Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T06:01:39.268Z Has data issue: false hasContentIssue false

Alteraciones de las concentraciones de factor neurotrófico derivado de la línea de células gliales (GDNF) en el cerebro de pacientes con trastorno depresivo: Estudio comparativo post mortem.

Published online by Cambridge University Press:  12 May 2020

Tanja M. Michel
Affiliation:
Universidad RWTH Aachen, Departamento de Psiquiatría y Psicoterapia, Pauwelsstrasse 30, 52074Aachen, Alemania Sección de Neurobiología de la Psicosis, PO 66, Centro de Investigación Biomédica NIHR e Instituto de Psiquiatría, King 's College Londres, De Crespigny Park, SE5 SAF, Londres, RU Departamento de Psiquiatría y Psicoterapia, Hospital Universitario Würzburg Füchsleinstrasse 15, 97080Würburg, Germany
Sophia Frangou
Affiliation:
Sección de Neurobiología de la Psicosis, PO 66, Centro de Investigación Biomédica NIHR e Instituto de Psiquiatría, King 's College Londres, De Crespigny Park, SE5 SAF, Londres, RU
Sibylle Camara
Affiliation:
Departamento de Psiquiatría y Psicoterapia, Hospital Universitario Würzburg Füchsleinstrasse 15, 97080Würburg, Germany
Dorothea Thiemeyer
Affiliation:
Departamento de Psiquiatría y Psicoterapia, Hospital Universitario Würzburg Füchsleinstrasse 15, 97080Würburg, Germany
Julia Jecel
Affiliation:
Instituto Medicina Forense, Universidad Würburg, Alemania
Thomas Tatschner
Affiliation:
Departamento de Psiquiatría, Hospital Mostviertel Amstetten-Mauer, Austria
Robert Zoechling
Affiliation:
Departamento de Neurología, Hospital Danubio, Viena, Austria
Edna Griinblatt
Affiliation:
Departamento de Psiquiatría y Psicoterapia, Hospital Universitario Würzburg Füchsleinstrasse 15, 97080Würburg, Germany
Get access

Resumen

Introducción

Hay cada vez más evidencias que indican que el factor neurotrófico derivado de la línea de células gliales (GDNF) está implicado en la etiopatología de los trastornos del ánimo. El GDNF es un factor neurotrófico de la familia de los factores transformadores del crecimiento que desempeña algún papel en el desarrollo de las células y en la función del sistema límbico. Éste es el primer estudio que ha examinado la concentración de GDNF en diferentes regiones cerebrales de pacientes con trastorno depresivo (TD).

Material y métodos

Usamos una técnica sandwich-ELISA para determinar la concentración de GDNF y el ensayo de Lowry para calcular las concentraciones de proteínas totales en tejido cerebral p o st mortem en 7 pacientes con trastorno depresivo recurrente y en 14 individuos sin ningún diagnóstico neurológico o psiquiátrico. Incluimos regiones corticales y áreas límbicas (hipocampo, corteza entorrinal), ganglios basales (putamen, núcleo caudal), tálamo y circunvolución cingulada.

Resultados

Encontramos un aumento significativo de la concentración de GDNF en la corteza parietal de los pacientes con TD comparados con el grupo de control. En otras regiones, la tendencia al aumento de la concentración de GDNF no indicó ninguna diferencia estadísticamente significativa.

Discusión

Este estudio de prueba de concepto confirma resulados anteriores que indicaban que había una alteración del GDNF en pacientes con trastorno depresivo. Sin embargo, es la primera vez que se ha encontrado un aumento significativo de GDNF en un área cortical cerebral en pacientes con TD.

