Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T10:28:55.983Z Has data issue: false hasContentIssue false

Stability of m-equivalence to the weak Pinsker property

Published online by Cambridge University Press:  19 September 2008

Adam Fieldsteel
Affiliation:
Wesleyan University, Middletown, CT 06457, USA
Daniel J. Rudolph
Affiliation:
University of Maryland, College Park, MD 20742, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let denote the class of transformations with the weak Pinsker property, and let []m denote the class of transformations m-equivalent to some member of , where m is an entropy-preserving size. We show that if T is a factor of an element of []m, then T ∈ []m, and if T is an m-limit of elements of []m, then T ∈ []m.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

REFERENCES

[1]Ornstein, D. S., Rudolph, D. J. & Benjamin, Weiss. Equivalence of measure preserving transformations. Mem. Amer. Math. Soc. 37 (262) (1982).Google Scholar
[2]Rudolph, D. J.. Restricted orbit equivalence. Mem. Amer. Math. Soc. 54 (323) (1985).Google Scholar
[3]Thouvenot, J. -P.. Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schema de Bernoulli. Isr. J. Math. 21 (1975), 177207.CrossRefGoogle Scholar
[4]Thouvenot, J. -P.. On the stability of the weak Pinsker property. Isr. J. Math. 27 (1977), 150162.CrossRefGoogle Scholar