Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-20T17:25:11.477Z Has data issue: false hasContentIssue false

TRADE-OFFS BETWEEN BIOMASS USE AND SOIL COVER. THE CASE OF RICE-BASED CROPPING SYSTEMS IN THE LAKE ALAOTRA REGION OF MADAGASCAR

Published online by Cambridge University Press:  20 October 2011

K. NAUDIN*
Affiliation:
CIRAD, UPR Systèmes de Culture Annuels, F-34398 Montpellier, France
E. SCOPEL
Affiliation:
CIRAD, UPR Systèmes de Culture Annuels, F-34398 Montpellier, France
A. L. H. ANDRIAMANDROSO
Affiliation:
Université d'Antananarivo, ESSA, Département «Élevage», 101, Antananarivo, Madagascar
M. RAKOTOSOLOFO
Affiliation:
Université d'Antananarivo, ESSA, Département «Élevage», 101, Antananarivo, Madagascar
N. R. S. ANDRIAMAROSOA RATSIMBAZAFY
Affiliation:
Université d'Antananarivo, ESSA, Département «Élevage», 101, Antananarivo, Madagascar
J. N. RAKOTOZANDRINY
Affiliation:
Université d'Antananarivo, ESSA, Département «Élevage», 101, Antananarivo, Madagascar
P. SALGADO
Affiliation:
CIRAD, UMR Systèmes d'Elevage Méditerranéens et Tropicaux, F-97410 Saint-Pierre, La Réunion, France
K. E. GILLER
Affiliation:
Plant Production Systems, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
*
Corresponding author. Email: [email protected]