Type
Original
Copyright
Copyright © European Psychiatric Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Adolphs, RDamasio, HTranel, DDamasio, AR. Cortical systems in the recognition of emotion in facial expression. J Neurosci 1996;16:7678–87.CrossRefGoogle Scholar
Adolphs, RDamasio, HTranel, DCooper, GDamasio, AR. A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesión mapping. J Neurosci 2000;20:2683–90.CrossRefGoogle ScholarPubMed
Airaksinen, MSaarma, M. The GDNF family: signaling, biological functions and therapeutic valué. Nat Rev Neurosci 2002;3:383–94.CrossRefGoogle ScholarPubMed
Airaksinen, MTitievsky, ASaarma, M, GDNF family neurotrophic factor signaling: four masters, one servant. Mol Cell Neurosci 1999;13:313–25.CrossRefGoogle ScholarPubMed
Altar, CA.Neurotrophins and depression.Trends Pharmacol Sci 1999;20:5961.CrossRefGoogle ScholarPubMed
Anderson, ADOquendo, MAParsey, RVMilak, MSCampbell, CMann, JJ. Regional brain responses to serotonin in major depressive disorder. J Affect Disord 2004;82:411–7.Google ScholarPubMed
Angelucci, EAloe, LJimenez-Vasquez, PMathe, AA.Lithium treatment alters brain concentrations of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in a rat model of depression. Int J Neuropsychopharmacol 2003; 6:225–31.CrossRefGoogle Scholar
Baloh, RMTansey, MGGolden, JPCreedon, DJHeuckeroth, ROKeck, CL et al. TrnR2, a novel receptor that mediates neurturin and GDNF signalling through Ret. Neuron 1997;18:793802.CrossRefGoogle Scholar
Blonder, LXBowers, DHeilman, K. The role of the right hemisphere in emotional communication. Brain 1991;114:1115–27.CrossRefGoogle ScholarPubMed
Bowors, DBlonder, LXFeinberg, THeilman, KM. Differential Impact of right and left hemisphere lesions on facial emotion and object imagery. Brain 1987;114:2593–609.CrossRefGoogle Scholar
Bremner, JDKrystal, JHSouthwick, SMCharney, DS. Functional neuroanatomical correlates of the effects of stress on memory. J Trauma Stress 1995;8:527–53.CrossRefGoogle ScholarPubMed
Burazin, TCGundlach, AL. Localizaron of GDNF/neurturin receptor (c-ret, GFRalpha-1 and alpha-2) mRNAs in postnatal rat brain: differential regional and temporal expression in hippocampus, cortex and cerebellum. Brain Res Mol Brain Res 1999;73:151–71.CrossRefGoogle Scholar
Cacalano, GFariñas, IWang, LCHagler, KForgie, AMoore, M et al. GFR1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 1998;21:5362.CrossRefGoogle Scholar
Caggiula, MBatocchi, APFrisullo, GAngelucci, FPatanella, AKSancricca, C et al. Neurotrophic factors and clinical recovery in relapsing-remitting múltiple sclerosis. Scand J Immunol 2005;62: 176–82.CrossRefGoogle ScholarPubMed
Campbell, SMarriott, MNahmias, CMaeQueen, G. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004;161:598607.CrossRefGoogle ScholarPubMed
Chao, CCLee, EH. Neuroprotective mechanism of glial cell linederived neurotrophic factor on dopamine neurons: role of antioxidation. Neuropharmacology 1999;38:913–6.CrossRefGoogle Scholar
Chen, ACHEisch, AJSakai, NTakahashi, MNestler, EJDuman, RS. Regulation of GFR a-1 and cx-2 mRNAs in rat brain by electroconvulsive seizure. Synapse 2001;39:4250.3.0.CO;2-#>CrossRefGoogle Scholar
Cheng, HFu, YSGuo, JW. Ability of GDNF to diminish free radical production leads to protection against kainite-induced excitotoxicity in hippocampus. Hippocampus 2004;14:7786.CrossRefGoogle Scholar
Cotter, DMackay, DChana, GBeasley, CLandau, SEverall, IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cerebral Cortex 2002;12:386–94.CrossRefGoogle ScholarPubMed
Doris, AEbmeier, KShajahan, RDepressive illness. Lancet 1999; 354:1369–75.CrossRefGoogle ScholarPubMed
Ducray, AKrebs, SHSchaller, BSeiler, RWMeyer, MWidmer, HR. GDNF-family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon. Brain Res 2006;1069:104–12.CrossRefGoogle ScholarPubMed
