-1}$, decomposes to left and right. To see this, first note that

Because the conjugation $\left ( \beta _g^\Gamma \right )^{-1}\cdot \beta _g^{\Gamma }$ does not change the support of an automorphism,
$\left ( \beta _g^\Gamma \right )^{-1}\left ( \alpha _1^{-1}\alpha _2\alpha _1\right ) \beta _g^{\Gamma }$ is also supported on
${C_{\theta _{1.2}}}$. Therefore, we have

Hence we get the left-right decomposition

Here we set

On the other hand, the first part of equation (3.20) with $\Gamma ={\mathbb Z}^2,H_U$ satisfies

where

Hence we obtain decompositions

Because $\xi _{\zeta }\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{\left ( \left ( C_{\theta _{0.8}}\right )^c\right )_\zeta } \right )$ commutes with
$\beta _{g}^{C_{\left [0,\theta _{0.8}\right ]}}$ and
$\beta _{g}^{C_{\left [0,\theta _{0.8}\right ],U}}$, we get

Furthermore, from the $\beta _g$-invariance of
$\omega _0\circ \alpha $, we have

Now we apply Lemma 3.4 for ${\mathfrak A}_\sigma , {\mathfrak B}_{\sigma \zeta }, {\mathfrak C}_\zeta $ replaced by
${\mathcal A}_{\left ( C_{\left [0,\theta _{0.8}\right ]}\right )_\sigma }, {\mathcal A}_{\left ( C_{\left (\theta _{0.8},\theta _{2}\right ]}\right )_{\sigma ,\zeta }}, {\mathcal A}_{\left ( C_{\left (\theta _2,\frac \pi 2\right ]}\right )_\zeta }$, for
$\sigma =L,R$,
$\zeta =D,U$. By equations (3.29) and (3.28),
$\left (\alpha \circ \beta _g^U\circ \alpha ^{-1}, \alpha \circ \beta _g\circ \alpha ^{-1}\right )$ satisfy the conditions of
$(\alpha ,\hat \alpha )$ in Lemma 3.4, for
$\omega _0$ and its restrictions. Applying Lemma 3.4, there are
$\tilde \eta _{\sigma ,g}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{\left ( C_{\theta _2}\right )_\sigma }\right )$,
$g\in G$,
$\sigma =L,R$, such that

Because both $\omega _0\circ \alpha \circ \beta _g^U\circ \alpha ^{-1}$ and
$\omega _0\circ \left ( \tilde \eta _{Lg}\otimes \tilde \eta _{Rg} \right )$ are pure, by Kadison’s transitivity theorem there exists a unitary
$\tilde v_g\in {\mathcal U}({\mathcal A})$ such that

We define

It suffices to show that $\left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits (\omega _0\circ \alpha ,\theta )=\mathop {\mathrm {IG}}\nolimits \left (\omega _0\circ \alpha ,\theta _{2.2}\right )$. By equation (3.31), we have
$\omega _0\circ \alpha \circ \tilde \beta _g=\omega _0\circ \alpha $. Therefore, what is left to be proven is that there are
$\eta _{g}^\sigma \in \mathop {\mathrm {Aut}}\nolimits \left ( \left ( C_\theta \right )_\sigma \right )$,
$g\in G$,
$\sigma =L,R$, such that

By the decomposition (2.12) and the fact that $\tilde \eta _{Lg^{-1}}\otimes \tilde \eta _{Rg^{-1}}$ has support in
$C_{\theta _2}$, we have

where

Substituting this into formula (3.32), we obtain equation (3.33). This completes the proof.
4 The stability of the index
$h(\omega )$
In this section we prove the stability of the index $h(\omega )$ with respect to
$\gamma \in \mathop {\mathrm {GUQAut}}\nolimits ({\mathcal A})$.
Theorem 4.1. Set $\omega \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $. Set
$\gamma \in \mathop {\mathrm {GUQAut}}\nolimits \left ({\mathcal A}\right )$. Then we have
$\omega \circ \gamma \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega \circ \gamma )\neq \emptyset $ and

Proof. The point of the proof is that we can derive $\left (\hat \alpha _{L},\hat \alpha _{R},\hat \Theta \right )\in {\mathcal D}_{\alpha \gamma }^{\theta _{1.2}}$ (formulas (4.10) and (4.11)) and
$\left ( \gamma ^{-1}\tilde \beta _{g}\gamma \right )\in \mathop {\mathrm {IG}}\nolimits (\omega \circ \gamma ,\theta _{1.2}), \left (\hat \eta _{g}^{\sigma }\right )\in {\mathcal T}\left (\theta _{1.2}, \left ( \gamma ^{-1}\tilde \beta _{g}\gamma \right )\right )$ (formula (4.16)) from the corresponding objects for
$\alpha $, using the factorisation property of
$\alpha ,\gamma $. And it is straightforward to see that the
$\beta _{g}^{U}$-invariance of
$\gamma _{C}$ results in
$\mathop {\mathrm {IP}}\nolimits \left ( \omega , \alpha , \theta _{2}, \left (\tilde \beta _g\right ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) \right ) =\mathop {\mathrm {IP}}\nolimits \left ( \omega \circ \gamma , \alpha \circ \gamma , \theta _{1.2}, \left (\gamma ^{-1}\tilde \beta _g\gamma \right ), \left (\hat \eta _{g}^\sigma \right ), \left (\hat \alpha _L,\hat \alpha _R,\hat \Theta \right ) \right )$, which immediately implies the Theorem.
Step 1. From $\omega \in \mathop {\mathcal {SL}}\nolimits $, there is an
$ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$. For any
$0<\theta <\frac \pi 2$ fixed, we show that
${\mathcal D}^{\theta }_{\alpha \circ \gamma }\neq \emptyset $, hence
$\alpha \circ \gamma \in \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$ and
$\omega \circ \gamma =\omega _{0}\circ \alpha \gamma \in \mathop {\mathcal {SL}}\nolimits $. Set
$\theta _{1.2}:=\theta $ and choose

Because $\alpha \in \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$, there exists some
$(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta _{2}}$. Setting
$\alpha _0:=\alpha _L\otimes \alpha _R$, we have
$\alpha =({\textrm {{inner}}})\circ \alpha _0\circ \Theta $. Because
$\gamma \in \mathop {\mathrm {GUQAut}}\nolimits \left ({\mathcal A}\right )$, there are
$\gamma _{H}\in \mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$ and
$\gamma _{C}\in \mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$ such that

Because $\gamma _{H}\in \mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$, we may decompose
$\gamma _{H}$ as

with some $\gamma _{H, {\sigma }}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{{\left ( C_{\theta _{0}}\right )_\sigma }}\right )$,
$\sigma =L,R$. We set
$\gamma _{0}:=\gamma _{H, {L}}\otimes \gamma _{H,R}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{{ C_{\theta _{0}}}}\right )$. By definition,
$\gamma _{C}\in \mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$ allows a decomposition

with

for

Here we have

for any

Set

and

We claim

This means $(\hat \alpha _{L},\hat \alpha _{R},\hat \Theta )\in {\mathcal D}_{\alpha \gamma }^{\theta _{1.2}}$, hence
${\mathcal D}_{\alpha \gamma }^{\theta }={\mathcal D}_{\alpha \gamma }^{\theta _{1.2}}\neq \emptyset $. The claim (4.12) can be checked as follows. Note that
$\gamma _{\left (\theta _2,\theta _3\right ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]}$ and
$\gamma _{\left (\theta _{0.8}, \theta _{1.2}\right ]}$ commute because of their disjoint supports. Because
$\Theta \in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\theta _{2}}^{c}})$, it commutes with
$\gamma _{\left [0,\theta _1\right ]}\otimes \gamma _{\left (\theta _1,\theta _2\right ]}$ and
$\gamma _{\left (\theta _{0.8}, \theta _{1.2}\right ]}$. Therefore, we have

Because $\gamma _{0}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{{ C_{\theta _{0}}}}\right )$ and
$\hat \Theta \in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{C_{\theta _{1.8}}^{c}}\right )$ commute, we have

proving equation (4.12).
Step 2. From $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $, we fix a
$0<\theta _{0}<\frac \pi 2$ such that
$\mathop {\mathrm {IG}}\nolimits (\omega ,\theta _{0})\neq \emptyset $. We choose
$\theta _{0.8},\theta _1,\theta _{1.2},\theta _{1.8},\theta _2,\theta _{2.2}, \theta _{2.8},\theta _3,\theta _{3.2}$ such that

For these $\theta $s, we associate the decomposition of
$\gamma $ in step 1. Fix
$\left ( \tilde \beta _{g}\right )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta _{0})$ and
$ \left (\eta _{g}^{\sigma }\right )\in {\mathcal T}\left (\theta _{0}, \left (\tilde \beta _g\right )\right )$. Set
$\eta _{g}:=\eta _{g}^{L}\otimes \eta _{g}^{R}$. Note that
$\left (\eta _{g}^{\sigma }\right )$ also belongs to
${\mathcal T}\left (\theta _{2}, \left (\tilde \beta _g\right )\right )$. Set

for $\sigma =L,R$. We also set
$\hat \eta _{g}:=\hat \eta _{g}^{L}\otimes \hat \eta _{g}^{R}$. We claim that
$\left ( \gamma ^{-1}\tilde \beta _{g}\gamma \right )\in \mathop {\mathrm {IG}}\nolimits (\omega \circ \gamma ,\theta _{1.2})$ with
$\left (\hat \eta _{g}^{\sigma }\right )\in {\mathcal T}\left (\theta _{1.2}, \left ( \gamma ^{-1}\tilde \beta _{g}\gamma \right )\right )$. Clearly we have

