Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T08:36:16.875Z Has data issue: false hasContentIssue false

Homogenisation of a locally periodic medium with areas of low and high diffusivity

Published online by Cambridge University Press:  17 May 2011

T. L. VAN NOORDEN
Affiliation:
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: [email protected]
A. MUNTEAN
Affiliation:
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: [email protected] Institute of Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We aim at understanding transport in porous materials consisting of regions with both high and low diffusivities. We apply a formal homogenisation procedure to the case where the heterogeneities are not arranged in a strictly periodic manner. The result is a two-scale model formulated in x-dependent Bochner spaces. We prove the weak solvability of the limit two-scale model for a prototypical advection–diffusion system of minimal size. A special feature of our analysis is that most of the basic estimates (positivity, L-bounds, uniqueness, energy inequality) are obtained in the x-dependent Bochner spaces.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Allaire, G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 14821518.Google Scholar
[2]Arbogast, T., Douglas, J. Jr., & Hornung, U. (1990) Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823836.CrossRefGoogle Scholar
[3]Auriault, J. L. (1991) Heterogeneous medium. Is an equivalent macroscopic description possible? Int. J. Eng. Sci. 29, 785795.CrossRefGoogle Scholar
[4]Babych, N. O., Kamotski, I. V. & Smyshlaev, V. P. (2008) Homogenization of spectral problems in bounded domains with doubly high contrasts. Netw. Heterogeneous Media 8, 413436.CrossRefGoogle Scholar
[5]Bensoussan, A., Lions, J. L. & Papanicolau, G. (1978) Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam.Google Scholar
[6]Bourgeat, A., Luckhaus, S. & Mikelic, A. (1996) Convergence of the homogenization process for a double porosity model of immiscible two-phase flow. SIAM J. Math. Anal. 27, 15201543.Google Scholar
[7]Bourgeat, A., Mikelic, A. & Piatnitski, A. (1994) Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456, 1951.Google Scholar
[8]Bourgeat, A. & Panfilov, M. (1998) Effective two-phase flow through highly heterogeneous porous media: Capillary nonequilibrium effects. Comput. Geosci. 2, 191215.CrossRefGoogle Scholar
[9]Chechkin, G. & Piatnitski, A. L. (1999) Homogenization of boundary-value problem in a locally-periodic domain. Appl. Anal. 71, 215235.Google Scholar
[10]Dixmier, J. (1981) Von Neumann Algebras, North-Holland, Amsterdam.Google Scholar
[11]Eck, C. (2004) A two-scale phase field model for liquid-solid phase transitions of binary mixtures with dendritic microstructure. In: Habilitationsschrift, Universität Erlangen, Germany.Google Scholar
[12]Evans, L. C. (1998) Partial Differential Equations, Vol. 19 of Graduate Studies in Mathematics, AMS, Providence, Rhode Island.Google Scholar
[13]Fatima, T., Arab, N., Zemskov, E. P. & Muntean, A. (2011) Homogenization of a reaction-diffusion system modeling sulfate corrosion in locally-periodic perforated domains. J. Eng. Math., doi:10.1007/s10665-010-9396-6.Google Scholar
[14]Hornung, U., ed. (1997) Homogenization and Porous Media, Vol. 6 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York.CrossRefGoogle Scholar
[15]Hornung, U. & Jäger, W. (1991) Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differ. Equ. 92, 199225.CrossRefGoogle Scholar
[16]Hornung, U., Jäger, W. & Mikelić, A. (1994) Reactive transport through an array of cells with semi-permeable membranes. RAIRO Modél. Math. Anal. Numér. 28, 5994.Google Scholar
[17]Ladyzenskaja, O. A., Solonnikov, V. A. & Uralce'va, N. N. (1968) Linear and Quasi-linear Equations of Parabolic Type, Vol. 23 of Translations of Mathematical Monographs, AMS, Providence, Rhode Island.Google Scholar
[18]Lions, J. L. (1963) Quelques Méthodes de Resolution des Problèmes Aux Limite Non-Linéaires, Dunod, Gauthier-Villars, Paris.Google Scholar
[19]Meier, S. A. (2008) Two-Scale Models for Reactive Transport and Evolving Microstructure, PhD Thesis, University of Bremen, Germany.Google Scholar
[20]Meier, S. A. & Böhm, M. (2005) On a micro-macro system arising in diffusion–reaction problems in porous media. In: Fila, M. et al. (editors), Proceedings of the Equadiff 11, Bratislava, pp. 259263.Google Scholar
[21]Meier, S. A. & Böhm, M. (2008) A note on the construction of function spaces for distributed-microstructure models with spatially varying cell geometry. Int. J. Numer. Anal. Modeling 1, 118.Google Scholar
[22]Meier, S. A. & Muntean, A. (2008) A two-scale reaction-diffusion system with micro-cell reaction concentrated on a free boundary. Comptes Rendus Mecanique 336, 481486.Google Scholar
[23]Meier, S. A. & Muntean, A. (2010) A two-scale reaction-diffusion system: Homogenization and fast reaction limits. Gakuto Int. Ser. Math. Sci. Appl. 32, 441459.Google Scholar
[24]Ptashnyk, M., Roose, T. & Kirk, G. J. D. (2010) Diffusion of strongly sorbed solutes in soil: A dual-porosity model allowing for slow access to sorption sites and time-dependent sorption reactions. Eur. J. Soil Sci. 61, 108119.Google Scholar
[25]Showalter, R. E. & Walkington, J. (1991) Micro-structure models of diffusion in fissured media. J. Math. Anal. Appl. 155, 120.Google Scholar
[26]van Noorden, T. L. (2009) Crystal precipitation and dissolution in a porous medium: Effective equations and numerical experiments. Multiscale Model. Simul. 7, 12201236.Google Scholar
[27]van Noorden, T. L. (2009) Crystal precipitation and dissolution in a thin strip. Eur. J. Appl. Math. 20, 6991.CrossRefGoogle Scholar
[28]Zhikov, V. V. (2000) On an extension of the method of two-scale convergence and its applications. Sb. Math. 191, 9731014.Google Scholar