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Abstract. Let W9> denote the class of transformations with the weak Pinsker property,
and let [W0>]m denote the class of transformations m-equivalent to some member
of W9, where m is an entropy-preserving size. We show that if T is a factor of an
element of [T0>]m, then Te[W@]m, and if T is an m-limit of elements of [W9>]m,
then Te{°W9]m.

In this paper we apply the theory of restricted orbit equivalences of ergodic
transformations, as developed in the recent memoir of Rudolph [2], to the study
of the weak Pinsker property. We begin with a brief summary of some of the basic
ideas in Rudolph's work.

Let T be an ergodic transformation. (Throughout this paper, all transformations
are assumed to be, or may be shown to be ergodic measure-preserving transforma-
tions of a Lebesgue probability space.) We define an integer-valued function a on
the orbit relation determined by T by a(w, «') = n if T"(a>) = « ' , and refer to a as
an ordering. We may indicate the relation between T and a by writing T as Ta.
By an orbit equivalence we mean a pair of transformations T and T' on the same
space with the same orbits, hence giving (and being given by) two orderings. If a
and a' are two such orderings, the orbit equivalence they represent, denoted (a, a ') ,
is called a coboundary if there is a measurable function g such that off a set of
orbits of measure zero, a(oi, OJ') = a'(w, w') + g((o) -g(co'). In this case, the map i;
<p: o»i-»(T"a')

glw)(«) is an isomorphism between Ta and Ta, so that from a dynamical |
point of view, a coboundary is a trivial orbit equivalence. i;

Each orbit equivalence (a, a') may be viewed as providing, for each &>, a permuta- |j
tion of the integers corresponding to the change from a to a'. This permutation
can be described by the function ni->fZ'a (n) = a'(w, T"a{w)), or in more local terms,
by the permutations II2'"a.i>]: fa> ^ ~* ta> ^] which reorder intervals [a, b~\ in Z in the
same way that a' reorders the points in the orbit segment {T"w, Ta

a
+Xw,..., Tb

a<o}.
If m is a non-negative, real-valued function defined on permutations of finite intervals
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in Z, then by setting

m(a,a')= lim m( n )
one extends m to be defined on orbit equivalences. (Note m is constant by ergodicity.)
The function m is called a size if it satisfies six mild conditions, Axioms (i) through
(vi) of [2], which we will not reproduce here. Given a size m, an orbit equivalence
(a, a') is called an m-equivalence if it is a limit of coboundaries in the following
sense: for every e>0 , there is a coboundary {a,al!) such that m{a',ae)<e.
Transformations T and T' are called m-equivalent if there is an m-equivalence
(a, a') such that Ta is isomorphic to T, and Ta. is isomorphic to T'. We should
remark that each of the relations of isomorphism, even Kakutani equivalence, and
(unrestricted) orbit equivalence is the relation of m-equivalence for an appropriate
choice of m.

A transformation T is said to have the weak Pinsker property if for every e > 0,
T is isomorphic to a direct product T, x T2 where T, is isomorphic to an independent
process and h(T2)<e. No transformations are known to fail to have this property.
J.-P. Thouvenot showed in [4] that this property is preserved under the taking of
factors and J-limits. We will establish analogous results for the property of m-
equivalence to a transformation with the weak Pinsker property.

In [2] it is shown that sizes are subject to the following dichotomy. Either, for
all transformations T, there exists a transformation T such that T is m- equivalent
to T, and h(T') = 0, or, for all T, if T is m-equivalent to T, then h(T') = h(T). Our
concerns are only non-trivial in the latter case, so henceforth we assume that all
sizes under discussion have this entropy-preserving character.