Therefore, what remains to be shown is

To see this, we first have

from the decomposition of equations (4.3), (4.4) and (4.5). Because $\gamma _{\left (\theta _1,\theta _2\right ]} \otimes \gamma _{\left (\theta _2,\theta _3\right ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]}$ commutes with
$\eta _{g}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{0}}}})$ and
$\gamma _{\left (\theta _{1.8},\theta _{2.2}\right ]} \otimes \gamma _{\left (\theta _{2.8},\theta _{3.2}\right ]}$ commutes with
$\left ( \gamma _{\left [0,\theta _1\right ]}\right )^{-1}\eta _{g}\gamma _{[0,\theta _1]}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1}}}})$, we have

On the other hand, because $\gamma _{CS}$ and
$\beta _{g}^{U}$ commute, we have

Combining equations (4.20) and (4.21), we obtain

In the second equality, we used the fact that $ \gamma _{[0,\theta _1]} \gamma _{(\theta _{0.8}, \theta _{1.2}]} $ and
$\beta _{g}^{U}$ commute. This completes the proof of the claim.
Step 3. We use the setting and notation of steps 1 and 2 (with $\theta _{0}$ chosen in step 2). By Lemma 2.1, there exists

Now we have

We claim

This immediately implies $h(\omega )=h(\omega \circ \gamma )$. To prove the claim, we first see from formulas (4.10) and (4.11) that

because $\gamma _{\left (\theta _{0.8}, \theta _{1.2}\right ]}\circ \gamma _{0}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1.2}}}})$ and
$\Theta \circ ( \gamma _{(\theta _2,\theta _3 ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]} ) \circ ( \gamma _{\left (\theta _{1.8},\theta _{2.2}\right ]} \otimes \gamma _{\left (\theta _{2.8},\theta _{3.2}\right ]} )\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1.8}}}^{c}})$ commute. Furthermore, because
$\gamma _{\left [0,\theta _1\right ]}$ and
$\Theta \circ ( \gamma _{(\theta _2,\theta _3 ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]} ) \circ \left ( \gamma _{\left (\theta _{1.8},\theta _{2.2}\right ]} \otimes \gamma _{\left (\theta _{2.8},\theta _{3.2}\right ]} \right ) \in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1.8}}}^{c}})$ commute and
$\gamma _{\left (\theta _1,\theta _2\right ]}$ and
$\Theta \in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{2}}}^{c}} )$ commute, we have

Here $\hat \gamma :=\gamma _{(\theta _1,\theta _2 ]} \circ ( \gamma _{ (\theta _2,\theta _3 ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]} ) \circ \left ( \gamma _{\left (\theta _{1.8},\theta _{2.2}\right ]} \otimes \gamma _{\left (\theta _{2.8},\theta _{3.2}\right ]} \right )\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1}}}^{c}} )$ commutes with
$\beta _{g}^{U}$. Combining this and

we obtain

Because $\hat \gamma $ commutes with
$\beta _{g}^{U}$ and
$ \eta _{g}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{0}}}} )$ commutes with
$\hat \gamma \in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1}}}^{c}} )$, we have

Hence the condition for $W_{g}$ in formula (4.25) is checked. On the other hand, substituting formulas (4.11) and (4.16), we get

Because $ \eta _g^R\beta _g^{RU} \eta _h^R(\beta _g^{R U})^{-1}( \eta _{gh}^R)^{-1}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{0}}}})$ commutes with
$\gamma _{\left (\theta _1,\theta _2\right ],R}$, we obtain

An analogous statement for $\sigma =L$ also holds. This completes the proof of formula (4.25). Hence the statement of the theorem is proven.
5 Proof of Theorem 1.5
In this section, we prove Theorem 1.5. The proof relies heavily on the machinery of quasilocal automorphisms developed in [Reference Bachmann, Michalakis, Nachtergaele and SimsBMNS, Reference Nachtergaele, Sims and YoungNSY, Reference Moon and OgataMO]. (A summary is given in Appendix D.) We use terminology and facts from Appendixes C and D freely. We introduce a set of F-functions with fast decay, ${\mathcal F}_a$, as Definition C.2. A crucial point for us is the following:
Theorem 5.1. Set $\Phi _0,\Phi _1\in {\mathcal P}_{UG}$ and let
$\omega _{\Phi _0}, \omega _{\Phi _1}$ be their unique gapped ground states. Suppose that
$\Phi _0\sim \Phi _1$ holds, via a path
$\Phi : [0,1]\to {\mathcal P}_{UG}$. Then there exists some
$\Psi \in \hat {\mathcal B}_F([0,1])$ with
$\Psi _{1}\in \hat {\mathcal B}_{F}([0,1])$ for some
$F\in {\mathcal F}_a$ of the form
$F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant
$0<\theta <1$, such that
$\omega _{\Phi _{1}}=\omega _{\Phi _0}\circ \tau _{1,0}^{\Psi }$. If
$\Phi _0,\Phi _1\in {\mathcal P}_{UG\beta }$ and
$\Phi \sim _\beta \Phi _0$, we may take
$\Psi $ to be
$\beta $-invariant.
For the proof, see Appendix D.
From this and Theorems 3.1 and 4.1, in order to show Theorem 1.5 it suffices to show the following, which says that the automorphism $\tau _{1,0}^{\Psi }$ in Theorem 5.1 satisfies all the good factorisation properties which we assumed in previous sections:
Theorem 5.2. Let $F\in {\mathcal F}_a$ be an F-function of the form
$F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant
$0<\theta <1$. Let
$\Psi \in \hat {\mathcal B}_{F}([0,1])$ be a path of interactions satisfying
$\Psi _1\in \hat {\mathcal B}_F([0,1])$. Then we have
$\tau _{1,0}^{\Psi }\in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$. Furthermore, if
$\Psi $ is
$\beta _{g}^{U}$-invariant – that is,
$\beta _{g}^U\left ( \Psi (X;t)\right )=\Psi (X;t)$ for any
$X\in {\mathfrak S}_{{\mathbb Z}^2}$,
$t\in [0,1]$ and
$g\in G$ – then we have
$\tau _{1,0}^{\Psi }\in \mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$.
Proof. Fix arbitrary

We show the existence of the decomposition

with $\alpha $s of the forms in formulas (2.13) and (2.14). We follow the strategy of [Reference Naaijkens and OgataNO].
Step 1. Fix some $0<\theta '<\theta $ and set

With a suitably chosen constant $c_{1}>0$, we have

Namely, $c_{1}\tilde F(r)$ satisfy the condition on
$\tilde F_{\theta }$ in Definition C.2(ii) for our
$F=\frac {\exp \left ( {-cr^{\theta }}\right )}{(1+r)^{4}}$ and
$\theta =\frac 12$. Set


Define $\Psi ^{(0)}, \Psi ^{(1)}\in \hat {\mathcal B}_{F}([0,1])$ by

for each $X\in {\mathfrak S}_{{\mathbb Z}^2}$,
$t\in [0,1]$.
First we would like to represent $ ( \tau _{1,0}^{\Psi ^{(0)}})^{-1}\circ \tau _{1,0}^{ \Psi }$ as some quasilocal automorphism. Set
$t,s\in [0,1]$. We apply Proposition D.6 for
$\Psi $ replaced by
$\Psi ^{(1)}$ and
$\tilde \Psi $ by
$\Psi $. Hence we set

and

Corresponding to equation (D.31), we obtain

Applying Proposition D.6. we have $\Xi ^{(n)(s)}, \Xi ^{(s)}\in \hat {\mathcal B}_{\tilde F}([0,1])$, and

holds. Two functions $\hat \tau _{t,s}^{(\Lambda _n), \Xi ^{(n)(s)}}(A)$ and
$ \tau _{t,s}^{(\Lambda _n ), \Psi }\circ ( \tau _{t,s}^{(\Lambda _n ),\Psi ^{(0)}} )^{-1}(A)$ satisfy the same differential equation and initial condition. Therefore we obtain

From the fact that $ \hat \tau _{t,u}^{\left (\Lambda _n\right ), \Xi ^{(n)(s)}}=\tau _{u,t}^{\left (\Lambda _n\right ), \Xi ^{(n)(s)}}=\tau _{u,t}^{\Xi ^{(n)(s)}}$ converges strongly to an automorphism
$\tau _{u,t}^{\Xi ^{(s)}}$ on
${\mathcal A}$ (equation (5.11)), we have

On the other hand, by Theorem D.3 we have, for $t \in [0,1]$ and
$A \in {\mathcal A}$,

Therefore, taking the $n\to \infty $ limit in equation (5.12), we obtain

Hence we have

In particular, we get

Step 2. We show

From this,

converges absolutely in the norm topology and defines an element in ${\mathcal A}$. Furthermore, for

we get

from formula (5.18).
To prove formula (5.18), we first bound

For the third inequality, we used Theorem D.3 3. For any cone $C_1,C_2$ of
${\mathbb Z}^2$ with its apex at the origin, we set

From the definition of $ \Psi ^{(1)}$, we have
$ \Psi ^{(1)}\left ( X; t\right ) =0, $ unless X has a nonempty intersection with at least two elements in
${\mathcal C}_{0}$. Therefore, if X gives a nonzero contribution in formula (5.22), then it has to satisfy

Hence we have

Hence it suffices to show that $M({C_1,C_2})<\infty $ for all
$C_{1},C_{2}\in {\mathcal C}_{0}$ with
$C_1\neq C_2$.
In order to proceed, we prepare two estimates. We will freely identify ${\mathbb C}$ and
${\mathbb R}^{2}$ in an obvious manner. In particular,
$\arg z$ of
$z\in {\mathbb Z}^{2}\subset {\mathbb R}^{2}$ in the following definition is considered with this identification: For
$\varphi _{1}<\varphi _{2}$, we set

We define $\check C_{\left (\varphi _{1},\varphi _{2}\right )}$ and so on analogously. Set

Lemma 5.3. Set $\varphi _1<\varphi _2<\varphi _3<\varphi _4$ with
$\varphi _4-\varphi _1<2\pi $. Then

Proof. Substituting Lemma C.4, we obtain

We used Lemma C.4 in the last inequality. The last value is finite by equation (C.14) for our $F\in {\mathcal F}_{a}$.
Set