Duman, RSHeninger, GRNestler, EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997;54:597606.CrossRefGoogle ScholarPubMed
Durany, NMichel, TKurt, JCruz-Sanchez, FFCervas-Navarro, JRjederer, RBrain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer's disease brains. Int J Dev Neurosci 2000; 18: 807–13.CrossRefGoogle ScholarPubMed
Durany, NMichel, TZochling, RBoissl, KWCruz-Sanchez, FFRiederer, P et al. Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 2001;52:7986.CrossRefGoogle ScholarPubMed
Frodl, TMeisenzahl, EMZetzsche, TBorn, CGroll, CJager, M et al. Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 2002; 159:1112–8.CrossRefGoogle ScholarPubMed
Gash, DMZhang, ZOvadla, ACass, WAYi, ASimmerman, L et al. Functional recovery in parkinsonian monkeys treated with GDNE Nature 1996;380:252–5.Google Scholar
Gilí, SSPatel, NKHotton, GRO'Sullivan, KMcCarter, RBunuage, M et al. Direct brain infusión of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9:589–95.CrossRefGoogle Scholar
Glazner, GWMu, XSpringer, JE. Localization of glial cell line-denved neurotrophic factor receptor alpha and c-ret mRNA in rat central nervous system. J Comp Neurol 1998;391:42–9.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Gratacos, EPérez-Navarro, E, Tolosa, EArenas, EAlberch, J. Neuroprotection of striatal neurons against kainate excitotoxicity by neurotrophins and GDNF family members. J Neurochem 2001 ;78: 1287–96.CrossRefGoogle ScholarPubMed
Gsell, WLange, KWPfeuffer, RHeckers, SHeinsen, HSenitz, D et al. How to run a brain bank. A report from the Austro-Germania brain bank. J Neural Trans Suppl 1993;39:3170.Google Scholar
Hanck, SMKinkl, NDeeg, CASwieatek-de, Lange MSchoffmann, S et al. GDNF family ligands trigger indirect neuroprotective signalling in retinal glial cells. Mol Cell Biol 2006;26:27546-57.Google Scholar
Heilman, KMWatson, RT. Arousal and emotions. In: Boller, FGrafman, J, editors. Handbook of neuropsychology, val. 3. Amsterdam: Elsevier; 1989. p. 403-17.Google Scholar
Hisaoka, KNishida, AKoda, TMiyata, MZensho, HMorinobu, S et al. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and ralease in rat C6 glioma cells. J Neurochem 2001;79:2534.CrossRefGoogle Scholar
Hisaoka, KNishida, ATakebayashi, MKoda, TYamawaki, SNakata, Y. Serotonin increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells. Brain Res 2004;1002:167–70.CrossRefGoogle ScholarPubMed
Hisaoka, KTakebayashi, MTsuchioka, MMaeda, NNakata, YYamawaki, S. Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells. J Pharmacol Exper Therap 2007;321:148–57.CrossRefGoogle ScholarPubMed
Hisaoka, KMaeda, NTsuchioka, MTakebayashi, M. Antidepressanis induce acate CREB phosphorylation and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Brain Res 2008. Epub ahead of print.CrossRefGoogle Scholar
Hock, CHeese, KMueller-Spahn, FHaber, PRiesen, WNitsch, RM et al. Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression. Mol Psych 2000;5:510–3.CrossRefGoogle ScholarPubMed
Hunot, SBernard, VFancheux, BBoissiere, FLeguern, EBrana, C et al. Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson's disease. J Neural Transm 1996;103:1043–52.CrossRefGoogle ScholarPubMed
Jin, GOmori, NLi, FNagano, IManabe, YShoji, M et al. Protection against ischemic brain damage by GDNF affecting cell survival and death signáis. Neurol Res 2003;25:249–53.CrossRefGoogle Scholar
Jing, SWen, DYu, YHolst, PLLuo, YFang, M et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFRalpha, a novel receptor for GDNF. Cell 1996 ,85:1113–24.CrossRefGoogle Scholar
Jing, SYu, YFang, MHu, ZHolst, PLBoone, T et al. GFR alpha-2 and GFRalpha-3 are two new receptors for ligands of the GDNF family. J Biol Chem 1997;272:33111-7.CrossRefGoogle Scholar
Karlsen, KHLarsen, JPTandberg, EMaeland, J. Influence of clinical and demographic variables on quality of life in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 1999;66:431–5.CrossRefGoogle ScholarPubMed
