Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T07:17:02.299Z Has data issue: false hasContentIssue false

Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay

Published online by Cambridge University Press:  22 December 2014

DEBORAH LACITIGNOLA
Affiliation:
Dipartimento di Ingegneria Elettrica e dell'Informazione, Università di Cassino e del Lazio Meridionale, Via di Biasio, I-03043 Cassino, Italy email: [email protected]
BENEDETTO BOZZINI
Affiliation:
Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, I-73100 Lecce, Italy email: [email protected]
IVONNE SGURA
Affiliation:
Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, via per Arnesano, I-73100 Lecce, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we investigate from a theoretical point of view the 2D reaction-diffusion system for electrodeposition coupling morphology and surface chemistry, presented and experimentally validated in Bozzini et al. (2013J. Solid State Electr.17, 467–479). We analyse the mechanisms responsible for spatio-temporal organization. As a first step, spatially uniform dynamics is discussed and the occurrence of a supercritical Hopf bifurcation for the local kinetics is proved. In the spatial case, initiation of morphological patterns induced by diffusion is shown to occur in a suitable region of the parameter space. The intriguing interplay between Hopf and Turing instability is also considered, by investigating the spatio-temporal behaviour of the system in the neighbourhood of the codimension-two Turing--Hopf bifurcation point. An ADI (Alternating Direction Implicit) scheme based on high-order finite differences in space is applied to obtain numerical approximations of Turing patterns at the steady state and for the simulation of the oscillating Turing–Hopf dynamics.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

References

[1]Aragon, J. L., Barrio, R. A., Woolley, T. E., Baker, R. E. & Maini, P. K. (2012) Nonlinear effects on Turing patterns: Time oscillations and chaos. Phys. Rev. E 86, 026201, 14.CrossRefGoogle ScholarPubMed
[2]Banerjee, M. & Petrovskii S. (2011) Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system. Theor. Ecol. 4, 3753.CrossRefGoogle Scholar
[3]Baurmann, M., Gross, T. & Feudel, U. (2007) Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighbourhood of Turing-Hopf bifurcations. J. Theor. Biol. 245, 220229.CrossRefGoogle ScholarPubMed
[4]Bogoliubov, N. N. & Mitropolski, Y. A. (1961) Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York.Google Scholar
[5]Boissonade, J., Dulos, E. & De, Kepper P. (1995) Onset and beyond Turing pattern formation. In: Kapral, R. & Showalter, K. (editors), Chemical Waves and Patterns, Kluwer Academic Publishers, Dordrecht.Google Scholar
[6]Borckmans, P., Dewel, G., De Wit, A., Dulos, E., Boissonade, J., Gauffre, F. & De Kepper, P. (2002) Diffusive instabilities and chemical reactions. Int. J. Bif. Chaos 12, 23072332.CrossRefGoogle Scholar
[7]Bozzini, B., Lacitignola, D. & Sgura, I. (2008) A reaction-diffusion model of spatial pattern formation in electrodeposition. J. Phys.: Conf. Ser. 96, 012051.Google Scholar
[8]Bozzini, B., D'Urzo, L., Lacitignola, D., Mele, C., Sgura, I. & Tondo, E. (2009) An investigation into the dynamics of Au electrodeposition based on the analysis of SERS spectral time series. Trans. Inst. Met. Fin. 87, 193200.CrossRefGoogle Scholar
[9]Bozzini, B., Lacitignola, D. & Sgura, I. (2010) Morphological spatial patterns in a reaction diffusion model for metal growth. Math. Biosci. Eng. 7, 237258.Google Scholar