Lemma 5.4. For $\varphi _1<\varphi _2<\varphi _3$ with
$\varphi _3-\varphi _1<\frac \pi 2$, we have

Proof. Set

Note that if $X\in {\mathfrak S}_{{\mathbb Z}^2}$ satisfies
$X\subset \check {C}_{\left [\varphi _1,\varphi _3\right ]}$ and
$X\cap ( ( ( \check C_{ (\varphi _1,\varphi _3 )} )^c )(m) )\neq \emptyset $, then we have

Therefore, we have

In the last inequality, we used Lemma C.5 with $\varphi _3-\varphi _1<\frac \pi 2$. Because
$\varphi _3-\varphi _1<\frac \pi 2$ and because of formula (C.14), the last value is finite.
Now let us go back to the estimate of formula (5.23). If $C_1,C_2\in {\mathcal C}_0$ are
$C_1=\check {C}_{\left [\varphi _1,\varphi _2\right ]}, C_2=\check {C}_{\left [\varphi _3,\varphi _4\right ]}$ with
$\varphi _1<\varphi _2<\varphi _3<\varphi _4, \varphi _4-\varphi _1<2\pi $, then from Lemma 5.3, we have

Now suppose that $C_1,C_2\in {\mathcal C}_0$ are
$C_1=\check {C}_{\left [\varphi _1,\varphi _2\right ]}, C_2=\check C_{\left [\varphi _2,\varphi _3\right ]}$ with
$\varphi _1<\varphi _2<\varphi _3, \varphi _3-\varphi _1<2\pi $. (Recall definition (5.5).) By the definition of
${\mathcal C}_0$ and
${\mathcal C}_1$, there is some
$C=C_{\left (\zeta _1,\zeta _2\right )}\in {\mathcal C}_1$ such that
$\varphi _1<\zeta _1<\varphi _2<\zeta _2<\varphi _3$ and
$\zeta _2-\zeta _1<\frac \pi 2$. For
$X\in {\mathfrak S}_{{\mathbb Z}^2}$ to give a nonzero contribution in formula (5.23), it has to satisfy

For such an X, one of the following occurs:
(i)
$X\cap \check C_{\left [\zeta _2,\varphi _3\right ]}\neq \emptyset $ and
$X\cap \check {C}_{\left [\varphi _1,\varphi _2\right ]}\neq \emptyset $.
(ii)
$X\cap \check C_{\left [\varphi _1,\zeta _1\right ]}\neq \emptyset $ and
$X\cap \check C_{\left [\varphi _2,\varphi _3\right ]}\neq \emptyset $.
(iii)
$X\cap \check C_{\left [\varphi _2, \zeta _2\right ]}\neq \emptyset (\text {and } X\cap \check C_{\left [\zeta _1,\varphi _2\right ]}\neq \emptyset )$ and
$X\cap \check C_{\left [\varphi _3,\varphi _1+2\pi \right ]}\neq \emptyset $.
(iv)
$X\subset \check C_{\zeta _1,\zeta _2}$,
$X\cap ( ( \check C_{\zeta _1,\zeta _2} )^c )(m)\neq \emptyset $,
$X\cap \check C_{\left [\varphi _2, \zeta _2\right ]}\neq \emptyset $ and
$X\cap \check C_{\left [\zeta _1,\varphi _2\right ]}\neq \emptyset $.
Hence we get

Hence we have proven the claim of step 2.
Step 3. Next we set

Clearly, we have $\tilde \Xi \in \hat {\mathcal B}_{\tilde F}([0,1])$. Note that

As a uniform limit of $[0,1]\ni t\mapsto V_{n}(t)\in {\mathcal A}$ (equation (5.21)),
$[0,1]\ni t\mapsto V(t)\in {\mathcal A}$ is norm-continuous. Because
$\tilde \Xi \in \hat {\mathcal B}_{\tilde F}([0,1])$,
$[0,1]\ni t\mapsto \tau _{t,s}^{\tilde \Xi }\left ( V(t)\right )\in {\mathcal A}$ is also norm-continuous, for each
$s\in [0,1]$. Therefore, for each
$s\in [0,1]$, there is a unique norm-differentiable map
$[0,1]\ni t \mapsto W^{(s)}(t) \in {\mathcal U}\left ( {\mathcal A}\right )$ such that

It is given by

Analogously, for each $s\in [0,1]$ and
$n\in \mathbb {N}$, we define a unique norm-differentiable map from
$[0,1]$ to
$ {\mathcal U}\left ( {\mathcal A}\right )$ such that

It is given by

By the uniform convergence (5.21) and Lemma D.3, we have

From this and formulas (5.39) and (5.41), we obtain

This and Theorem D.3 4 for $\Xi ^{(1)}, \tilde \Xi \in {\mathcal B}_{\tilde F}([0,1])$ imply

for any $A\in {\mathcal A}$.
Note that for any $A\in {\mathcal A}$,

We used equation (D.10) for the second equality and equation (5.37) for the third. On the other hand, for any $A\in {\mathcal A}$, we have

Therefore, $\tau _{s,t}^{\left (\Lambda _{n}\right ), \tilde \Xi }\circ \mathop {\mathrm {Ad}}\nolimits ( W_{n}^{(s)}(t) ) (A)$ and
$ \tau _{s,t}^{\left (\Lambda _{n}\right ), \Xi ^{(1)}} (A)$ satisfy the same differential equation. Also note that we have
$\tau _{s,s}^{\left (\Lambda _{n}\right ), \tilde \Xi }\circ \mathop {\mathrm {Ad}}\nolimits ( W_{n}^{(s)}(s) ) (A)= \tau _{s,s}^{\left (\Lambda _{n}\right ), \Xi ^{(1)}} (A)=A$. Therefore, we get

By equation (5.44), we obtain

Taking the inverse, we get

Step 4. Combining equations (5.17) and (5.48), we have

By the definitions of $\Psi ^{(0)}$ and
$\tilde \Xi $, we obtain decompositions

with $\alpha $s in the form of formulas (2.13) and (2.14). This completes the proof of the first part.
Step 5. Suppose that $\beta _{g}^{U}\left ( \Psi (X;t)\right )=\Psi (X;t)$ for any
$X\in {\mathfrak S}_{{\mathbb Z}^2}$,
$t\in [0,1]$ and
$g\in G$. Then clearly we have
$\beta _{g}^{U}\left ( \Psi ^{(0)}(X;t)\right )=\Psi ^{(0)}(X;t)$ for any
$X\in {\mathfrak S}_{{\mathbb Z}^2}$,
$t\in [0,1]$ and
$g\in G$. By Theorem D.3 5, this implies
$\tau _{1,0}^{\Psi ^{(0)}}{\beta _g^U}={\beta _g^U}\tau _{1,0}^{\Psi ^{(0)}}$. From the decomposition (5.50), this means that all of
$\alpha _{\left [0,\theta _{1}\right ],\sigma }, \alpha _{\left (\theta _1,\theta _2\right ],\sigma ,\zeta }, \alpha _{\left (\theta _2,\theta _3\right ],\sigma ,\zeta }, \alpha _{\left (\theta _3,\frac \pi 2\right ],\zeta }$,
$\sigma =L,R, \zeta =U,D$, commute with
${\beta _g^U}$. Because
$\Pi _{X}$ commutes with
$\beta _{g}^{U}$,
$\tau _{t,s}^{\Psi }$ commutes with
$\beta _{g}^{U}$ (Theorem D.3 5), and
$\Psi ^{(1)}$ and
$\Xi ^{(s)}$ are
$\beta _{g}^{U}$-invariant from the definition (5.8). Therefore, from the definition (5.36),
$\tilde \Xi $ is also
$\beta _{g}^{U}$-invariant. Hence by Theorem D.3 5,
$\tau _{0,1}^{ \tilde \Xi }$ commutes with
${\beta _g^U}$. The decomposition (5.50) then implies that
$\alpha _{\left (\theta _{0.8},\theta _{1.2}\right ],\sigma ,\zeta }, \alpha _{\left (\theta _{1.8},\theta _{2.2}\right ],\sigma ,\zeta }, \alpha _{\left (\theta _{2.8},\theta _{3.2}\right ],\sigma ,\zeta }$,
$\sigma =L,R, \ \zeta =U,D$, commute with
${\beta _g^U}$.
An analogous proof shows the following:
Proposition 5.5. Let $F\in {\mathcal F}_a$ be an F-function of the form
$F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant
$0<\theta <1$. Let
$\Psi \in \hat {\mathcal B}_{F}([0,1])$ be a path of interactions satisfying
$\Psi _1\in \hat {\mathcal B}_F([0,1])$. Define
$\Psi ^{(0)}\in \hat {\mathcal B}_{F}([0,1])$ by

for each $X\in {\mathfrak S}_{{\mathbb Z}^2}, t\in [0,1]$. Then
$ \left (\tau _{1,0}^{\Psi ^{(0)}}\right )^{-1}\tau _{1,0}^{\Psi }$ belongs to
$\mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$.
Proof. Define $\tilde F$ as in formula (5.3) with some
$0<\theta '<\theta $. The same argument as in Theorem 5.2, step 2, implies that there exists
$\Xi ^{(1)}\in \hat {\mathcal B}_{\tilde F}[0,1]$ with
$\tilde F\in {\mathcal F}_a$, such that

This $\Xi ^{(1)}$ is given by formula (5.8) for current
$\Psi $ and
$\Psi ^{(1)}\left ( X; t\right ):=\Psi ^{(0)}\left ( X; t\right )-\Psi \left ( X; t\right )$. To prove the theorem, it suffices to show that
$\tau _{0,1}^{ \Xi ^{(1)}}$ belongs to
$\mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$. Indeed, for any
$0<\theta _0<\frac \pi 4$, as in Theorem 5.2, step 2, we have