Kitagawa, HSasaki, CZhang, WRSakai, KShiro, YWarita, H et al. Induction of glial cell line-derived neurotrophic factor receptor proteins in cerebral cortex and striatum after permanent. Brain Res 1999;18:211–4.Google Scholar
Kobayashi, TAhlenius, HThored, PKobayashi, RKokaia, ZLindvall, O. Intracerebral infusión of glial cell line-derived neurotrophic factor prometes striatal neurogenesis after stroke in adult rats. Stroke 2006;37:2361–7.CrossRefGoogle Scholar
Kokaia, ZAiraksinen, MSNanobashvili, ALarsson, EKujamaki, ELindvall, O et al. GDNF family ligands and receptors are differentially regulated afterbrain insults in the rat. Eur J Neurosci 1999; 11:1202–16.CrossRefGoogle Scholar
Kupsch, AOertel, WHEarl, CDSautter, J. Neuronal transplantation and neurotrophic factors in the treatment of Parkinson's disease— update. J Neural. Transm Suppl 1995;46:193207.Google ScholarPubMed
Lin, LFDoherty, DHLile, JDBeketesh, SCollins, F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993;21:1130–2.CrossRefGoogle Scholar
Lowry, OHRosebrough, NJFarr, ALRandall, RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265–76.Google ScholarPubMed
Maisonpierre, PCBelluscio, LFriedman, BAlderson, RFWiegand, SJFurth, ME et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 1990;5:501–9.CrossRefGoogle ScholarPubMed
Marco, SSaura, JPérez-Navarro, EJosé Martí, MTolosa, EAlberch, J.Regulatíon of c-Ret, GF Ralphal, and GFR alpha 2 in the substantia nigra pars compacta in a rat model of Parkinson's disease. J Neurobiol 2002;52:343–51.CrossRefGoogle Scholar
Masure, SCik, MPangalos, MNBonaventure, PVerhasselt, PLesage, AS et al. Molecular cloning, expression and tissue distribution of glial-cell-line derived neurotrophic factor family receptor alpha-3 (GFRalpha-3). Eur J Biochem 1998;251:622–30.CrossRefGoogle Scholar
Meadows, MEKaplan, RF. Dissociation of autonomic and subjective responses to emotional slides in right hemisphere damaged patients. Neuropsychologia 1994;32:847–56.CrossRefGoogle ScholarPubMed
Michel, TMFrangou, SThiemeyer, DCamara, SJecel, JNara, K et al. Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder—a postmortem study. Psych Res 2007;151:145–50.CrossRefGoogle ScholarPubMed
Milbrandt, Jde Sauvage, FJFahrner, TJBaloh, RHLeitner, MLTansey, MG et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 1998;20:245–53.CrossRefGoogle ScholarPubMed
Miyazaki, HOkuma, YFujii, YNagashima, KNomura, Y. Glial cell line-derived neurotrophic factor protects against delayed neuronal death after transient forebrain ischemia in rats. Neuroscience 1999;89:643–7.CrossRefGoogle ScholarPubMed
Miyazaki, HNagashima, KOkuma, YNomura, Y. Expression of glial cell line-derived neurotrophic factor induced by transient forebrain ischemia in rats. Brain Res 2001;922:165–72.CrossRefGoogle ScholarPubMed
Murray, CJ, López, AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 1997;349:1436–42.CrossRefGoogle ScholarPubMed
Nishino, JMochida, KOhfuij, YShimazaki, TMeno, COhishi, S et al. GFR3, a component of the artemin receptor, is required for migration and survival of the superior servical ganglion. Neuron 1999;23:725–36.CrossRefGoogle Scholar
Ongur, DDrevets, WCPrice, JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Nati Acad Sci 1998;27: 13290–5.CrossRefGoogle Scholar
Onyango, IGTuttle, JBBennett, JP Jr. Brain-derived growth factor and glial cell line-derived growth factor use distinct intracellular signaling pathways to protect PD cybnds from H20 2 induced neuronal death. Neurobiol Dis 2005;20:141–54.CrossRefGoogle Scholar
Paratcha, GLedda, FIbanez, CF. The neural cell adhesión molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 2003;113:867–79.CrossRefGoogle ScholarPubMed
