Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T18:25:08.991Z Has data issue: false hasContentIssue false

Language and Music: What do they have in Common and how do they Differ? A Neuroscientific Approach

Published online by Cambridge University Press:  01 October 2008

Barbro B. Johansson*
Affiliation:
Wallenberg Neuroscience Center, BMC A13, SE 22184 Lund, Sweden

Abstract

The concept of two largely independent systems, with strict left hemisphere lateralization of language and predominantly right lateralization of music is being challenged by the alternative view that language and music are closely related cognitive and neural systems with complex constellations of sub-processes, some of which are shared, and others that are not. Neurophysiologic data demonstrating similar syntax and semantics processing together with similarities in the development of the two domains in the infant brain support that language and music have much in common and complement each other. Close interaction between the two hemispheres is needed for optimal functioning of both language and music. Thus, the right hemisphere has an important role for understanding complex natural language such as stories and metaphors. Learning to read, write and musical training induces functional and anatomical changes in functionally relevant connections, and modifies hemispheric asymmetries for specific functions. Comparative research on music and language provides a way to study basic brain mechanisms and how the brain transfers acoustic stimuli into the unique human abilities for language and music, and may help bridge the divide between the sciences and the humanities.

Type
Focus: The Origin of Language
Copyright
Copyright © Academia Europaea 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lévi–Strauss, C. (1964/1969) The Raw and the Cooked: Introduction to a Science of Mythology, translated by J. Weightman and D. Weightman (New York: Harper & Row).Google Scholar
2.Peretz, I. and Coltheart, M. (2003) Modularity of music processing. Nature Neuroscience, 6, 688691.CrossRefGoogle ScholarPubMed
3.Peretz, I. (2006) The nature of music from a biological perspective. Cognition, 100, 132.CrossRefGoogle ScholarPubMed
4.Maess, B. S., Koelsch, S., Gunder, T. C. and Friederici, A. D. (2001) Musical syntax is processed in Broca’s area: an MEG study. Nature Neuroscience, 4, 540545.CrossRefGoogle ScholarPubMed
5.Patel, A. D. (2003) Language, music, syntax and the brain. Nature Neuroscience, 6, 674681.CrossRefGoogle ScholarPubMed
6.Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunder, T. and Friederici, A. D. (2004) Music, language and meaning: brain signatures of semantic processing. Nature Neuroscience, 7, 302307.CrossRefGoogle ScholarPubMed
7.Koelsch, S., Gunter, T. C., Wittfoth, M. and Sammler, D. (2005) Interaction between syntax processing in language and in music: an ERP study. Journal of Cognitive Neuroscience, 17, 15671577.CrossRefGoogle ScholarPubMed
8.Patel, A. D. (2008) Music, Language, and the Brain (Oxford: Oxford University Press).Google Scholar
9.Abrams, R. M. and Gerhardt, K. J. (2000) The acoustic and environment and physiological responses of the foetus. Journal of Perinatology, 20, S30S35.CrossRefGoogle Scholar
10.Nazzi, T., Bertoncini, J. and Mehler, J. (1998) Language discrimination by newborns: towards an understanding of the role of rhythm. Journal of Experimental Human Perception Performance, 24, 756766.CrossRefGoogle Scholar
11.Sambeth, A., Ruohio, K., Alku, P., Fellman, V. and Huotilainin, M. (2008) Sleeping newborns extract prosody from continuous speech. Clinical Neurophysiology, 119, 332341.CrossRefGoogle ScholarPubMed
12.Masataka, N. (2006) Preference for consonance over dissonance by hearing newborns of deaf parents and of hearing parents. Developmental Science, 9, 4650.CrossRefGoogle ScholarPubMed
13.Bertoncini, J., Morais, J., Bijeljac-Babic, R., McAdams, S., Peretz, I. and Mehler, J. (1989) Dichotic perception and laterality in neonates. Brain and Language, 37, 591605.CrossRefGoogle ScholarPubMed
14.Best, C. T., Hoffman, H. and Glanville, B. B. (1992) Development of infant ear asymmetries in speech and music. Perception in Psychophysics, 31, 7585.CrossRefGoogle Scholar
15.Trehub, S. E. (2001) Musical predispositions in infancy. Annals of the New York Academy of Sciences, 930, 116.CrossRefGoogle ScholarPubMed