To see this, note that if X in the last line has a nonzero contribution to the sum, then at least one of the following occurs:
(i)
$X\cap C_{\left [\theta _{0}, \frac \pi 2\right ],U}\neq \emptyset $ and
$X\cap H_{D}\neq \emptyset $.
(ii)
$X\cap C_{\left [\theta _{0}, \frac \pi 2\right ],D}\neq \emptyset $ and
$X\cap H_{U}\neq \emptyset $.
(iii)
$X\subset C_{\left [0,\theta _{0}\right ]}$ and
(1)
$X\cap C_{\left [0,\theta _{0}\right ],L}\neq \emptyset $ and
$X\cap C_{\left [0,\theta _{0}\right ],R}\neq \emptyset $, or
(2)
$X\subset C_{\left [0,\theta _{0}\right ], R}$,
$X\cap \check C_{\left [0,\theta _{0}\right ]}\neq \emptyset $,
$X\cap \check C_{\left [-\theta _{0},0\right ]}\neq \emptyset $ and
$X{(m)}\cap \left ( C_{\left [0,\theta _{0}\right ], R}\right )^{c}\neq \emptyset $, or
(3)
$X\subset C_{\left [0,\theta _{0}\right ], L}$,
$X\cap \check C_{\left [\pi -\theta _{0},\pi \right ]}\neq \emptyset $,
$X\cap \check C_{\left [\pi , \pi +\theta _{0}\right ]}\neq \emptyset $ and
$X{(m)}\cap \left ( C_{\left [0,\theta _{0}\right ], L}\right )^{c}\neq \emptyset $.
Therefore, the summation in the second line of formula (5.53) is bounded by

from Lemmas 5.3 and 5.4, proving formula (5.53).
Therefore, as in step 3 of Theorem 5.2, setting

we obtain $\tau _{0,1}^{ \Xi ^{(1)}}=({\textrm {{inner}}})\circ \tau _{0,1}^{ \tilde \Xi }$. By the definition,
$\tau _{0,1}^{ \tilde \Xi }$ decomposes as
$\tau _{0,1}^{ \tilde \Xi }= \zeta _L\otimes \zeta _R$, with some
$\zeta _\sigma \in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\left [0,\theta _0\right ],\sigma }} )$,
$\sigma =L,R$. As this holds for any
$0<\theta _0<\frac \pi 4$, we conclude
$\tau _{0,1}^{ \Xi ^{(1)}}\in \mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$.
Theorem 5.6. Let $F\in {\mathcal F}_a$ be an F-function of the form
$F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant
$0<\theta <1$. Let
$\Psi \in \hat {\mathcal B}_{F}([0,1])$ be a path of interactions satisfying
$\Psi _1\in \hat {\mathcal B}_F([0,1])$. If
$\Psi $ is
$\beta $-invariant, then
$\tau _{1,0}^{\Psi }$ belongs to
$\mathop {\mathrm {GUQAut}}\nolimits ({\mathcal A})$.
Proof. Define $\Psi ^{(0)}$ as in formula (5.51) for our
$\Psi $. By Proposition 5.5, we have
$ (\tau _{1,0}^{\Psi ^{(0)}} )^{-1}\tau _{1,0}^{\Psi }\in \mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$. On the other hand, applying Theorem 5.2 to
$\Psi ^{(0)}\in \hat {\mathcal B}_F([0,1])$, we see that
$\tau _{1,0}^{\Psi ^{(0)}}$ belongs to
$\mathop {\mathrm {SQAut}}\nolimits ({\mathcal A}).$ Note that
$\Psi ^{(0)}(X;t)$ is nonzero only if
$X\subset H_U$ or
$X\subset H_D$, and it coincides with
$\Psi (X;t)$ when it is nonzero. Therefore, if
$\Psi $ is
$\beta $-invariant,
$\Psi ^{(0)}$ is
$\beta _g^U$-invariant. Therefore, by Theorem 5.2, we have
$\tau _{1,0}^{\Psi ^{(0)}}\in \mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$. Hence we have
$\tau _{1,0}^{\Psi }\in \mathop {\mathrm {GUQAut}}\nolimits ({\mathcal A})$.
Proof of Theorem 1.5.
Let $\Phi _0\in {\mathcal P}_{UG}$ be the fixed trivial interaction with a unique gapped ground state. Its ground state
$\omega _0:=\omega _{\Phi _0}$ is of a product form (formula (2.18)). For any
$\Phi \in {\mathcal P}_{SL\beta }$, we have
$\Phi _0\sim \Phi $. Then by Theorem 5.1, there exists some
$\Psi \in \hat {\mathcal B}_F([0,1])$ with
$\Psi _{1}\in \hat {\mathcal B}_{F}([0,1])$ for some
$F\in {\mathcal F}_a$ of the form
$F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with
$0<\theta <1$, such that
$\omega _{\Phi }=\omega _{\Phi _0}\circ \tau _{1,0}^{\Psi }$. From Theorem 5.2,
$\tau _{1,0}^\Psi $ belongs to
$\mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$. Because
$\Phi \in {\mathcal P}_{SL\beta }$,
$\omega _{\Phi }=\omega _{\Phi _0}\circ \tau _{1,0}^{\Psi }$ is
$\beta $-invariant. Then, by Theorem 3.1,
$\mathop {\mathrm {IG}}\nolimits (\omega _{\Phi })$ is not empty. Therefore, we may define
$h_\Phi :=h(\omega _{\Phi })$ by Definition 2.18.
To see that $h_\Phi $ is an invariant of
$\sim _\beta $, set
$\Phi _1,\Phi _2\in {\mathcal P}_{SL\beta }$ with
$\Phi _1\sim _\beta \Phi _2$. Then by Theorem 5.1, there exists some
$\beta $-invariant
$\Psi \in \hat {\mathcal B}_F([0,1])$ with
$\Psi _{1}\in \hat {\mathcal B}_F([0,1])$ for some
$F\in {\mathcal F}_a$ of the form
$F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant
$0<\theta <1$ such that
$\omega _{\Phi _2}=\omega _{\Phi _1}\circ \tau _{1,0}^{\Psi }$. Applying Theorem 5.6 to this
$\Psi $, we see that
$\tau _{1,0}^{\Psi }$ belongs to
$\mathop {\mathrm {GUQAut}}\nolimits ({\mathcal A})$. Then Theorem 4.1 implies

proving the stability.
6 Automorphisms with factorised
$d^{0}_{H_{U}}\alpha $
When $\alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ has some good factorisation property with respect to the action of
$\beta _{g}^{U}$, the index
$h(\omega )$ can be calculated without going through GNS representations.
Definition 6.1. For $\alpha \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}\right )$, we set

We say that $d^{0}_{H_{U}}\alpha $ is factorised into left and right if there are automorphisms
$\gamma _{g,\sigma }\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{H_{\sigma }}\right )$,
$g\in G, \sigma =L,R$, such that

For known examples of $2$-dimensional SPT phases like [Reference Chen, Gu, Liu and WenCGLW, Reference Miller and MiyakeMM, Reference YoshidaY, Reference Dijkgraaf and WittenDW] or injective projected entangled-pair states [Reference Molnar, Ge, Schuch and CiracMGSC], this property holds. Namely, with a bit of effort, states in these models can be written in the form
$\omega _0\alpha $, where
$\omega _0$ is a pure infinite tensor product state and
$\alpha $ is an automorphism satisfying the property in Definition 6.1. From such an automorphism, we can derive an outer action of G.
Lemma 6.2. Let $\alpha \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}\right )$ be an automorphism. Suppose that
$d^{0}_{H_{U}}\alpha $ is factorised into left and right – that is, there are automorphisms
$\gamma _{g,\sigma }\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{H_{\sigma }}\right )$,
$g\in G, \sigma =L,R$, such that

Then there are unitaries $v_{\sigma }(g,h)\in {\mathcal U}\left ( {\mathcal A}_{H_{\sigma }}\right )$,
$g,h\in G, \sigma =L,R$, such that

Proof. Because $\beta _{g}^{U}$ is a group action, substituting equation (6.3) we get

By Lemma B.1, we then see that there are unitaries $v_{\sigma }(g,h)\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{H_{\sigma }}\right )$,
$g\in G, \sigma =L,R$, satisfying equation (6.4).
It is well known that a third cohomology class can be associated to cocycle actions [Reference ConnesC, Reference JonesJ].
Lemma 6.3. Let $\alpha \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}\right )$ be an automorphism such that
$d^{0}_{H_{U}}\alpha $ is factorised into left and right as in equation (6.3). Let
$v_{\sigma }(g,h)\in {\mathcal U}\left ( {\mathcal A}_{H_{\sigma }}\right )$,
$g,h\in G, \sigma =L,R$, be unitaries satisfying equation (6.4). Then there is some
$c_{{\sigma }}\in C^{3}(G,{\mathbb T})$,
$\sigma =L,R$, such that

Proof. By equation (6.4), we have

for $ \hat \gamma _{g,\sigma }:=\gamma _{g,{\sigma }}\beta _{g}^{{\sigma }U} $. Using this, we have