[10]Bozzini, B., Sgura, I., Lacitignola, D., Mele, C., Marchitto, M. & Ciliberto, A. (2010) Prediction of morphological properties of smart-coatings for Cr replacement, based on mathematical modelling. Adv. Mat. Res. 138, 93106.Google Scholar
[11]Bozzini, B., Lacitignola, D. & Sgura, I. (2011) Travelling waves in a reaction-diffusion model for electrodeposition. Math. Comput. Simul. 81, 10271044.CrossRefGoogle Scholar
[12]Bozzini, B., Lacitignola, D. & Sgura, I. (2011) Frequency as the greenest additive for metal plating: Mathematical and experimental study of forcing voltage effects on electrochemical growth dynamics. Int. J. Electrochem. Sci. 6, 45534571.CrossRefGoogle Scholar
[13]Bozzini, B., Lacitignola, D., Mele, C. & Sgura, I. (2012) Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: A review of the reaction-diffusion approach. Acta Appl. Math. 122, 5368.Google Scholar
[14]Bozzini, B., Lacitignola, D., Mele, C. & Sgura, I. (2012) Morphogenesis in metal electrodeposition. Note di Matem. 32, 746.Google Scholar
[15]Bozzini, B., Lacitignola, D. & Sgura, I. (2013) Spatio-temporal organisation in Alloy electrodeposition: A morphochemical mathematical model and its experimental validation. J. Solid State Electrochem. 17, 467479.CrossRefGoogle Scholar
[16]Mele, C., Catalano, M., Taurino, A. & Bozzini, B. (2013) Electrochemical fabrication of NPG-supported manganese oxide nanowires based on electrodeposition from eutectic urea/choline chloride ionic liquid. Electrochim. Acta 87, 918924.CrossRefGoogle Scholar
[17]Bozzini, B., Gianoncelli, A., Mele, C. & Kiskinova, M. (2013) Electrochemical fabrication of nanoporous gold decorated with manganese oxide nanowires from eutectic urea/choline chloride ionic liquid. Part II - Electrodeposition of Au–Mn: A study based on soft X-ray microspectroscopy. Electrochim. Acta, 114, 889896.CrossRefGoogle Scholar
[18]Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. (1990) Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953.CrossRefGoogle ScholarPubMed
[19]Crawford, J. D. (1991) Introduction to bifurcation theory. Rev. Mod. Phys. 63, 9911037.CrossRefGoogle Scholar
[20]Cross, M. C. & Honenberg P. C. (1993) Pattern formation outside the equilibrium. Rev. Mod. Phys. 65, 8511112.CrossRefGoogle Scholar
[21]Cross, M. & Greenside, H. (2009) Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[22]Dewel, G., Borckmans, P., De Wit, A., Rudovics, B., Perraud, J., Dulos, E., Boissonade, J. & Kepper, P. D. (1995) Pattern selection and localized structures in reaction-diffusion systems, Physica A 213, 181198.CrossRefGoogle Scholar
[23]Dewel, G., De Wit, A., Metens, S., Verdasca, J. & Borckmans, P. (1996) Pattern selection in reaction-diffusion systems with competing bifurcations. Phys. Scr. T67, 5157.CrossRefGoogle Scholar
[24]De Wit, A., Lima, D., Dewel, G. & Borckmans, P. (1996) Spatiotemporal dynamics near a codimension-two point. Phys. Rev. E 54, 261271.CrossRefGoogle Scholar
[25]De Wit, A. (1999) Spatial patterns and spatiotemporal dynamics in chemical systems. Adv. Chem. Phys. 109, 435513.Google Scholar
[26]Dobrovolska, Ts., Krastev, I., Zabinski, P., Kowalik, R. & Zielonka, A. (2011) Oscillations and self-organization phenomena during electrodeposition of silver-indium alloys. Experimental study. Arch. Metall. Mater. 56, 645657.CrossRefGoogle Scholar
[27]Dobrovolska, Ts., Lopez-Sauri, D. A., Veleva, L. & Krastev, I. (2012) Oscillations and spatio-temporal structures during electrodeposition of AgCd alloys. Electrochim. Acta 79, 162169.CrossRefGoogle Scholar