We will use several basic results concerning sizes. First, given a size m and e > 0
and an integer K >0, there is a 5 > 0 (depending only on m, s, and K) such that
if (a, a') is an orbit equivalence with m(a, a') < 8, then for a set of to of measure
greater that 1-e, and all ke(-K,K), Tk

a(io)=Tk
a(a>). This follows easily from

Axiom (iv) and Lemma 2.2 of [2].
Next, suppose a is an ordering and P is a finite partition giving rise to a process

(Ta,P). Then for all e>0 , there exists 5>0 , such that if (a, a') is an orbit
equivalence with m(a, a') < S, then \h( Ta, P) — h(Ta, P)\ < e. Furthermore, as can
be seen by an examination of the proof of this fact, S depends only e, m and the
process (Ta, P) and not on a. This fact appears as Lemma 3.13 in [2], and we will
refer to it in this way when we use it.

If (a, a') is an orbit equivalence, then a collapsing of a' onto a is an ordering
d' such that (a, a') is a coboundary of a special form. Namely, for almost every w,
the permutation of Z given by the orbit equivalence on the orbit of w is a concatena-
tion of permutations of finite intervals of bounded length. More precisely, there is
an increasing sequence of integers {a,}"!-^ with {a,+1-a,}°i_0O bounded, such that
for each i and each integer n,

sz-s\n)= °ri ( « ) - °ri «>),
<".["/,<'/ + , -1 ] <u,[ao,a|-l]
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where a 0 s 0 < a , - 1 . Furthermore, for each /',
a,a' a,a'

n = n •
Given (a, a'), e>0, and positive integer K, there is a collapsing d' of a' onto a
such that for a set of w of measure greater than 1 - e and all k e (-K, K), Tk

a{a)) =
Tk

s((o). We refer to such a collapsing as an (e, X)-collapsing of a' onto a. If in
addition we are given e > 0, then there is a 5 (depending only on e and m) so that
if m(a, a')<8, a' may be chosen so that m(a, a')<e. Such a collapsing is called
an (e, e, K)-collapsing of a' onto a.

Now suppose that (a, a') is a coboundary. Then for all finite partitions P, e>0
and positive integers K, there is an (e, K)-collapsing a' of a' onto a such that
\h(Ta,P)-h(Td., P) |<e. If in addition we are given e>0, then there is a 5>0,
depending only on e and m, such that if m(a, a') < S, then a' may be chosen to be
an (e, e, K)-collapsing satisfying the above entropy condition. This fact appears as
Lemma 3.14 in [2], and this is how we will refer to it.

A few additional results will be used repeatedly in our arguments, and we state
than here as lemmas for the convenience of the reader.

LEMMA A. Let (T, P) be an ergodic process with h (T, P) > 0. then for all e > 0, there
exists a partition Psach that | P - P | < 2 e and h(T, P)<(1-e)h(T, P).
Proof: This is Proposition 4.4 of [1]. •

LEMMA B. (Cf. Lemma 0 in [4].) Let B be an abstract partition. Then for all e > 0
there exists £>0 such that if (T*, B* v H*) is a process such that \d(B*) - d(B)\ < £
\h(T*,B*\H.)-H(B)\<£, and h(T*)> H(B) + h(T*, H*) then there exists a parti-
tion B such that |B-B*|<e, d(B) = d(B*) and (T*, B) is an independent process,
independent of (T*,H*).

Proof. A proof may be found in [3]. See Proposition 2 of that work. •

Before proceeding with the proofs of our results, it may be appropriate to comment
on the relation between our work here and that of Thouvenot in [4]. Our results
generalize those of Thouvenot, and of course we make considerable use of his work,
sometimes unavoidably and other times as a matter of convenience. There are,
however, some novel aspects of our presentation, even as it pertains to the case
where an m-equivalence is an isomorphism. In particular, the basic coding argument
here (appearing in Lemma 1), when restricted to the isomorphism case, is different
from that of Thouvenot (cf. Lemma 4 in [4]). His argument yields stronger con-
clusions, while our is correspondingly simpler and sufficient to prove the stability
theorems.

THEOREM 1. Let T be a transformation m-equivalent to T, where T has the weak
Pinsker property. Let 0* be a factor ofT. Then the transformation (T, SP) is m-equivalent
to a transformation with the weak Pinsker property.