Summary

Farmers in the Lake Alaotra region of Madagascar are currently evaluating a range of conservation agriculture (CA) cropping systems. Most of the expected agroecological functions of CA (weed control, erosion control and water retention) are related to the degree of soil cover. Under farmers’ conditions, the grain and biomass productivity of these systems is highly variable and the biomass is used for several purposes. In this study, we measured biomass production of cover crops and crops in farmers’ fields. Further, we derived relationships to predict the soil cover that can be generated for a particular quantity of mulch. We used these relationships to explore the variability of soil cover that can be generated in farmers’ fields, and to estimate how much of the biomass can be removed for use as livestock feed, while retaining sufficient soil cover. Three different kinds of cropping systems were investigated in 91 farmers’ fields. The first two cropping sequences were on the hillsides: (i) maize + pulse (Vigna unguiculata or Dolichos lablab) in year 1, followed by upland rice in year 2; (ii) the second crop sequence included several years of Stylosanthes guianensis followed by upland rice; (iii) the third crop sequence was in lowland paddy fields: Vicia villosa or D. lablab, which was followed by rice within the same year and repeated every year. The biomass available prior to rice sowing varied from 3.6 t ha−1 with S. guianensis to 7.3 t ha−1 with V. villosa. The relationship between the mulch quantity (M) and soil cover (C) was measured using digital imaging and was well described by the following equation: C = 1 − exp(−Am × M), where Am is an area-to-mass ratio with R2 > 0.99 in all cases. The calculated average soil cover varied from 56 to 97% for maize + V. unguiculata and V. villosa, respectively. In order to maintain 90% soil cover at rice sowing, the average amount of biomass of V. villosa that could be removed was at least 3 t ha−1 for three quarters of the fields. This quantity was less for other annual or biennial cropping systems. On average the V. villosa aboveground biomass contained 236 kg N ha−1. The study showed that for the conditions of farmers of Malagasy, the production and conservation of biomass is not always sufficient to fulfil all the above-cited agroecological functions of mulch. Inventory of the soil cover capacity for different types of mulch may help farmers to decide how much biomass they can remove from the field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bas Rhône Languedoc (BRL) (2010). Cuvette du lac Alaotra, réseau pluviométrique. Annuaire 2000 à 2010. Ambatondrazaka, Madagascar: BRL-Madagascar, CIRAD, 154 pp.Google Scholar
Bilalis, D., Sidiras, N., Economou, G. and Vakali, C. (2003). Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. Journal of Agronomy and Crop Science 189:233241.CrossRefGoogle Scholar
Erenstein, O. (2003). Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops. Agriculture, Ecosystems & Environment 100:1737.CrossRefGoogle Scholar
Food and Agriculture Organization (FAO) (2010a). http://www.fao.org/ag/ca/ (Accessed 28 June 2011).Google Scholar
Food and Agriculture Organization (FAO) (2010b). http://www.fao.org/nr/land/soils/soil/wrb-soil-maps/classification-key/en/#c25142 (Accessed 10 November 2010).Google Scholar
Giller, K. E. and Cadisch, G. (1995). Future benefits from biological nitrogen fixation. An ecological approach to agriculture. Plant and Soil 174:255277.CrossRefGoogle Scholar
Giller, K. E., Witter, E., Corbeels, M. and Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Research 114:2334.CrossRefGoogle Scholar
Gilley, J., Finkner, S., Spomer, R. and Mielke, L. (1986). Runoff and erosion as affected by corn residue: Part I. Total losses. Transactions of the ASAE 29:157160.CrossRefGoogle Scholar
Govaerts, B., Sayre, K. D. and Deckers, J. (2005). Stable high yields with zero tillage and permanent bed planting? Field Crops Research 94:3342.CrossRefGoogle Scholar
Govaerts, B., Sayre, K. D., Lichter, K., Dendooven, L. and Deckers, J. (2007). Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant and Soil 291:3954.CrossRefGoogle Scholar
Gregory, J. (1982). Soil cover prediction with various amounts and types of crop residue. Transactions of the ASAE 25:13331337.CrossRefGoogle Scholar
Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? Journal of Agricultural Science 145:127137.CrossRefGoogle Scholar
Husson, O., Charpentier, H., Raharison, T., Razanamparany, C., Moussa, N., Rasolomanjaka, J., Michellon, R., Naudin, K., Rakotoarinivo, C., Rakotondramanana, , Enjalric, F. and Séguy, L. (2010). Les systèmes SCV adaptés aux différentes zones agroécologiques de Madagascar. In Manuel Pratique du Semis Direct à Madagascar (Ed CIRAD). Antananarivo, Madagascar: GSDM, CIRAD.Google Scholar
Husson, O., Charpentier, H., Razanamparany, C., Moussa, N., Michellon, R., Naudin, K., Rakotoarinivo, C., Rakotondramanana, and Séguy, L. (2008). Stylosanthes guianensis. In Manuel Pratique du Semis Direct à Madagascar. Vol. III. Chap. 3.2.1. Fiches Techniques Plantes de Couverture: Légumineuses Pérennes, 12 (Eds CIRAD, TAFA, GSDM, AFD and MAEP). Antananarivo, Madagascar: CIRAD.Google Scholar
Maltas, A., Corbeels, M., Scopel, E., Wery, J. and da Silva, F. A. M. (2009). Cover crop and nitrogen effects on maize productivity in no-tillage systems of the Brazilian cerrados. Agronomy Journal 101:10361046.CrossRefGoogle Scholar