Patel, NKBunnage, MPlaha, PSvendsen, CNHeywood, PGilí, SS. Intraputamenal infusión of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 2005;57:298302.CrossRefGoogle ScholarPubMed
Pérez-Navarro, EAkerud, PMarco, SCanals, JMTolosa, EArenas, E et al. Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington's disease. Neuroscience 2000;98:8996.CrossRefGoogle ScholarPubMed
Pochon, NAMenoud, ATseng, JLZurn, ADAebischer, P. Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 1997;9:463–71.CrossRefGoogle ScholarPubMed
Poewe, WLuginger, E. Depression in Parkinson's disease: impediments to recognition and treatment options. Neurology 1999;52:26.Google ScholarPubMed
Price, J.Prefrontal cortical networks related to visceral function and mood. Ann NY Acad Sci 1999;877:383–96.CrossRefGoogle Scholar
Quintero, EMWillis, LMZaman, VLee, JBoger, HATomac, A et al. Gli al cell line-derived neurotrophic factor is essential for neuronal survival in the locus coeroleus-hippocampal noradrenergic pathway. Neuroscience 2004;124:137–46.CrossRefGoogle Scholar
Rajkowska, G. Post-mortem studies in mood disorders indícate alterad numbers of neurons and glial cells. Biol Psychiatry 2000; 48:766–77.CrossRefGoogle Scholar
Rajkowska, GMiguel-Hidalgo, JJWei, JDiUey, GPittman, SDMeltzer, HY et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999;45:1085–98.CrossRefGoogle ScholarPubMed
Rajkowska, GHalaris, ASelemon, LD. Reductions on neuronal and glial density and characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001;49:741–52.CrossRefGoogle ScholarPubMed
Roceri, MCirulli, FPessina, CPeretto, PRacagni, GRiva, MA. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004;55:708–14.CrossRefGoogle ScholarPubMed
Rosa, ARFrey, BNAndreazza, ACCereser, KMCunha, BMQuevedo, J et al. Increased serum glial cell line-derived neurotrophic factor immunocontent during manic and depressive episodes in individuáis with bipolar disorder. Neurosci Lett 2006;407:146–50.CrossRefGoogle Scholar
Rosenblad, CKirik, DDevaux, BMoffat, BPhillips, HSBjorklund, A. Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a pardal lesión model of Parkinson's disease after administration into the stuatum or the lateral ventricle. Eur J Neurosci 1999;11:1554-66.CrossRefGoogle ScholarPubMed
Rosenblad, CKirik, DBjorklund, A. Sequential administration of GDNF into the substantia nigra and striatum prometes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in (he partial 6-OHDA lesión modal. Exp Neurol 2000;161:503–16.CrossRefGoogle Scholar
Rossi, JLuukko, KPoteriaev, DLaurikainen, ASun, YFLaakso, T et al. Retarded growth and déficits in the enteric and parasympathetic nervous system in mice lacking GFR2, a functional neuroturin receptor. Neuron 1999;22:243–52.CrossRefGoogle Scholar
Sapolsky, RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Bial Psychiatry 2000;48:755-65.CrossRefGoogle ScholarPubMed
Sarabi, AHoffer, BJOlson, LMorales, M. GFR alpha-1 is expressed in parvalbumin GABAergic neurons in the hippocampas. Brain Res 2000;877:262–70.CrossRefGoogle Scholar
Schrag, AJahanshahi, MQuinn, NP. What contributes to depression in Parkinson's disease? Psychol Med 2001;31:6573.CrossRefGoogle ScholarPubMed
Serrano, FKlann, E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 2004;3:431–43.CrossRefGoogle ScholarPubMed
Sheline, YISangLavi, MMintun, MAGado, MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999;19:5034–43.CrossRefGoogle Scholar
Sheline, YIMittler, BLMintun, MA. The hippocampus and depression. Eur Psychiatry 2002;17(Suppl. 3):300–5.CrossRefGoogle ScholarPubMed
Shelton, RC. Cellular mechanisms in the vulnerability to depression and response to antidepressants. Psychiatr Clin North Am 2000;23:713–29.CrossRefGoogle Scholar
Sherer, TBFiske, BKSvensen, CNLang, AELangston, JW. Crossroads in GDNF therapy for Parkinson's disease. Mov Disord 2006; 21:136–41.CrossRefGoogle ScholarPubMed