Theorem 1 will follow from repeated application of the following lemma and the
results of Thouvenot [4].
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A .A

LEMMA 1. Let Tand Tbe m-equivalent transformations where Thas the weak Pinsk
property. Let (a, d) be an m-equivalence such that Ta is isomorphic to T, and Ta is%
isomorphic to T. Let SP be a factor of Ta, Pa finite partition in ty and e > 0. Then%
there is an ordering alt differing from a by a coboundary measurable with respect to\
0*, and finite partitions B and Hi in 9 such that
(1) m(a, a , )<e ,
(2) h(Tai,Hl)<e,
(3) (Tai, B) is an independent process, independent of (TO|, Hx),
(4) There exists an integer k such that (Tai, (B v H,))*k =>E p

and
(5) h(Tai,BMHl)<h(Tai).

Proof. To avoid trivialities, we may assume that h(Ta, P)>0. Choose 8t<l by
Lemma 3.14 of [2] with respect to e and by Lemma 3.13 of [2] so that m(d, a ) < 5 ,
implies \h(Ts, P)-h(Ta, P)\/h{T&, P)< e/8. Choose 82 by axiom (vi) so that if
a, , a2, a3 are orderings satisfying m(al,a2)<8l/2 and m(a2,a3)<82 then
m{al, a 3 ) < 5 , . Since (a, a) is an m-equivalence, we may assume that m(a, d)<

Since T& has the weak Pinsker property, we can apply Lemma A to (T£, P) and
apply Proposition 1 of [4] to obtain finite partitions B and H such that

(6) (7\{, B) is an independent process, independent of (T&, H), and h(T&, H)<e,
(7) h(Ts, B w H) <(I-e/4)h(T£,P) and
(8) for some k, (Ts,BvH)ik =>e/2P.
Note that (7) and the choice of 5, imply that

(9) h(T£,Bv H)<h(Ta,P)-(e/i)h(Ts,P).
Let p = e(2(2fc+l)). Using Lemma B, choose £>0, £<e/100, so that every

process (T*, B* v H*) satisfying
(10) |dist(B*)-dist(B)|<£
(11) h(T*,B*\H.)-H(B)\<g and
(12) h(T*)>H(B) + h(T*,H*)

admits a partition B such that
(13) \B -B*\<p and (T*, B v H*) has the same distributions as (Ta, B) x (T*, H*).

Let a be an ordering differing from a by a coboundary and such that m(d, a) < 82

and (using Lemma 3.13 of [2]) such that the process (Tj, B v H) satisfies
(14) (T's, B v H)\ =>E/2P,
(15) h(Ta,H)<e,
(16) H(B) + h{Ta,H)<h(Ta,P)
(17a) h(Ts,B /})•
(17b) M ^ . B r t ) :

Since m(d, a) < ^! we may invoke Lemma 3.14 of [2] and let d be a collapsing
of a on a such that conditions (14) through (17b) hold with Ta in place of Ts,
and such that m(a, a) < e.

Note that conditions (14) through (17a) will also be satisfied by every process
(T*, P* v B* v H*) whose distribution of sufficiently great length n is sufficiently
close (say to within 17) of that of (Ts, Pv Bv H). In addition, we can choose n
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and 17 so that such processes satisfy

(18) h(T*,H*)<h(Ts,H) + €/4.
Let <p denote the natural isomorphism between Ta and Td given by the coboundary

relating them. Let P, B, and H denote the inverse images of P, B, and H, respectively,
under ip. Fix 8 > 0, 8 < \, whose size will be determined in the course of the following
argument.

Choose N so large that for all points w outside a set of measure less that 8 we have
(19) »((Ta,P)?(w)) = 2-NWT«'p*g\
(20) »((Ta, Bv H)(<o)) = 2-N(h(T"BvH)±s\ and
(21) letting M denote the maximum of the lengths of the permutations concatenated

to form the collapsing a, the distribution of (Ta, Pv Bv H)"-names along
{Ta,Pv Bv H) f (a>) is within 17 of the actual distribution, even after the initial
and final segments of length 2M are altered arbitrarily. It will be convenient
to assume that 77 < £

Choose N additionally so that N8> 1 and 2~Ng<\ and so that N is large enough
to satisfy further conditions that will emerge in the following argument.

