Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
White, J. W.
1998.
Understanding Options for Agricultural Production.
Vol. 7,
Issue. ,
p.
179.
Meireles, Elza Jacqueline Leite
Pereira, Antonio Roberto
Sentelhas, Paulo Cesar
Stone, Luis Fernando
and
Zimmermann, Francisco José Pfeilsticker
2002.
Calibration and test of the cropgro-dry bean model for edaphoclimatic conditions in the savanas of Central Brazil.
Scientia Agricola,
Vol. 59,
Issue. 4,
p.
723.
Hoogenboom, Gerrit
and
White, Jeffrey W.
2003.
Improving Physiological Assumptions Of Simulation Models By Using Gene‐Based Approaches.
Agronomy Journal,
Vol. 95,
Issue. 1,
p.
82.
Jones, J.W
Hoogenboom, G
Porter, C.H
Boote, K.J
Batchelor, W.D
Hunt, L.A
Wilkens, P.W
Singh, U
Gijsman, A.J
and
Ritchie, J.T
2003.
The DSSAT cropping system model.
European Journal of Agronomy,
Vol. 18,
Issue. 3-4,
p.
235.
Hoogenboom, Gerrit
White, Jeffrey W.
and
Messina, Carlos D.
2004.
From genome to crop: integration through simulation modeling.
Field Crops Research,
Vol. 90,
Issue. 1,
p.
145.
El-Sharkawy, M. A.
2005.
How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics-from an experimentalist's perspective.
Photosynthetica,
Vol. 43,
Issue. 2,
p.
161.
White, J. W.
Hoogenboom, G.
and
Hunt, L. A.
2005.
A Structured Procedure for Assessing How Crop Models Respond to Temperature.
Agronomy Journal,
Vol. 97,
Issue. 2,
p.
426.
Banterng, P.
Patanothai, A.
Pannangpetch, K.
Jogloy, S.
and
Hoogenboom, G.
2006.
Yield stability evaluation of peanut lines: A comparison of an experimental versus a simulation approach.
Field Crops Research,
Vol. 96,
Issue. 1,
p.
168.
White, Jeffrey W.
and
Hoogenboom, Gerrit
2010.
Climate Change and Food Security.
Vol. 37,
Issue. ,
p.
59.
Banterng, P.
Hoogenboom, G.
Patanothai, A.
Singh, P.
Wani, S. P.
Pathak, P.
Tongpoonpol, S.
Atichart, S.
Srihaban, P.
Buranaviriyakul, S.
Jintrawet, A.
and
Nguyen, T. C.
2010.
Application of the Cropping System Model (CSM)‐CROPGRO‐Soybean for Determining Optimum Management Strategies for Soybean in Tropical Environments.
Journal of Agronomy and Crop Science,
Vol. 196,
Issue. 3,
p.
231.
Beebe, Stephen
Ramirez, Julian
Jarvis, Andy
Rao, Idupulapati M.
Mosquera, Gloria
Bueno, Juan M.
and
Blair, Matthew W.
2011.
Crop Adaptation to Climate Change.
p.
356.
CLAVIJO MICHELANGELI, JOSE A.
BHAKTA, MEHUL
GEZAN, SALVADOR A.
BOOTE, KENNETH J.
and
VALLEJOS, C EDUARDO
2013.
From flower to seed: identifying phenological markers and reliable growth functions to model reproductive development in the common bean (Phaseolus vulgarisL.).
Plant, Cell & Environment,
Vol. 36,
Issue. 11,
p.
2046.
Heinemann, Alexandre B.
Ramirez-Villegas, Julian
Souza, Thiago Livio P.O.
Didonet, Agostinho Dirceu
di Stefano, Jose Geraldo
Boote, Kenneth J.
and
Jarvis, Andy
2016.
Drought impact on rainfed common bean production areas in Brazil.
Agricultural and Forest Meteorology,
Vol. 225,
Issue. ,
p.
57.
Rajah, Perushan
Odindi, John
Abdel-Rahman, Elfatih
and
Mutanga, Onisimo
2017.
Determining the optimal phenological stage for predicting common dry bean (Phaseolus vulgaris) yield using field spectroscopy.
South African Journal of Plant and Soil,
Vol. 34,
Issue. 5,
p.
379.
Jiménez, Oswalt R.
2019.
Advances in Plant Breeding Strategies: Legumes.
p.
151.
Ramirez‐Villegas, Julian
Molero Milan, Anabel
Alexandrov, Nickolai
Asseng, Senthold
Challinor, Andrew J.
Crossa, Jose
van Eeuwijk, Fred
Ghanem, Michel Edmond
Grenier, Cecile
Heinemann, Alexandre B.
Wang, Jiankang
Juliana, Philomin
Kehel, Zakaria
Kholova, Jana
Koo, Jawoo
Pequeno, Diego
Quiroz, Roberto
Rebolledo, Maria C.
Sukumaran, Sivakumar
Vadez, Vincent
White, Jeffrey W.
and
Reynolds, Matthew
2020.
CGIAR modeling approaches for resource‐constrained scenarios: I. Accelerating crop breeding for a changing climate.
Crop Science,
Vol. 60,
Issue. 2,
p.
547.
Vallejos, C. Eduardo
Jones, James W.
Bhakta, Mehul S.
Gezan, Salvador A.
and
Correll, Melanie J.
2022.
Dynamic QTL-based ecophysiological models to predict phenotype from genotype and environment data.
BMC Plant Biology,
Vol. 22,
Issue. 1,