Shimbo, DDavídson, KWHaas, DCFuster, VBadimon, JJ. Negative impact of depression on outcomes in patients with coronary artery disease: mechanisms, treatment considerations, and future directions. J Thromb Haemost 2005;3:897908.CrossRefGoogle ScholarPubMed
Shimizu, EHashimoto, KOkamura, NKoike, KKomatsu, NKumakiri, C et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003;54:70–5.CrossRefGoogle ScholarPubMed
Strelau, JUnsicker, K. GDNF family members and their receptors: expression and functions in two oligodendroglial cell lines representing distinct stages of oligodendroglial development. Glia 1999;26:291330.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Stromberg, IBjorklund, LJohansson, MTomac, ACollins, FOlson, L et al. Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 1993;124:401–12.CrossRefGoogle Scholar
Takebayashi, MHisaoka, KNishida, ATsuchioka, MMiyoshi, IKozuru, T et al. Decreased levels of whole blood glial cell line-derived neurotrophic factor (GDNF) in remitted patients with mood disorder. Int J Neuropsychopharmacol 2006;9:607–12.CrossRefGoogle Scholar
Thoenen, H.Neurotrophins and neuronal plasticity. Science 1995; 270:593–8.CrossRefGoogle ScholarPubMed
Tokumine, JKakinohana, OCizkova, DSmith, DMarsala, M. Changes in spinal GDNF, BDNF and NT-3 expression after transient spinal cord ischemia in the rat. J Neurosci Res 2003;74:552–61.CrossRefGoogle ScholarPubMed
Tomac, ACAgulnick, ADHanghey, NChang, CFZhang, YBackman, C et al. Effects of cerebral ischemia in mice deficient in Persephin. Proc Nati Acad Sci USA 2002;99:9521–6.CrossRefGoogle ScholarPubMed
Trupp, MScott, RWhittemore, SRIbanez, CF. Ret-dependent and - independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem 1999;274:20885–94.CrossRefGoogle ScholarPubMed
Tseng, JLBruhn, SLZum, ADAebischer, P. Neurturin protects dopaminergic neurons following medial forebrain bundle axotomy. Neuroreport 1998;9:1817–22.CrossRefGoogle ScholarPubMed
Villegas, SNNjaine, BLinden, RCarri, NG. Glial-derived neurotrophic factor (GDNF) prevents ethanol (EtOH) induced B92 glial cell death by both PI3K/AKT and MEK/ERK signaling pathways. Brain Res Bull 2006;71:116–26.CrossRefGoogle ScholarPubMed
Wang, YLin, SZChiou, ALWilliams, LRHoffer, BJ. Glial cell line derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci 1997;17:4341–8.CrossRefGoogle ScholarPubMed
Wei, GWu, GCao, X. Dynamic expression of glial cell line-derived neurotrophic factor after cerebral ischemia. Neuroreport 2000; 11:1177–83.CrossRefGoogle ScholarPubMed
Worby, CAVega, QCChao, HHSeasholtz, AFThompson, RCDixon, JE. Identification and characterization of GFRalpha-3, a novel co-receptor belonging to the glial cell line-derived neurotrophic receptor family. J Biol Chem 1998;273:3502–8.CrossRefGoogle ScholarPubMed
Durbec, PMarcos-Gutierrez, CVKilkenny, CGrigoriou, MWartiowaara, KSuvanto, P et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996;381:789–93.CrossRefGoogle ScholarPubMed
Mercier, GLennon, AMRenouf, BDessouroux, ARamaugé, MCourtin, F et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 2004;24:207–16.CrossRefGoogle ScholarPubMed
Zhang, XZhang, ZXie, CXi, GZhou, HZhang, Y et al. Effect of treatment on serum glial cell line-derived neurotrophic factor in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2008;32: 886–90.CrossRefGoogle ScholarPubMed
Otsuki, KUchida, SWatanuki, TWakabayashi, YFujimoto, MMatsubara, T et al. Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res 2008 [Epub ahead of print].CrossRefGoogle ScholarPubMed
Michel, TMCamara, STatschner, TFrangou, SSheldrick, AJMatsubara, TRiederer, P et al. Increased xanthine oxidase in the thalamus and putamen in depression. World J of Biol Psych 2008. doi: 10.1080/15622970802123695. [Epub ahead of print 12 Jane].CrossRefGoogle Scholar