Because ${\mathcal A}'\cap {\mathcal A}=\mathbb I_{{\mathcal A}}$, it must be the case that
$\hat \gamma _{g,\sigma }\left ( v_{\sigma }(h,k)\right ) v_{\sigma }(g,hk)$ and
$v_{\sigma }(g,h)v_{\sigma }(gh,k)$ are proportional to each other, proving the lemma.
By the same argument as in Lemma 2.4, we can show that this $c_{R}$ is actually a
$3$-cocycle. If
$\omega \in \mathop {\mathcal {SL}}\nolimits $ is given by an automorphism
$\alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ with factorised
$d^{0}_{H_{U}}\alpha $, and if
$\omega _{0}$ is invariant under
$\beta _{g}^{U}$, then we have
$h(\omega )=[c_{R}]_{H^{3}\left (G,{\mathbb T}\right )}$, for
$c_R$ given in Lemma 6.3.
Theorem 6.4. Let $\omega _{0}$ be a reference state of the form in formula (2.18), and assume that
$\omega _{0}\circ \beta _{g}^{U}=\omega _{0}$ for any
$g\in G$. Let
$\alpha \in \mathop {\mathrm {QAut}}\nolimits \left ( {\mathcal A}\right )$ be an automorphism. Suppose that
$d^{0}_{H_{U}}\alpha $ is factorised into left and right as in equation (6.3) with some
$\gamma _{g,\sigma }\in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\theta _{0}},\sigma } )$ and
$0<\theta _{0}<\frac \pi 2$, for
$\sigma =L,R$. Let
$v_{\sigma }(g,h)\in {\mathcal U}\left ( {\mathcal A}_{H_{\sigma }}\right )$,
$g,h\in G, \sigma =L,R$, be unitaries satisfying equation (6.4) and
$c_{R}\in C^{3}(G,{\mathbb T})$ satisfying equation (6.6) for these
$v_{R}(g,h)$ which are given in Lemma 6.2 and Lemma 6.3. Then we have
$\omega _{0}\circ \alpha \in \mathop {\mathcal {SL}}\nolimits $ with
$\mathop {\mathrm {IG}}\nolimits (\omega _{0}\circ \alpha )\neq \emptyset $,
$c_{R}\in Z^{3}(G,{\mathbb T})$, and
$h(\omega _{0}\circ \alpha )=[c_{R}]_{H^{3}\left (G,{\mathbb T}\right )}$.
Remark 6.5. The situation of this theorem is special. We do not expect that it always occurs.
Proof. That $\omega _{0}\circ \alpha \in \mathop {\mathcal {SL}}\nolimits $ is by definition. Because

our $ v_{\sigma }(g,h)$ belongs to
${\mathcal U}({\mathcal A}_{C_{\theta _{0}},\sigma } )$. Because

and

with $\gamma _{g,\sigma }\in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\theta _{0},\sigma }} )$, we have
$(\alpha ^{-1}\beta _{g}^{U}\alpha )\in \mathop {\mathrm {IG}}\nolimits (\omega _{0}\alpha , \theta _{0})$, and
$ (\gamma _{g,\sigma } )\in {\mathcal T}(\theta _{0}, \alpha ^{-1}\beta _{g}^{U}\alpha )$. Clearly
$\alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega _{0}\circ \alpha )$, and there is
$(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta _{0}}$ because
$\alpha \in \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$. Set
$\gamma _{g}:=\gamma _{g,L}\otimes \gamma _{g,R}$. From Lemma 2.1, there is some
$W_{g}\in {\mathcal U}({\mathcal H}_{0}) g\in G$ satisfying

In particular, because $ v_{R}(h,k)$ belongs to
${\mathcal U}({\mathcal A}_{( C_{\theta _{0}})_{R}} )$,
$\Theta \in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\theta _{0}}^{c}})$, and
$\gamma _g\beta _g^U$ preserves
${\mathcal A}_{\left ( C_{\theta _{0}}\right )_{R}}$, we have

On the other hand, equation (6.4) means

From equations (6.12) and (6.14), we have

Now from equations (6.6) and then (6.13), we obtain

This means

in Definition 2.5. Hence we get $c_{R}\in Z^{3}(G,{\mathbb T})$, and
$h(\omega _{0}\circ \alpha )=[c_{R}]_{H^{3}\left (G,{\mathbb T}\right )}$.
A Basic notation
For a finite set S, $\#S$ indicates the number of elements in S. For
$t\in {\mathbb R}$,
$[t]$ denotes the smallest integer less than or equal to t.
For a Hilbert space ${\mathcal H}$,
$B({\mathcal H})$ denotes the set of all bounded operators on
${\mathcal H}$. If
$V:{\mathcal H}_1\to {\mathcal H}_2$ is a linear map from a Hilbert space
${\mathcal H}_1$ to another Hilbert space
${\mathcal H}_2$, then
$\mathop {\mathrm {Ad}}\nolimits (V):B({\mathcal H}_1)\to B({\mathcal H}_2)$ denotes the map
$\mathop {\mathrm {Ad}}\nolimits (V)(x):=V x V^*$,
$x\in B({\mathcal H}_1)$. Occasionally we write
$\mathop {\mathrm {Ad}}\nolimits _V$ instead of
$\mathop {\mathrm {Ad}}\nolimits (V)$. For a
$C^{*}$-algebra
${\mathcal B}$ and
$v\in {\mathcal B}$, we set
$\mathop {\mathrm {Ad}}\nolimits (v)(x):=\mathop {\mathrm {Ad}}\nolimits _{v}(x):=vxv^{*}$,
$x\in {\mathcal B}$.
For a state $\omega , \varphi $ on a
$C^{*}$-algebra
${\mathcal B}$, we write
$\omega \sim _{\text {q.e.}}\varphi $ when they are quasiequivalent (see [Reference Bratteli and RobinsonBR1]). We also write
$\omega \simeq \varphi $ when they are equivalent. We denote by
$\mathop {\mathrm {Aut}}\nolimits {\mathcal B}$ the group of automorphisms on a
$C^{*}$-algebra
${\mathcal B}$. The group of inner automorphisms on a unital
$C^{*}$-algebra
${\mathcal B}$ is denoted by
$\mathop {\mathrm {Inn}}\nolimits {\mathcal B}$. For
$\gamma _1,\gamma _2\in \mathop {\mathrm {Aut}}\nolimits ({\mathcal B})$,
$\gamma _1=({\textrm {{inner}}})\circ \gamma _2$ means there is some unitary u in
${\mathcal B}$ such that
$\gamma _1=\mathop {\mathrm {Ad}}\nolimits (u)\circ \gamma _2$. For a unital
$C^{*}$-algebra
${\mathcal B}$, the unit of
${\mathcal B}$ is denoted by
$\mathbb I_{{\mathcal B}}$. For a Hilbert space we write
$\mathbb I_{{\mathcal H}}:=\mathbb I_{{\mathcal B}({\mathcal H})}$. For a unital
$C^{*}$-algebra
${\mathcal B}$, by
${\mathcal U}({\mathcal B})$ we mean the set of all unitary elements in
${\mathcal B}$. For a Hilbert space we write
${\mathcal U}({\mathcal H})$ for
${\mathcal U}({\mathcal B}({\mathcal H}))$.
For a state $\varphi $ on
${\mathcal B}$ and a
$C^{*}$-subalgebra
${\mathcal C}$ of
${\mathcal B}$,
$\varphi \rvert _{{\mathcal C}}$ indicates the restriction of
$\varphi $ to
${\mathcal C}$.
To denote the composition of automorphisms $\alpha _1, \alpha _2$, all of
$\alpha _1\circ \alpha _2, \alpha _1\alpha _2, \alpha _1\cdot \alpha _2$ are used. Frequently, the first one serves as a bracket to visually separate a group of operators.
B Automorphisms on UHF-algebras
Lemma B.1. Let $\mathfrak A, \mathfrak B$ be UHF-algebras. If automorphisms
$\gamma _{\mathfrak A}\in \mathop {\mathrm {Aut}}\nolimits (\mathfrak A), \gamma _{\mathfrak B}\in \mathop {\mathrm {Aut}}\nolimits (\mathfrak B)$ and a unitary
$W\in {\mathcal U}\left ({\mathfrak A}\otimes \mathfrak B\right )$ satisfy

then there are unitaries $u_{\mathfrak A}\in {\mathcal U}(\mathfrak A)$ and
$u_{\mathfrak B}\in {\mathcal U}(\mathfrak B)$ such that

Proof. Fix some irreducible representations $({\mathcal H}_{\mathfrak A},\pi _{\mathfrak A}), ({\mathcal H}_{\mathfrak B},\pi _{\mathfrak B})$, of
$\mathfrak A, \mathfrak B$. We claim that there are unitaries
$v_{\mathfrak A}\in {\mathcal U}({\mathcal H}_{\mathfrak A})$ and
$v_{{\mathfrak B}}\in {\mathcal U}({\mathcal H}_{{\mathfrak B}})$ such that

To see this, note that

From this, $\pi _{{\mathfrak A}}\circ \gamma _{{\mathfrak A}}$ (resp.,
$\pi _{{\mathfrak B}}\circ \gamma _{{\mathfrak B}}$) is quasiequivalent to
$\pi _{{\mathfrak A}}$ (resp.,
$\pi _{{\mathfrak B}}$). Because
$\pi _{{\mathfrak A}}$ and
$\pi _{{\mathfrak B}}$ are irreducible, by the Wigner theorem there are unitaries
$v_{\mathfrak A}\in {\mathcal U}({\mathcal H}_{\mathfrak A})$ and
$v_{{\mathfrak B}}\in {\mathcal U}({\mathcal H}_{{\mathfrak B}})$ satisfying equation (B.3).
We then have

Because $\pi _{{\mathfrak A}}\otimes \pi _{{\mathfrak B}}$ is irreducible, there is a
$c\in {\mathbb T}$ such that

We claim there is a unitary $u_{\mathfrak B}\in {\mathcal U}(\mathfrak B)$ such that

Choose a unit vector $\xi \in {\mathcal H}_{\mathfrak A}$ with
$\left \langle \xi , v_{{\mathfrak A}}\xi \right \rangle \neq 0$. For each
$x\in {\mathcal B}({\mathcal H}_{\mathfrak A}\otimes {\mathcal H}_{{\mathfrak B}})$, the map

is a bounded sesquilinear form. Therefore, there is a unique $\Phi _\xi (x)\in {\mathcal B}({\mathcal H}_{\mathfrak B})$ such that

The map $\Phi _\xi :{\mathcal B}\left ({\mathcal H}_{\mathfrak A}\otimes {\mathcal H}_{{\mathfrak B}}\right )\to {\mathcal B}({\mathcal H}_{\mathfrak B})$ is linear and