[28]Epstein, J. M. (1997) Nonlinear Dynamics, Mathematical Biology and Social Science, Addison-Wesley, Reading, MA.Google Scholar
[29]Gambino, G., Lombardo, M. C. & Sammartino, M. (2012) Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion. Math. Comput. Simul. 82, 11121132.CrossRefGoogle Scholar
[30]Gambino, G., Lombardo, M. C. & Sammartino, M. (2013) Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear Anal. Real World Appl. 14, 17551779.CrossRefGoogle Scholar
[31]Gross, T. & Feudel, U. (2006) Generalized models as a universal approach to the analysis of nonlinear dynamical systems. Phys. Rev. E 75, 114.Google Scholar
[32]Hoyle, R. (2006) Pattern Formation. An Introduction to Methods, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[33]Just, W., Bose, M., Bose, S., Engel, H. & Scholl, E. (2001) Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys. Rev. E 64, 112.CrossRefGoogle Scholar
[34]Kaminaga, A., Vanag, V. K. & Epstein, I. R. (2005) ‘Black spots’ in a surfactant-rich BZ-AOT microemulsion system. J. Chem. Phys. 122, 174706, 111.CrossRefGoogle Scholar
[35]Kapral, R. & Showalter, K. (1995) Chemical Waves and Patterns, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
[36]Koper, M. T. M. (1998) Non-linear phenomena in electrochemical systems. J. Chem. Soc. Faraday Trans. 94, 13691378.CrossRefGoogle Scholar
[37]Krastev, I. & Koper M. T. M. (1995) Pattern formation during the electrodeposition of a silver-antimony alloy. Physica A 213, 199208.CrossRefGoogle Scholar
[38]Krastev, I. (2009) Self-structured silver alloy coatings and their properties. J. Eng. Process. Manage. 1, 104112.Google Scholar
[39]Krastev, I., Dobrovolska Ts., Lacnjevac U. & Nineva S. (2012) Pattern formation during electrodeposition of indium-cobalt alloys. J. Solid State Electrochem. 16, 34493456.CrossRefGoogle Scholar
[40]Krischer, K., Mazouz, N. & Grauel, P. (2001) Fronts, waves, and stationary patterns in electrochemical systems. Angew. Chem. Int. Ed. 40, 850869.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
[41]Lacitignola, D., Bozzini, B. & Sgura, I. (2014) Spatio-temporal organization in a morphochemical electrodeposition model: Analysis and numerical simulation of spiral waves. Acta Appl. Math.,132, 377389.CrossRefGoogle Scholar
[42]Lee, K. J., McCormick, W. D., Ouyang, Q. & Swinney, H. L. (1993) Pattern Formation by Interacting Chemical Fronts. Sci. New Ser. 261(5118), 192194.Google ScholarPubMed
[43]Leppanen, T., Karttunen, M., Kaski, K. & Barrio, R. A. (2004) Turing systems as models of complex pattern formation. Braz. J. Phys. 34, 368372.CrossRefGoogle Scholar
[44]Leppänen, T., Karttunen, M., Barrio, R. A. & Kaski, K. (2004) Morphological transitions and bistability in Turing systems. Phys. Rev. E 70, 066202.CrossRefGoogle ScholarPubMed
[45]Li, Y-J., Oslonovitch, J., Mazouz, N., Plenge, F., Krischer, K. & Ertl, G. (2001) Turing-type patterns on electrode surfaces. Science 291, 23952398.CrossRefGoogle ScholarPubMed
[46]Maini, P. K. & Othmer, H. G. (2001) Mathematical models for biological pattern formation. In: The IMA Volumes in Mathematics and its Applications - Frontiers in Applications of Mathematics, Vol. 121, Springer, New York.Google Scholar
[47]Maini, P. K. (2004) Using mathematical models to help understand biological pattern formation. C. R. Biol. 327, 225234.CrossRefGoogle ScholarPubMed
[48]Malchow, H., Petrovskii, S. V. & Venturino, E. (2008) Spatiotemporal Patterns in Ecology and Epidemiology, Chapman & Hall, U.K.Google Scholar
[49]Meixner, M., De Wit, A., Bose, S. & Scholl, E. (1997) Generic spatiotemporal dynamics near codimension-two Turing Hopf bifurcations. Phys. Rev. E 55, 66906697.CrossRefGoogle Scholar