16.Trehub, S. E. (2003) The developmental origins of musicality. Nature Neuroscience, 6, 669673.CrossRefGoogle ScholarPubMed
17. A. Vouloumanos and J. F. Werker (2007) Listening to language at birth: evidence for a bias for speech in neonates. Developmental Science, 10, 159–171.CrossRefGoogle Scholar
18.Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N. and Lindblom, B. (1992) Linguistic experience alters phonetic expression in infants by 6 month of age. Science, 255, 606608.CrossRefGoogle Scholar
19.Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S. and Iverson, P. (2006) Infant show a facilitation effect for native language phonetic expression between 6 and 12 years. Developmental Science, 9, F13F21.CrossRefGoogle Scholar
20.Schellenberg, E. G. and Trehub, S. (1999) Culture-general and culture-specific factors in the discrimination of melodies. Journal of Experimental Child Psychology, 74, 107127.CrossRefGoogle ScholarPubMed
21.Kuhl, P. K. (2007) Is speech learning gated by the social brain? Developmental Science, 10, 110120.CrossRefGoogle ScholarPubMed
22. G. Dehaene-Lambertz, L. Hertz-Pannier, J. Dubois, S. Mériaux, A. Roche, M. Sigman and S. Dehaene (2006) Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proceedings of the National Academy of Science USA, 103, 14240–14045.CrossRefGoogle Scholar
23.Pascual-Leone, A., Ameri, A., Fregni, F. and Merabet, L. B. (2005) The plastic human brain cortex. Annual Review of Neuroscience, 28, 377401.CrossRefGoogle ScholarPubMed
24.Johansson, B. B. (2006) Brain plasticity in health and disease. Keio Journal of Medicine, 53, 231246.CrossRefGoogle Scholar
25.Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, A. and Eden, G. F. (2003) Development of neural mechanisms for reading. Nature Neuroscience, 6, 767773.CrossRefGoogle ScholarPubMed
26.Johansson, B. B. (2006) Cultural and linguistic influence on brain organization for language and possible consequences for dyslexia: a review. Annals of Dyslexia, 56, 1350.CrossRefGoogle ScholarPubMed
27.Petersson, A., Silva, C., Castro-Caldas, A., Ingvar, M. and Reis, A. (2007) Literacy: a cultural influence on functional left–right differences in the inferior parietal cortex. European Journal of Neuroscience, 26, 791799.CrossRefGoogle ScholarPubMed
28.Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. and Taub, E. (1995) Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305307.CrossRefGoogle ScholarPubMed
29.Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E. and Hoke, M. (1998) Increased auditory cortical representation in musicians. Nature, 392, 811814.CrossRefGoogle ScholarPubMed
30.Pantev, C., Roberts, L. E., Schulz, M., Engelien, A. and Ross, B. (2001) Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport, 12, 169174.CrossRefGoogle ScholarPubMed
31.Rosenkranz, K., Williamon, A. and Rothwell, J. C. (2007) Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. The Journal of Neuroscience, 27, 52005206.CrossRefGoogle ScholarPubMed
32.Münte, T. F., Kohlmetz, C., Nager, W. and Alternmüller, E. (2001) Neuroperception. Superior auditory spatial tuning in conductors. Nature, 409, 580.CrossRefGoogle ScholarPubMed
33.Pascual-Leone, A. (2001) The brain that plays music and is changed by it. Annals of the New York Academy of Sciences, 930, 315322.CrossRefGoogle Scholar
34.Münte, T. E., Altenmüller, E. and Jäncke, L. (2002) The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3, 473478.CrossRefGoogle Scholar
35.Zatorre, R. and McGill, J. (2005) Music, the food for neuroscience? Nature, 434, 312315.CrossRefGoogle ScholarPubMed
36.Johansson, B. B. (2006) Music and brain plasticity. European Review, 14, 4964.CrossRefGoogle Scholar
37.Zatorre, R. J., Chen, J. L. and Penhune, V. B. (2007) When the brain plays music: auditory motor interaction in music perception and production. Nature Reviews Neuroscience, 8, 547558.CrossRefGoogle ScholarPubMed
38.Zatorre, R. J. and Belin, P. (2001) Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11, 946953.CrossRefGoogle ScholarPubMed
39.Poeppel, D. (2003) The analysis of speech in different temporal windows: cerebral lateralization as asymmetric sampling in time. Speech Communication, 41, 245255.CrossRefGoogle Scholar
40.Hickock, G. and Poeppel, D. (2007) The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393402.CrossRefGoogle Scholar
41.Ben Shalom, D. and Poeppel, D. (2008) Functional anatomic models of language: assembling the pieces. Neuroscientist, 14, 119127.CrossRefGoogle Scholar