Because W belongs to $\mathfrak A\otimes \mathfrak B$, there are sequences

such that

Because of formula (B.10), we have

Note that

Therefore, we have

where $\overline {\cdot }^{n}$ denotes the norm closure. Because
$\pi _{{\mathfrak B}}\left (\mathfrak B\right )$ is norm-closed, we have
$\overline {\pi _{\mathfrak B}\left (\mathfrak B\right )}^n =\pi _{\mathfrak B}\left (\mathfrak B\right )$. Hence we have
$v_{{\mathfrak B}}\in \pi _{\mathfrak B}\left (\mathfrak B\right )$ – that is, there is a unitary
$u_{\mathfrak B}\in \mathfrak B$ such that
$v_{{\mathfrak B}}=\pi _{\mathfrak B}\left ( u_{{\mathfrak B}}\right )$.
We then have

As ${\mathfrak B}$ is simple,
$\mathop {\mathrm {Ad}}\nolimits _{u_{{\mathfrak B}}}(X)=\gamma _{\mathfrak B}(X)$ for all
$ X\in {\mathfrak B}$.
The proof for ${\mathfrak A}$ is the same.
C F-functions
In this section, we collect various estimates about F-functions. These estimates are useful for the proof of the factorisation property. Let us first start from the definition:
Definition C.1. An F-function F on $\left ({{\mathbb Z}^2}, \mathrm {d}\right )$ is a nonincreasing function
$F:[0,\infty )\to (0,\infty )$ such that
(i)
$\left \lVert F\right \rVert :=\sup _{x\in {{\mathbb Z}^2}}\left ( \sum _{y\in {{\mathbb Z}^2}}F\left ( {\mathrm {d}}(x,y)\right )\right )<\infty $ and
(ii)
$C_{F}:=\sup _{x,y\in {{\mathbb Z}^2}}\left ( \sum _{z\in {{\mathbb Z}^2}} \frac {F\left ( {\mathrm {d}}\left (x,z\right )\right ) F\left ( {\mathrm {d}}\left (z,y\right )\right )}{F\left ( {\mathrm {d}}\left (x,y\right )\right )}\right )<\infty $.
These properties are called uniform integrability and the convolution identity, respectively.
We denote by ${\mathcal F}_{a}$ a class of F-functions which decay quickly.
Definition C.2. We say an F-function F belongs to ${\mathcal F}_{a}$ if
(i) for any
$k\in {\mathbb N}\cup \{0\}$ and
$0<\vartheta \le 1$, we have
(C.1)and$$ \begin{align} \kappa_{\vartheta,k, F}:=\sum_{n=0}^{\infty} (n+1)^{k}\left ( F(n)\right )^{\vartheta}<\infty \end{align} $$
(ii) for any
$0<\vartheta <1$, there is an F-function
$\tilde F_{\vartheta }$ such that
(C.2)$$ \begin{align} \max\left\{ F\left (\frac r 3\right ), \left ( F\left ( \left [ \frac r 3 \right ] \right )\right )^{\vartheta}\right\}\le \tilde F_{\vartheta}(r),\quad r\ge 0. \end{align} $$
For example, a function $F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant
$0<\theta <1$ belongs to
${\mathcal F}_a$. (See [Reference Nachtergaele, Sims and YoungNSY, Appendix] for (i). The proof of (ii) is rather standard.)
In this appendix, we derive inequalities about $F\in {\mathcal F}_{a}$. In order for that, the following lemma is useful. We will freely identify
${\mathbb C}$ and
${\mathbb R}^{2}$ in an obvious manner.
Lemma C.3. For $0\le \theta _1<\theta _2\le 2\pi $,
$c>0$, and
$r\ge 0$, set

Then we have

In particular, we have

Proof. Because the diameter of a $2$-dimensional unit square is
$\sqrt 2$, any unit square B of
${\mathbb Z}^2$ with
$B\cap S_{r,c}^{\left [\theta _1,\theta _2\right ]}\cap {\mathbb Z}^2\neq \emptyset $ satisfies
$B\subset \hat S_{r,c}^{[\theta _1,\theta _2 ]}(\sqrt 2 )$. Therefore, we have

Note that the area of $ \hat S_{r,c}^{\left [\theta _1,\theta _2\right ]}\left (\sqrt 2\right )$, denoted by
$\left \lvert \hat S_{r,c}^{\left [\theta _1,\theta _2\right ]}\left (\sqrt 2\right )\right \rvert $, is less than

if $r>\sqrt 2$. For
$r\le \sqrt 2$, we have

Hence, in any case we have

Substituting this into equation (C.6), we obtain

On the other hand, we have

For an F-function $F\in {\mathcal F}_{a}$, define a function
$G_{F}$ on
$t\ge 0$ by

Note that by uniform integrability, the supremum is finite for all t. In particular, for any $0<\theta <1$ we have

Substituting this, for any $0<\alpha \le 1$,
$0<\theta ,\varphi <1$, and
$k\in {\mathbb N}\cup \{0\}$, we have

For any $0<c\le 1$, we have

We also have, for $m\in {\mathbb Z}_{\ge 0}$ and
$0<c\le 1$,


Recall formulas (5.25) and (5.26).
Lemma C.4. Let $\varphi _1<\varphi _2<\varphi _3<\varphi _4$ with
$\varphi _4-\varphi _1<2\pi $. Then we have

Proof. Let $x=s_1e^{i\phi _1}\in \check C_{\left [\varphi _1,\varphi _2\right ]}$ and
$y=s_2e^{i\phi _2}\in \check C_{\left [\varphi _3,\varphi _4\right ]}$, with
$s_1,s_2\ge 0$. If
$\cos \left ( \phi _2-\phi _1\right )\ge 0$, then we have

If $\cos \left ( \phi _2-\phi _1\right )<0$, then we have

Hence for any $x=s_1e^{i\phi _1}\in \check C_{\left [\varphi _1,\varphi _2\right ]}$ and
$y=s_2e^{i\phi _2}\in \check C_{\left [\varphi _3,\varphi _4\right ]}$ with
$s_1,s_2\ge 0$, we have

Substituting this estimate, we obtain

We used Lemma C.3 to bound $\#\left ( S_{r,1}^{\left [0,\frac \pi 2\right ]}\cap {\mathbb Z}^2 \right )$ and so on, and in the last inequality we used equation (C.15).
Set

and

Lemma C.5. Set $\varphi , \theta _1,\theta _2\in {\mathbb R}$ with
$\theta _1<\theta _2$ and
$0<\left \lvert \varphi -\theta _0\right \rvert <\frac \pi 2$ for all
$\theta _0\in [\theta _1,\theta _2] $. Then we have

for any $m\in {\mathbb N}\cup \{0\}$.
Proof. For each $r\in {\mathbb Z}$, set

Note that $s\cos (\theta -\varphi )$ is a projection of
$se^{i\theta }$ onto
$L_\varphi $ and
$\left \lvert s\sin (\theta -\varphi )\right \rvert $ is the distance of
$se^{i\theta }$ from the line including
$L_\varphi $. Then we have

Because the diameter of a $2$-dimensional unit square is
$\sqrt 2$, any unit square B of
${\mathbb Z}^2$ with
$B\cap T_{\varphi , r,m} \cap {\mathbb Z}^2\neq \emptyset $ satisfies
$B\subset \hat T_{\varphi , r,m}\left (\sqrt 2\right )$. Therefore, using formula (C.26) we have

On the other hand, we have

If $x\in \check C_{\left [\theta _1,\theta _2\right ]}$, we have
$x=r_0 e^{i\theta _0}$ for some
$r_0\ge 0$ and
$\theta _0\in [\theta _1,\theta _2]$. By the assumption, we have
$0<|\theta _0-\varphi |<\frac \pi 2$, hence
$0<\cos (\varphi -\theta _0)<1$. Therefore, for any
$r\in {\mathbb R}$, we have

Therefore, for any $x\in \check C_{\left [\theta _1,\theta _2\right ]}$ and
$y\in T_{\varphi , r,m}$, we have

From this and formulas (C.26) and (C.28), for any $x=r_0 e^{i\theta _0}\in C_{\left [\theta _1,\theta _2\right ]}$,
$r_0\ge 0$, we have

We then get

We used formula (C.16).
D Quasilocal automorphisms
In this appendix we collect some results from [Reference Nachtergaele, Sims and YoungNSY] and prove Theorem 5.1.
Definition D.1. A norm-continuous interaction on ${\mathcal A}$ defined on an interval
$[0,1]$ is a map
$\Phi :{\mathfrak S}_{{\mathbb Z}^2}\times [0,1]\to {\mathcal A}_{\textrm {loc}}$ such that
(i) for any
$t\in [0,1]$,
$\Phi (\cdot , t):{\mathfrak S}_{{\mathbb Z}^2}\to {\mathcal A}_{\textrm {loc}}$ is an interaction and
(ii) for any
$Z\in {\mathfrak S}_{{\mathbb Z}^2}$, the map
$\Phi (Z,\cdot ):[0,1]\to {\mathcal A}_{Z}$ is norm-continuous.
To ensure that the interactions induce quasilocal automorphisms we need to impose sufficient decay properties on the interaction strength.
Definition D.2. Let F be an F-function on $\left ({{\mathbb Z}^2},\mathrm {d}\right )$. We denote by
${\mathcal B}_{F}([0,1])$ the set of all norm-continuous interactions
$\Phi $ on
${\mathcal A}$ defined on an interval
$[0,1]$ such that the function
$\left \lVert \Phi \right \rVert _{F}: [0,1]\to {\mathbb R}$ defined by

is uniformly bounded – that is, $\sup _{t\in \left [0,1\right ]}\left \lVert \Phi \right \rVert (t)<\infty $. It follows that
$t \mapsto \left \lVert \Phi \right \rVert _F(t)$ is integrable, and we set

with $C_F$ given in Definition C.1. We also set

and denote by $\hat {\mathcal B}_{F}([0,1])$ the set of all
$\Phi \in {\mathcal B}_{F}([0,1])$ with
$\left \lVert \left \lvert \Phi \right \rVert \right \rvert _F<\infty $.
We will need some more notation. For $\Phi \in {\mathcal B}_{F}([0,1])$ and
$0\le m\in {\mathbb R}$, we introduce a path of interactions
$\Phi _{m}$ by