Let u = h(Ta,P)-h{Ta,B\t H), and let L be a partition independent of
( T a , P v f i v / / ) N ~ 1 consisting of between 2 M u + 3 6 ' ) and 2Niu+4g) atoms of equal
measure. We want to assign to most atoms pe(Ta, P)"1 a point <o(p)ep such
that (o(p) is in the set C of points satisfying condition (21), and the assignment of
names

is one-to-one.
Let 5) denote the collection of sets of the form (bn h n T)nC where fen tin T

is an element of (Ta, Bv H v L)^" 1 contained in an element bn h of (Ta, Bv H)"'1

satisfying condition (20). We have /tt(U®) > 1 - & If d e © and p is an element of
{Ta, P)o~l satisfying condition (19), then

= 2~N(g)<i
It follows that there is a collection % of atoms p of (Ta, P)^11 satisfying condition
(19), each of which has a fraction at least 1-(5)1 / 2 of its measure contained in
U ®, and / t (U # ) > 1 -8-(8)l/2. We may therefore apply the marriage lemma to
obtain a one-to-one map A from % to 2) such that for all p e g , /x(pnA(p))>0.
We then define <o(p) to be an arbitrarily chosen point in pn A(p).

We now associate with each u>(p) (and hence to each p e ? ) a permutation FL(P)
of [0, N - 1 ] , as follows. The interval [0, N - 1 ] is partitioned into disjoint subinter-
vals Ij = [ij, ij+1 - 1 ] , j = 1 ,2, . . . , Ja{p), where the sets {T'acj(p)}iel/ form complete
blocks of the orbit change (a, a), with the possible exception of the first and
last of these sets, which may form only a fraction of such a block. For each
j e {1 ,2 , . . . , 7^(p)}, let FL denote IlLl'pu.j,. +,-u- L e t J° =Jo(w(p)) be the least integer
such that z}0 > M, and set

n = n ° n ° n - • • • « n °n,
<U(P) 0 JQ Jo+1 - 'o , (n | - ' 0
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where flo a n d Flo denote the identity permutations on the initial and final segments,
respectively.

To construct the desired coboundary {a,ax), let N be the integer given by Axiom
(v) and used in the construction of a; namely, a lower bound on the lengths of the
permutations concatenated to form (a, a) in order to insure that m(a, a) < e. Let
T = Ui T'aA be a Rochlin tower in the factor (Ta, 2P) of height JV, base A, and
measure 1-5, and with

dist (Ta, P)?-l\A = dist (Ta, P)f-\

Choose T also so that for all w e T^'^A), the return-time function rT satisfies
rT(co)> TV. (Note that this entails an additional condition on JV.) Now contract a,
by permuting each column in T with a name p e % by FL(p) a n d leaving all other
orbit segments untouched. More precisely, if 10'e (Anp) where pe %, we set, for
all ie[0, iV-l] , /^•"• )( i) = n<u(p)(O- If we A, and co£\J% and ie [0, N-l], we
set /i">ai)(0 = ', and similarly, if COET"~1(A) and i e [ l , rT(w)-l] , we set

/i"'ai )(0 = ».
It is now clear that m(a, a , )<e . Indeed, for almost every co, the forward and

backward orbits of co infinitely often contain a block of length M, and between
these occurrences we see concatenated permutations of size less than Sx on intervals
of length between JV and M, together with possibly longer intervals on which the
identity permutation acts. But these longer blocks, exceeding N in length, can be
regarded as sequences of blocks of lengths between JV and 2JV(<M) on all of
which the identity acts, so that, as in the construction of a, m(a, a,) < e.