42.Koelsch, S. and Siebel, W. A. (2005) Towards a neural basis of music perception. Trends in Cognitive Sciences, 9, 578584.CrossRefGoogle ScholarPubMed
43.Galvin, J. J. 3rd, Fu, O. J. and Nosaki, G. (2007) Melodic contour identification by cochlear implant listeners. Ear and Hearing, 28, 302319.CrossRefGoogle ScholarPubMed
44.Hyde, K. L., Peretz, I. and Zatorre, R. J. (2008) Evidence for the role of the right auditory cortex in fine itch resolution. Neuropsychologia, 46, 632639.CrossRefGoogle Scholar
45.Peretz, I., Ayotte, J., Zatorre, R., Mehler, J., Ahad, P., Pentune, V. and Jutas, B. (2002) Congenital amusia: a disorder of fine-grained pitch discrimination. Neuron, 33, 185191.CrossRefGoogle ScholarPubMed
46.Foxton, J. M., Dean, J. L., Gee, R., Peretz, I. and Griffiths, T. D. (2004) Characterization of deficits in pitch perception underlying tone deafness. Brain, 127, 801810.CrossRefGoogle ScholarPubMed
47.Hyde, K. L., Zatorre, R. J., Grifiths, D., Lerch, J. P. and Peretz, I. (2006) Morphometry of the amusic brain: a two-site study. Brain, 129, 25622570.CrossRefGoogle Scholar
48.Patel, A. D., Foxton, J. M. and Griffiths, T. D. (2005) Musically tone-deaf individuals have difficulty discriminating intonation contours extracted from speech. Brain and Cognition, 59, 310313.CrossRefGoogle ScholarPubMed
49.Mandell, J., Schultze, K. and Schlaug, G. (2007) Congenital amusia: an auditory-motor feedback disorder? Restorative Neurology and Neuroscience, 25, 323334.Google ScholarPubMed
50.Douglas, K. M. and Bilkey, D. K. (2007) Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10, 915921.CrossRefGoogle ScholarPubMed
51.Jentschke, S., Koelsch, S., Sallat, S. and Friederici, A. D. (2008) Children with specific language impairment also show impairment of music-syntactic processing. Journal of Cognitive Neuroscience, April 16 [Epub ahead of print].CrossRefGoogle ScholarPubMed
52.Yasui, T., Kaga, K. and Sakai, K. L. (2008) Language and music: differential hemispheric dominance in detecting unexpected errors in the lyrics and melody of memorized songs. Human Brain Mapping, Published online 2 January 2008.Google Scholar
53.Nattiez, J. J. (1990) Music and Discourse: Toward a Semiology of Music, translated by C. Abate (Princeton NJ: Princeton University Press).Google Scholar
54.Steinbeis, N. and Koelsch, S. (2008) Shared neural resource between music and language indicate semantic processing of musical tension-resolution patterns. Cerebral Cortex, 18, 11691178.CrossRefGoogle ScholarPubMed
55.Miranda, R. A. and Ullman, M. T. (2007) Double dissociation between rules and memory in music: an event-related potential study. NeuroImage, 38, 331345.CrossRefGoogle ScholarPubMed
56.Koelsch, S., Schulze, K., Sammler, D., Fritz, T., Müller, K. and Gruber, O. (2008) Functional architecture of verbal and tonal memory: an FMRI study. Human Brain Mapping, March 10 [Epub ahead of print].Google Scholar
57.Jung-Beeman, M. (2005) Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9, 512518.CrossRefGoogle ScholarPubMed
58.Arzouan, Y., Goldstein, A. and Faust, M. (2007) Dynamics of hemispheric activity during metaphor comprehension: electrophysiological measures. NeuroImage, 36, 222231.CrossRefGoogle ScholarPubMed
59.Marshal, N. and Faust, M. (2008) Right hemisphere sensitivity to novel metaphoric relations: application of the signal detection theory. Brain and Language, 104, 103112.CrossRefGoogle Scholar
60.Faust, M., Ben-Artzi, E. and Harel, I. (2008) Hemispheric asymmetries in semantic processing: Evidence from false memories for ambiguous words. Brain and Language, 105, 220228.CrossRefGoogle ScholarPubMed
61.Pobric, G., Marchal, N., Faust, M. and Lavidor, M. (2008) The role of the right cerebral hemisphere in processing novel metaphoric expressions: a transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 20, 170181.CrossRefGoogle ScholarPubMed
62.Anvari, S. H., Trainor, L. J., Woodside, J. and Levy, B. A. (2002) Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of Experimental Child Psychology, 83, 111130.CrossRefGoogle ScholarPubMed
63.Schön, D., Besson, M., Boyer, M., Moreno, S., Besson, M., Peretz, I. and Kolinsky, R. (2008) Songs as an aid for language acquisition. Cognition, 106, 975983.CrossRefGoogle ScholarPubMed