An interaction gives rise to local (and here, time-dependent) Hamiltonians via

We denote by $U_{\Lambda ,\Phi }(t;s)$, the solution of


We define corresponding automorphisms $\tau _{t,s}^{(\Lambda ),\Phi }, \hat {\tau }_{t,s}^{(\Lambda ), \Phi }$ on
${\mathcal A}$ by


with $A \in {\mathcal A}$. Note that

by the uniqueness of the solution of the differential equation.
Theorem D.3 [Reference Nachtergaele, Sims and YoungNSY]
Let F be an F-function on $\left ({{\mathbb Z}^2}, \mathrm {d}\right )$. Suppose that
$\Phi \in {\mathcal B}_F([0,1])$. Then the following hold:
1. The limits
(D.11)exist and define strongly continuous families of automorphisms on$$ \begin{align} \tau_{t,s}^{\Phi}(A):=\lim_{\Lambda \nearrow{{\mathbb Z}^2}}\tau_{t,s}^{(\Lambda), \Phi}(A),\qquad \hat \tau_{t,s}^{\Phi}(A):=\lim_{\Lambda \nearrow{{\mathbb Z}^2}}\hat \tau_{t,s}^{(\Lambda), \Phi}(A),\quad A\in{\mathcal A}, \ t,s\in[0,1], \end{align} $$
${\mathcal A}$ such that
$\hat \tau _{t,s}^{\Phi }=\tau _{s,t}^{\Phi }={\tau _{t,s}^{\Phi }}^{-1}$ and
(D.12)$$ \begin{align} \hat \tau_{t,s}^{\Phi}\circ\hat \tau_{s,u}^{\Phi}=\hat \tau_{t,u}^{\Phi},\qquad \tau_{t,t}^{\Phi}=\mathop{\mathrm{id}}\nolimits_{{\mathcal A}}, \quad t,s,u\in[0,1]. \end{align} $$
2. For any
$X,Y\in {\mathfrak S}_{{\mathbb Z}^2}$ with
$X\cap Y=\emptyset $, the bound
(D.13)holds for all$$ \begin{align} \left \lVert \left[ \tau_{t,s}^{\Phi}(A), B \right] \right \rVert \le \frac{2\left \lVert A\right \rVert\left \lVert B\right \rVert}{C_{F}}\left ( e^{2I_F(\Phi)}-1\right )\left \lvert X\right \rvert G_{F}\left ( d(X,Y)\right ) \end{align} $$
$A\in {\mathcal A}_{X}$,
$B\in {\mathcal A}_{Y}$, and
$t,s\in [0,1]$.
If
$\Lambda \in {\mathfrak S}_{{\mathbb Z}^2}$ and
$X \cup Y \subset \Lambda $, a similar bound holds for
$\tau _{t,s}^{(\Lambda ),\Phi }$.
3. For any
$X\in {\mathfrak S}_{{\mathbb Z}^2}$, we have
(D.14)for$$ \begin{align} &\left \lVert \Delta_{X(m)}\left ( \tau_{t,s}^{\Phi}(A)\right ) \right \rVert \le \frac{8\left \lVert A\right \rVert}{C_{F}}\left ( e^{2I_F(\Phi)}-1\right )\left \lvert X\right \rvert G_{F}\left ( m\right ), \end{align} $$
$A\in {\mathcal A}_{X}$. Here we set
$\Delta _{X(0)}:=\Pi _{X}$ and
$\Delta _{X(m)}:=\Pi _{X(m)}-\Pi _{X(m-1)}$ for
$m\in {\mathbb N}$. A similar bound holds for
$\tau _{t,s}^{(\Lambda ),\Phi }$. (See formula (C.12) for the definition of
$G_F$.)
4. For any
$X,\Lambda \in {\mathfrak S}\left ({\mathbb Z}^2\right )$, with
$X\subset \Lambda $, and
$A \in {\mathcal A}_X$, we have
(D.15)$$ \begin{align} \left \lVert \tau_{t,s}^{(\Lambda), \Phi}(A)-\tau_{t,s}^{\Phi}(A) \right \rVert \le\frac{2}{C_{F}} \left \lVert A\right \rVert e^{2I_F(\Phi)}I_F(\Phi) \left \lvert X\right \rvert G_{F}\left ( d\left ( X,{{\mathbb Z}^2}\setminus\Lambda\right ) \right ). \end{align} $$
5. If
$\beta _{g}^U\left ( \Phi (X;t)\right )=\Phi (X;t)$ for any
$X\in {\mathfrak S}_{{\mathbb Z}^2}$,
$t\in [0,1]$, and
$g\in G$, then we have
$\beta _g^U\circ \tau _{t,s}^{ \Phi }=\tau _{t,s}^{\Phi }\circ \beta _g^U$ for any
$t,s\in [0,1]$ and
$g\in G$,
Proof. Item 1 is [Reference Nachtergaele, Sims and YoungNSY, Theorem 3.5], and 2 and 4 follow from Corollary 3.6 of the same paper by, respectively, a straightforward bounding of $D(X,Y)$ and the summation in [Reference Nachtergaele, Sims and YoungNSY, equation (3.80)]. Item 3 can be obtained using 2 and [Reference Nachtergaele, Sims and YoungNSY, Corollary 4.4].
Suppose that ${\beta _g^U}\left ( \Phi (X;t)\right )=\Phi (X;t)$ for any
$X\in {\mathfrak S}_{{\mathbb Z}^2}$,
$t\in [0,1]$, and
$g\in G$. Then we have

and ${\beta _g^U}\left ( U_{\Lambda ,\Phi }(s;s)\right )=\mathbb I$. Hence
${\beta _g^U}\left ( U_{\Lambda ,\Phi }(t;s)\right )$ and
$U_{\Lambda ,\Phi }(t;s)$ satisfy the same differential equation and initial condition. Therefore we get
${\beta _g^U}\left ( U_{\Lambda ,\Phi }(t;s)\right )=U_{\Lambda ,\Phi }(t;s)$. From this, we obtain
${\beta _g^U}\tau _{t,s}^{(\Lambda ), \Phi }=\tau _{t,s}^{(\Lambda ), \Phi }{\beta _g^U}$, and taking
$\Lambda \uparrow {\mathbb Z}^2$, we obtain
${\beta _g^U}\circ \tau _{t,s}^{ \Phi }=\tau _{t,s}^{\Phi }\circ {\beta _g^U}$.
The following is slightly strengthened version of [Reference Nachtergaele, Sims and YoungNSY, Assumption 5.15]:
Assumption D.4 [Reference Nachtergaele, Sims and YoungNSY]
We assume that the family of linear maps $\{{\mathcal K}_t:{\mathcal A}_{\textrm {loc}}\to {\mathcal A}\}_{t\in \left [0,1\right ]}$ is norm-continuous and satisfies the following: There is a family of linear maps
$\left \{ {\mathcal K}_t^{(n)} : {\mathcal A}_{\Lambda _n} \to {\mathcal A}_{\Lambda _n} \right \}_{t\in \left [0,1\right ]} $ for each
$n\ge 1$ such that the following are true:
(i) For each
$n\ge 1$, the family
$\left \{{\mathcal K}_t^{(n)} : {\mathcal A}_{\Lambda _n}\to {\mathcal A}_{\Lambda _n}\right \}_{t\in \left [0,1\right ]}$ satisfies the following conditions:
(a) For each
$t\in [0,1]$,
$\left ( {\mathcal K}_t^{(n)}(A)\right )^*= {\mathcal K}_t^{(n)}(A^*)$ for all
${\mathcal A}_{\Lambda _n}$.
(b) For each
$A\in {\mathcal A}_{\Lambda _n}$, the function
$[0,1]\ni t\to {\mathcal K}_t^{(n)}(A)$ is norm-continuous.
(c) For each
$t\in [0,1]$, the map
${\mathcal K}_t^{(n)}: {\mathcal A}_{\Lambda _n}\to {\mathcal A}_{\Lambda _n}$ is norm-continuous, and moreover, this continuity is uniform on
$[0,1]$.
(ii) There is some
$p\ge 0$ and a constant
$B_1>0$ for which, given any
$X\in {\mathfrak S}_{{\mathbb Z}^2}$ and
$n\ge 1$ large enough so that
$X\subset \Lambda _n$,
$$\begin{align*}\left \lVert {\mathcal K}^{(n)}_t(A)\right \rVert\le B_1 \left \lvert X\right \rvert^p\left \lVert A \right \rVert,\quad \text{ for all } A\in{\mathcal A}_{X} \quad\text{and}\quad t\in [0,1]. \end{align*}$$
(iii) There is some
$q\ge 0$, a nonnegative, nonincreasing function G with
$G(x)\to 0$ as
$x\to \infty $, and a constant
$C_1>0$ for which, given any sets
$X,Y\in {\mathfrak S}_{{\mathbb Z}^2}$ and
$n\ge 1$ large enough so that
$X\cup Y\subset \Lambda _n$,
$$\begin{align*}\left \lVert\left [ {\mathcal K}^{(n)}_t(A), B\right ] \right \rVert\le C_1\left \lvert X\right \rvert^q\left \lVert A \right \rVert\left \lVert B\right \rVert G\left (\mathrm{d}(X,Y)\right ),\quad \text{ for all } A\in{\mathcal A}_{X},\ B\in{\mathcal A}_{Y}, \ t\in [0,1]. \end{align*}$$
(iv) There is some
$r\ge 0$, a nonnegative, nonincreasing function H with
$H(x)\to 0$ as
$x\to \infty $, and a constant
$D_1>0$ for which, given any
$X\in {\mathfrak S}_{{\mathbb Z}^2}$, there exists
$N\ge 1$ such that for
$n\ge N$,
for all$$\begin{align*}\left \lVert {\mathcal K}_t^{(n)} (A)-{\mathcal K}_t(A)\right \rVert \le D_{1} \left \lvert X\right \rvert^r \left \lVert A\right \rVert H\left ( \mathrm{d} \left(X,{\mathbb Z}^2\setminus \Lambda_n\right)\right ) \end{align*}$$
$A\in {\mathcal A}_X$ and
$t\in [0,1]$.
The following theorem is a slight modification of [Reference Nachtergaele, Sims and YoungNSY, Theorem 5.17]:
Theorem D.5. Set $F\in {\mathcal F}_a$, with
$\tilde F_\theta $ in formula (C.2) for each
$0<\theta <1$. Assume that
$\{{\mathcal K}_t\}_{t\in \left [0,1\right ]}$ is a family of linear maps satisfying Assumption D.4, with
$G=G_{F}$ in part (iii). (Recall Definition C.2 and formula (C.12)). Let
$\Phi \in {\mathcal B}_F([0,1])$ be an interaction satisfying
$\Phi _m\in {\mathcal B}_F([0,1])$ for
$m=\max \{p,q,r\}$, where
$p,q,r$ are numbers in Assumption D.4. Then the right-hand side of the sum