We define partitions B, H, L and P, measurable with respect to the factor
(Ta,0*) as follows. For w'eAnp, where pe%, and for ie[0, JV-1], we set
B(T'a((o')) = B(T'a((o(p))), and we put the rest of the space in a single atom of 6.
The partitions H and P are defined similarly. The partition L is defined by setting
L(w') = L{co(p)), for co e Anp, pe%, and all the rest of the space in a single, addi-
tional atom of L. Let <px be the natural isomorphism between Ta and Tai, and let
fij = ipi(B), H1 = <Pi(H), L, = <p,(£), and P, = (Pi(P). Let P2 = <P\{P). Now for every
co'eAnp, where p e ^ ,

and

agrees with

except perhaps in the initial or final segments of lengths 2M. Since these names
satisfy condition 21, and the processes (Ta,Pv B v H) and (Td, Pv B v H) have
the same distributions, we get that if E is sufficiently small,

|dist (Tai, Pv Bxv H,)S"' - dist (Ta,Pv B v H)"0~
x\ < 77

so that the conditions corresponding to (14), (15), (16), (17a) and (18) hold. It
remains to verify (17b).
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If 8 was chosen sufficiently small, then P2 is so well approximated by sets in
(TOl,B1vtf,vLI)?A,that

h(TailB1\rH1\,L1)>h(Tai,P2)-€/4=h(Ta,P)-t/4.

However, if N was chosen sufficiently large, then H(L{)< u + 48, SO that

= h(Ts,BvH)-£/4-48.

On the other hand we have by condition (18) that h( Ta>, H,) < h( T«, H) + £/4, so
that

h(TOi,BivHl)-h(Tai,H1)>h(Tli,BvH)-h(Tii,H)-t/2-48-,

which, if 8 is sufficiently small, establishes (17b). Note that we also have that,
(providing 8 is sufficiently small), |dist (B,) -dist (B)\ < £ It follows that there is a
partition B such that (Tai, B) is an independent process, independent of (Tat, Hx),
with dist (B) = dist (B) and | B - B , | < p . We therefore have (Tai, Bv / / , ) - * =EP.
Since condition (16) gives

we are done. D

Proof of Theorem 1. Let (a, a) be an m-equivalence such that Ta is isomorphic to
Tand Ts is isomorphic to T. Let {P,}°li be an increasing sequence of finite partitions
such that V^=i Pi = &• We will construct an m-equivalence (a, a'), measurable with
respect to £?, such that for each i, there exist finite partitions B, and H, such that
(22) (B(vHi)7-..=»eiP(,
(23) h(Ta.,Hi)<ei,
(24) the process (7a , B,) is independent and independent of (Ta., / / , ) ,
where lim,^^ e, = 0. Since the P, increase and the e* -» 0, it follows from the work
of Thouvenot [4] that each (Ta, P,) has the weak Pinsker property, and therefore,
since \Z°°=i Pt = ̂ , so does the transformation (Ta, &) itself.

Fix a sequence {e .^ i with l im ,^ e, = 0. Apply Lemma 1 to get an ordering a,,
differing from a by a coboundary measurable with respect to 9, such that there
exist finite partitions B, and Hx and an integer nt with

the process ( r a | ,B , ) independent and independent of (Tai, Ht) and
h{T^,Bxv H,)<h(Tai). We now apply Lemma 1 iteratively as follows. After the
( i - l ) s t application we have a sequence of orderings {o/ljll, each (oy-^a,) a
coboundary, and for all j e {1 ,2 , . . . , i" -1} , partitions Bj and Hj and integers n, and
constants § and 8j such that

(25) ( r a / , B , . v H y ) ^ 3 e / 2 p . ,
(26) h(Tai,Hj)<ej,
(27) (Ta_, Bj) is an independent process, independent of (Ta., Hj) and
(28) h(Tai,BjvHj)<h(Tai).
Let pj = Sj/2{2rij +1). Using Lemma (B), the constant £, is chosen (independent of
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i) so that every process {T, B'v H') such that
(29) Jdist (fi')-dist (B,-)|<&>
(30) \h(T',B'\H)-H(Bj)\<tj and
(31) H(Bj) + h(T',H')<h(T')
admits a partition B, such that |B, - B}\ < pj and (V, B, v H') has the same distribu-
tions as (TOj, Bj v Hj). The constant 5, is chosen (independent of i) so that 5, < l/j
and if m(a', atj) < 8j, then

(33) h(Ta.,
JHj)<e^

(34) \h(Ta.,Bj\Hj)-H(Bj)\<$ and
(35) H(Bj) + h(Ta,Hj)<h(Ta.).
In addition, we have, for each j<i, m(aj, a,_1)<(l-2~(l~>~1))5/. Finally, for each
j e {2, 3 , . . . , i — 1}, we have an integer Kj (whose significance will become clear in
what follows).