64.Magne, C., Schön, D. and Besson, M. (2006) The music of speech: musician children detect pitch violation in both music and language better than non-musician children: behavioural and electrophysiological approaches. Journal of Cognitive Neuroscience, 18, 199211.CrossRefGoogle Scholar
65.Thompson, W. F., Schellenberg, E. G. and Husain, G. (2004) Decoding speech prosody: do music lessons help? Emotion, 4, 4664.CrossRefGoogle ScholarPubMed
66.Marques, C., Moreno, S., Castro, S. L. and Besson, M. (2007) Musicians detect pitch violation in foreign language better than non-musicians: behavioural and electrophysiological evidence. Journal of Cognitive Neuroscience, 18, 199211.Google Scholar
67.Musacchia, G., Sams, M., Skoe, E. and Kraus, N. (2007) Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Science USA, 104, 1589415898.CrossRefGoogle ScholarPubMed
68.Wong, P. C., Skoe, E., Russo, N. M., Dees, T. and Kraus, N. (2007) Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10, 420422.CrossRefGoogle ScholarPubMed
69.Ho, Y. C., Cheung, M. C. and Chan, A. S. (2003) Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. Neuropsychology, 17, 439450.CrossRefGoogle Scholar
70.Popescu, M., Otsuka, A. and Ioannides, A. A. (2004) Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. NeuroImage, 21, 16221638.CrossRefGoogle ScholarPubMed
71.Liberman, A. M. and Mattingly, I. G. (1985) The motor theory of speech perception revised. Cognition, 21, 136.CrossRefGoogle ScholarPubMed
72.Coballis, M. C. (2002) From Hand to Mouth: The Origins of Language (Princeton, NJ: Princeton University Press).CrossRefGoogle Scholar
73.Pulvermullezr, F., Hauk, O., Nikulin, V. V. and Ilmoniemi, R. J. (2005) Functional links between motor and language systems. European Journal of Neuroscience, 21, 793797.CrossRefGoogle Scholar
74.Fadiga, L., Craighero, L., Boccino, G. and Rizzolatti, G. (2002) Speech listening specifically modulates the tongue muscles: a TMS study. European Journal of Neurosciences, 15, 399402.CrossRefGoogle ScholarPubMed
75.Floel, A., Eliger, T., Breitenstein, C. and Knecht, S. (2003) Language perception activates the hand motor cortex: implications for motor theories or speech perception. European Journal of Neurosciences, 18, 704708.CrossRefGoogle ScholarPubMed
76.Fox, M. D. and Raichle, M. E. (2007) Spontaneous fluctuations in brain activity observed with magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700711.CrossRefGoogle ScholarPubMed
77.Giraud, A.-L., Kleinschmidt, A., Poeppel, D., Lund, E. T., Frackowiak, R. S. J. and Laufs, H. (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron, 56, 11271134.CrossRefGoogle ScholarPubMed
78.Ghazanfal, A. A. and Schroeder, C. E. (1996) Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10, 282285.Google Scholar
79.van Wassenhove, V., Grant, K. W. and Poeppel, D. (2005) Visual speech speeds up the neural processing of auditory speech. Proceedings of the Academy of Science USA, 102, 11811186.CrossRefGoogle ScholarPubMed
80.Kleber, A., Birbaumer, N., Veit, R., Trevorrow, T. and Lotze, M. (2007) Overt and imagined singing of an Italian aria. NeuroImage, 36, 889900.CrossRefGoogle ScholarPubMed
81.Pessoa, L. (2008) On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9, 148158.CrossRefGoogle ScholarPubMed
82.Conway, B. R., Moeller, S. and Tsao, D. Y. (2007) Specialized colour modules in macaque extrastriate cortex. Neuron, 56, 560573.CrossRefGoogle ScholarPubMed
83.Sporns, O., Chialvo, D. R., Kaiser, M. and Hilgetag, C. C. (2004) Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418425.CrossRefGoogle ScholarPubMed
84.Honey, C. J., Kötter, R., Breakspear, M. and Sporns, O. (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the Academy of Science USA, 104, 1024010245.CrossRefGoogle ScholarPubMed
85. O. Sporns, C. J. Honey and R. Kötter (2007) Identification and classification of hubs in brain networks. PloS ONE 2(10):e1049. doi:10.1371/journal.pone.0001049.CrossRefGoogle Scholar
86.Anderson, M. L. (2007) Evolution of cognitive function via redeployment of brain areas. The Neuroscientist, 13, 1321.CrossRefGoogle ScholarPubMed
87.Dehaene, S. and Cohen, L. (2007) Cultural recycling of cortical maps. Neuron, 56, 384398.CrossRefGoogle ScholarPubMed
88.Masataka, N. (2007) Music, evolution and language. Developmental Science, 10, 3539.CrossRefGoogle ScholarPubMed
89.Werker, J. F. and Byers-Heinlein, K. (2008) Bilingualism in infancy: first step in perception and comprehension. Trends in Cognitive Sciences, 12, 144151.CrossRefGoogle Scholar