defines a path of interaction such that $\Psi \in {\mathcal B}_{\tilde F_{\theta }}([0,1])$, for any
$0<\theta <1$. Furthermore, the formula

defines $\Psi ^{{(n)}}\in {\mathcal B}_{\tilde F_{\theta }}([0,1])$, for any
$0<\theta <1$, such that
$\Psi ^{(n)}\left ( Z, t \right )=0$ unless
$Z\subset \Lambda _{n}$, and satisfies

For any $t,u\in [0,1]$, we have

Furthermore, if $\Phi _{m+k}\in \hat {\mathcal B}_{F}([0,1])$ for
$k\in {\mathbb N}\cup \{0\}$, then we have
$\Psi _k^{{(n)}}, \Psi _k\in \hat {\mathcal B}_{\tilde F_{\theta }}([0,1])$ for any
$0<\theta <1$.
Proof. Because of $F\in {\mathcal F}_{a}$, we see from formula (C.14) that for any
$0<\alpha <1$ and
$k\in {\mathbb N}$,
$G_{F}^{\alpha }$ has a finite k-moment. We also recall formulas (C.2) and (C.14) to see that

for any $0<\alpha ,\theta ',\varphi <1$. As this holds for any
$0<\alpha ,\theta ',\varphi <1$, the condition in [Reference Nachtergaele, Sims and YoungNSY, Theorem 5.17(ii)] holds for any
$\tilde F_{\theta }$. Therefore, from [Reference Nachtergaele, Sims and YoungNSY, Theorem 5.17(ii)], we get
$\Psi ,\Psi ^{(n)}\in {\mathcal B}_{\tilde F_{\theta }}\left ([0,1]\right )$ and
$\Psi ^{(n)}$ converges locally in F-norm to
$\Psi $ with respect to
$\tilde F_{\theta }$, for any
$0<\theta <1$.
From [Reference Nachtergaele, Sims and YoungNSY, Theorem 5.13] we have the implication

(see also [Reference Nachtergaele, Sims and YoungNSY, equation (5.101)]. Therefore, from [Reference Nachtergaele, Sims and YoungNSY, Theorem 3.8], we obtain equation (D.20).
By the proofs of [Reference Nachtergaele, Sims and YoungNSY, Theorems 5.17 and 5.13, equation (5.87)], if $\Phi _{k+m}\in \hat {\mathcal B}_{F}([0,1])$ for some
$k\in {\mathbb N}$, then we have
$\Psi _k^{{(n)(s)}}, \Psi _k^{{(s)}}\in \hat {\mathcal B}_{\tilde F}([0,1])$. More precisely, instead of [Reference Nachtergaele, Sims and YoungNSY, equation (5.88)], we obtain

with some constant $\tilde C_{\theta }$, for each
$0<\theta <1$. In the last line we used formula (C.14) and [Reference Nachtergaele, Sims and YoungNSY, Lemma 8.9]. Hence we get
$\Psi _k^{{(n)}}, \Psi _k\in \hat {\mathcal B}_{\tilde F_{\theta }}([0,1])$.
Proof of Theorem 5.1.
Suppose $\Phi _{0}\sim \Phi _{1}$ via a path
$\Phi $. Our definition of
$\Phi _0\sim \Phi _1$ means the existence of a path of interactions satisfying [Reference Moon and OgataMO, Assumption 1.2]. Therefore, [Reference Moon and OgataMO, Theorem 1.3] guarantees the existence of a path of quasilocal automorphisms
$\alpha _t$ satisfying
$\omega _{\Phi _1}=\omega _{\Phi _0}\circ \alpha _1$. From the proof in [Reference Moon and OgataMO], the automorphism
$\alpha _t$ is given by a family of interactions

with

as $\alpha _{t}=\tau _{t,0}^{\Psi }$. (Note that by the partial integral of [Reference Moon and OgataMO, equation (1.19)], we obtain [Reference Nachtergaele, Sims and YoungNSY, equation (6.103)] with function
$W_\gamma $ in [Reference Nachtergaele, Sims and YoungNSY, equation (6.35)]).) The interaction
$\Psi $ actually belongs to
$\hat {\mathcal B}_{F_3}([0,1])$ for some
$F_3\in {\mathcal F}_a$. To see this, note that the path
$\Phi $ in Definition 1.2 satisfies [Reference Nachtergaele, Sims and YoungNSY, Assumption 6.12] for any F-function, because

with $C_b^\Phi $ and R given in Definition 1.2 3 and 4. In particular, it satisfies [Reference Nachtergaele, Sims and YoungNSY, Assumption 6.12] with respect to the F-function (see [Reference Nachtergaele, Sims and YoungNSY, Section 8])
$ F_1(r):=\frac {e^{-r}}{(1+r)^{4}} $. By [Reference Nachtergaele, Sims and YoungNSY, Section 8],
$F_1$ belongs to
${\mathcal F}_a$. Fix any
$0<\alpha <1$. Then by [Reference Nachtergaele, Sims and YoungNSY, Proposition 6.13] and its proof, the family of maps given by formula (D.25) [Reference Nachtergaele, Sims and YoungNSY, equation (6.102)] satisfies Assumption D.4, with
$p=0$,
$q=1$,
$r=1$ and
$G=G_{F_{2}}$, where
$F_{2}(r)=(1+r)^{-4} \exp \left ( - r^{\alpha }\right )$. Furthermore, we have
$\dot {\Phi }_m\in \hat {\mathcal B}_{F_2}([0,1])$ for any
$m\in {\mathbb N}$, because

We have $F_{2}\in {\mathcal F}_{a}$, and fixing any
$0<\alpha '<\alpha $,
$\tilde F_{2}(r):= (1+r)^{-4} \exp \left ( - r^{\alpha '}\right )$ satisfies

for a suitable constant $C_{2,\theta ,\alpha '}$.
Therefore, by Theorem D.5, $\Psi $ given by formula (D.24) for this
${\mathcal K}_t$ and
$\dot \Phi $ satisfy
$\Psi _1,\Psi \in \hat {\mathcal B}_{\tilde F_2}([0,1])$ for
$\tilde F_2\in {\mathcal F}_a$.
If $\Phi $ is
$\beta _{g}$-invariant, then
$\tau ^{\Phi (t)}$ commutes with
$\beta _{g}$, hence
${\mathcal K}_{t}$ commutes with
$\beta _{g}$. As
$\Pi _{X}$ commutes with
$\beta _{g}$ and
$\dot \Phi $ is
$\beta _{g}$-invariant, we see that
$\Psi $ is
$\beta _{g}$-invariant.
Proposition D.6. Let $F,\tilde F\in {\mathcal F}_a$ be F-functions of the form
$F(r)=(1+r)^{-4} \exp \left ( - r^{\theta }\right ), \tilde F(r):=(1+r)^{-4} \exp \left ( - r^{\theta '}\right )$ with some constants
$0<\theta '<\theta <1$. Let
$\Psi ,\tilde \Psi \in {\mathcal B}_{F}([0,1])$ be a path of interactions such that
$\Psi _{1}\in {\mathcal B}_{F}([0,1])$. Finally, let
$\tau _{t,s}^{\tilde \Psi }$ and
$\tau _{t,s}^{\left (\Lambda _n\right ),{\tilde \Psi }}$ be automorphisms given by
$\Psi ,\tilde \Psi $ from Theorem D.3.
Then, with $s \in [0,1]$, the right-hand side of the sum

defines a path of interaction such that $\Xi ^{(s)}\in {\mathcal B}_{\tilde F}([0,1])$. Furthermore, the formula

defines $\Xi ^{{(n)(s)}}\in {\mathcal B}_{\tilde F}([0,1])$ such that
$\Xi ^{(n)}\left ( Z, t \right )=0$ unless
$Z\subset \Lambda _{n}$, and satisfies

For any $t,u\in [0,1]$, we have

Furthermore, if $\Psi _1\in \hat {\mathcal B}_{F}([0,1])$, then we have
$\Xi ^{{(n)(s)}}, \Xi ^{{(s)}}\in \hat {\mathcal B}_{\tilde F}([0,1])$.
Acknowledgments
The author is grateful to Hal Tasaki for a stimulating discussion of the $2$-dimensional Dijkgraaf–Witten model, and to Yasuyuki Kawahigashi for introducing the author to various papers from operator algebra.
Conflict of Interest
None.
Financial support
This work was supported by JSPS KAKENHI grants 16K05171 and 19K03534. It was also supported by JST CREST grant JPMJCR19T2.Footnote 1