Naudin, K., Gozé, E., Balarabe, O., Giller, K. E. and Scopel, E. (2010). Impact of no tillage and mulching practices on cotton production in North Cameroon: a multi-locational on-farm assessment. Soil and Tillage Research 108:68–67.CrossRefGoogle Scholar
Neto, M. S., Scopel, E., Corbeels, M., Cardoso, A. N., Douzet, J. M., Feller, C., Piccolo, M. D., Cerri, C. C. and Bernoux, M. (2010). Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: an on-farm synchronic assessment. Soil and Tillage Research 110:187195.CrossRefGoogle Scholar
Penot, E., Scopel, E., Domas, R. and Naudin, K. (2010). La durabilité est elle soluble dans le développement ? L'adoption des techniques de conservation de l'agriculture dans un contexte d'incertitudes multiples au lac Alaotra, Madagascar. In Colloque “Agir en Situation D'incertitude, 10 (Eds IFSA and CIRAD). Montpellier, Madagascar: IFSA-CIRAD.Google Scholar
Rakotondramanana, , Enjalric, F. and Husson, O. (2010). Documentation et synthèse de l'Agriculture de Conservation à Madagascar (FAO). Antananarivo, Madagascar: GSDM, 96 pp.Google Scholar
Razafimbelo, T., Albrecht, A., Feller, C., Ravelojaona, H., Moussa, N., Razanamparany, C., Rakotoarinivo, C., Razafintsalama, H., Michellon, R., Naudin, K. and Rabeharisoa, L. (2010). Stockage de carbone dans les sols sous systèmes de culture en semis direct sous couvert végétal (SCV) dans différents contextes pédoclimatiques à Madagascar. Etude et Gestion des Sols 17:143158.Google Scholar
Reicosky, D. (2008). Carbon sequestration and environmental benefits from no-till systems. In No-Till Farming Systems, Vol. 3, 4358 (Ed Goddard, T. E. A.). Bangkok, Thailand: World Association of Soil and Water Conservation.Google Scholar
Roberge, G. and Toutain, B. (1999). Cultures Fourragères Tropicales. Montpellier, Madagascar: CIRAD.Google Scholar
Rufino, M. C., Rowe, E. C., Delve, R. J. and Giller, K. E. (2006). Nitrogen cycling efficiencies through resource-poor African crop-livestock systems. Agriculture Ecosystems & Environment 112:261282.CrossRefGoogle Scholar
Sainju, U. M., Whitehead, W. F., Singh, B. P. and Wang, S. (2006). Tillage, cover crops, and nitrogen fertilization effects on soil nitrogen and cotton and sorghum yields. European Journal of Agronomy 25:372382.CrossRefGoogle Scholar
Saito, K., Azoma, K. and Oikeh, S. O. (2010). Combined effects of Stylosanthes guianensis fallow and tillage management on upland rice yield, weeds and soils in southern Benin. Soil and Tillage Research 107:5763.CrossRefGoogle Scholar
Scopel, E., Chavez Guerra, E. and Arreola-Tostado, J. (1999). Le semis direct avec paillis de résidus dans l'ouest mexicain: une histoire d'eau? Agriculture et Développement 21:7186.Google Scholar
Scopel, E., Da Silva, F. A. M., Corbeels, M., Affholder, F. O. and Maraux, F. (2004). Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24:383395.CrossRefGoogle Scholar
Séguy, L., Husson, O., Charpentier, H., Bouzinac, S., Michellon, R., Chabanne, A., Boulakia, S., Tivet, F., Naudin, K., Enjalric, F., Chabierski, S., Rakotondralambo, P. and Rakotondramanana, (2009). La gestion des écosystèmes cultivés en semis direct sur couverture végétale permanente. In Manuel du semis direct à Madagascar, Vol I, Chap. 2., 32 (Eds GSDM and CIRAD). Antananarivo, Madagascar: CIRAD.Google Scholar
Shepherd, K. D., Palm, C. A., Gachengo, C. N. and Vanlauwe, B. (2003). Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near-infrared spectroscopy. Agronomy Journal 95:13141322.CrossRefGoogle Scholar
Smets, T., Poesen, J. and Knapen, A. (2008). Spatial scale effects on the effectiveness of organic mulches in reducing soil erosion by water. Earth-Science Reviews 89:112.CrossRefGoogle Scholar
Steiner, J. L., Schomberg, H. H., Unger, P. W. and Cresap, J. (2000). Biomass and residue cover relationships of fresh and decomposing small grain residue. Soil Science Society of America Journal 64:21092114.CrossRefGoogle Scholar
Teasdale, J. R. and Mohler, C. L. (1993). Light transmittance, soil-temperature, and soil-moisture under residue of hairy vetch and rye. Agronomy Journal 85:673680.CrossRefGoogle Scholar
Teasdale, J. R. and Mohler, C. L. (2000). The quantitative relationship between weed emergence and the physical properties of mulches. Weed Science 48:385392.CrossRefGoogle Scholar
Thierfelder, C. and Wall, P. C. (2010). Rotation in conservation agriculture systems of zambia: effects on soil quality and water relations. Experimental Agriculture 46:309325.CrossRefGoogle Scholar
Tittonell, P., Vanlauwe, B., Corbeels, M. and Giller, K. E. (2008). Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil 313:1937.CrossRefGoogle Scholar
Tran, H., Salgado, P. and Lecomte, P. (2009). Species, climate and fertilizer effects on grass fibre and protein in tropical environments. The Journal of Agricultural Science 147:555568.CrossRefGoogle Scholar
Volk, L. B. S., Cogo, N. P. and Streck, E. V. (2004). Water erosion influenced by surface and subsurface soil physical conditions resulting from its management in the absence of vegetal cover. Revista Brasileira De Ciencia Do Solo 28:763774.CrossRefGoogle Scholar
Wezel, A. and Rath, T. (2002). Resource conservation strategies in agro-ecosystems of semi-arid West Africa. Journal of Arid Environments 51:383400.CrossRefGoogle Scholar