[50]Miguez, D. G., Alonso, S., Munuzuri, A. P. & Sagues, F. (2006) Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction. Phys. Rev. Lett. 97, 178301, 14.CrossRefGoogle ScholarPubMed
[51]Murray, J. D. (2002) Mathematical Biology II; Spatial Models and Biomedical Applications, 3rd ed., Springer, New York.Google Scholar
[52]Orbán, M., Kurin-Csörgei, K., Zhabotinsky, A. M. & Epstein, I. R. (2001) A new chemical system for studying pattern formation: Bromate-Hypophosphite-Acetone - dual catalyst. Faraday Disc. 120, 1119.CrossRefGoogle Scholar
[53]Ouyang, Q. & Swinney, H. L. (1991) Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610612.CrossRefGoogle Scholar
[54]Perraud, J. J., Agladze, K., Dulos, E. & De Kepper, P. (1992) Stationary Turing patterns versus time-dependent structures in the chlorite-iodide-malonic acid reaction. Physica A 188, 116.CrossRefGoogle Scholar
[55]Ricard, M. R. & Michler, S. (2009) Turing Instabilities at Hopf bifurcation. J. Nonlinear Sci. 19, 467496.CrossRefGoogle Scholar
[56]Rovinsky, A. & Menzinger M. (1992) Interaction of Turing and Hopf bifurcations in chemical systems. Phys. Rev. A 46, 63156322.CrossRefGoogle ScholarPubMed
[57]Rudovics, B., Dulos, E. & de Kepper, P. (1996) Standard and nonstandard Turing patterns and waves in the CIMA reaction. Phys. Scr. T67, 4350.CrossRefGoogle Scholar
[58]Sagués, F. & Epstein, I. R. (2003) Nonlinear chemical dynamics. Dalton Trans. 12011217.CrossRefGoogle Scholar
[59]Saitou, M. & Fukuoka, Y. (2004) An experimental study on stripe pattern formation of Ag-Sb electrodeposits. J. Phys. Chem. B 108, 53805385.CrossRefGoogle Scholar
[60]Saitou, M. & Fukuoka, Y. (2004) A study on transient changes of surface morphologies in Ag and Sb coelectrodeposition. J. Electrochem. Soc. 151, C627C632.CrossRefGoogle Scholar
[61]Saitou, M. & Fukuoka, Y. (2005) Stripe patterns in Ag-Sb co-electrodeposition. Electrochim. Acta 50, 50445049.CrossRefGoogle Scholar
[62]Sanders, J. A. & Verhulst, F. (1985) Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Vol. 59, Springer, New York.CrossRefGoogle Scholar
[63]Sgura, I., Bozzini, B. & Lacitignola, D. (2012) Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Math. 236, 41324147.CrossRefGoogle Scholar
[64]Sgura, I., Bozzini, B. & Lacitignola, D. (2012) Numerical approximation of oscillating Turing patterns in a reaction-diffusion model for electrochemical material growth. AIP Conf. Proc. 1493, 896903.CrossRefGoogle Scholar
[65]Sherratt, J. A. (2012) Turing patterns in deserts. In: Cooper, S. B., Dawar, A. & Lowe, B. (editors), How the World Computes, Lecture Notes in Computer Science, Vol. 7318, Springer, New York, pp. 667674.CrossRefGoogle Scholar
[66]Turing, A. M. (1952) The chemical bases of morphogenesis, Phil. Trans. R. Soc. London B 237, 3772.Google Scholar
[67]Vanag, V. K. & Epstein I. R. (2008) Design and control of patterns in reaction-diffusion systems. Chaos 18, 026107, 111.CrossRefGoogle ScholarPubMed
[68]Vanag, V. K. & Epstein I. R. (2009) Pattern formation mechanisms in reaction-diffusion systems. Int. J. Dev. Biol. 53, 673681.CrossRefGoogle ScholarPubMed
[69]Yang, L., Dolnik, M., Zhabotinsky, A. M. & Epstein, I. R. (2002) Spatial resonances and superposition patterns in a reaction-diffusion model with interacting Turing modes. Phys. Rev. Lett. 88, 208303, 14.CrossRefGoogle Scholar
[70]Yang, L. & Epstein, I. R. (2003) Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett. 90, 178303, 14.CrossRefGoogle ScholarPubMed