We now choose an integer X,>/C,_, and, for all J < J - 1 and almost every w,
integers a,,,(«) < —i < i < bji(w) so that

^(Oj, <*(_,)

ml

and for all <o outside a set AiX of measure less than 2 ',
( 3 6 ) / r - ' C - U ] < = [ - * » * . ] and
(37) fZ'"'->\.aj,,((o), bj,,(a>)]^ [-K,, K,].
Choose 7]j so that if m{a^i, ai)<rji then for all w outside a set Ai2 of measure
less than 2~\ fZ'-'^in) = n, for all n e [-Kit Kt], and so that for all

Since Tai_x is m-equivalent to Ts, we may apply Lemma 1 to get a,, differing from
a,_, by a coboundary measurable with respect to ?f, so that m(ai-l, a,)<rj,, and
so that there exist finite partitions 5, and H, and «, such that

(Tai, Bt v H,)\ =E,/2 Pls h(Tai, Hi)<ei,{Tat, Bt)

is independent and independent of ( r a , / / , ) , and /J(TO., B,M Hi)<h(Tai).
We now verify that the orderings at converge to the desired ordering a'. First we

check that the a, converge to an ordering with the same orbits as a. Setting
A{ = A u u,4,2, we have (i({J™=l (DT=k ^H) = 1 so for almost every to and for all
n, there exists a k > \n\ such that w e D^=k A'. Consequently, for all m > fe,

a*_,(w, T;(«)) = am(«, T;(ai)),

so that limm^oo am(ii, T"a{a>)) exists. On the other hand, for almost every w and for
all n, there exists a k such that ATfc>|n| and we(~]^kA,<:. Therefore, n =
limm_,cc am{o), Tak_l(a>)), so a' gives an ordering with complete orbits. It is clear
from the construction that the orbit equivalence (a, a') is measurable with respect
to 9.

Next we check that (a, a') is an m-equivalence. Since each (a, a,) is a coboundary
and the 5, -* 0, it is sufficient to check that for all j , m(<Xj, a')< 8j. But for all j , and
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almost every w and all n > 0, there exists a k > n such that u> e O <!& A]. Therefore,

ft [**.;(«)• M «
Since min {-a^Cw), bkJ(a>)}> k> n, we get m(a,, a ' ) < ^ .

Now by the choice of 5,, conditions (32), (33), (34) and (35) are satisfied.
Therefore, by the choice of £, we get, for each j , a partition B, satisfying |J3, - B,| < Pj
and such that (Ta-, B, v Hj) has the same distributions as (Taj, Bj v Hj). By the choice
of pj, this gives (Ta', B, v Hj)jnj =>£j P, and we are done. •

We now show that the preceding arguments can be adapted to yield the m -stability
of m-equivalence to the weak Pinsker property.

Definition. Given processes (5, Q) and (S, <?), we say m((S, Q), (S, Q))<e if there
exists an m-equivalence (a, a) with partitions P and P such that (Ta, P) = (S, Q),
(T£, P) = (5, Q), \P — P\ < e, and m (a, a) < e. (The equality of processes here means
equality of their distributions).

We refer to the data (a, a, P, P) as an m-joining (or an e —w-joining) of the
processes (S, Q) and (S, Q). Note that this notion of an m-joining is less restrictive
than that used in the presentation of the m-equivalence theorem in [2].

THEOREM 2. Let (S, Q) be a process such that for all e>0, there exists a process
(S, Q) such that (S, (?) has the weak Pinsker property and m((S, Q), (S, Q)) < e. Then
(S, Q) is m-equivalent to a transformation with the weak Pinsker property.

Remark. Alternatively, we might require only that each (5, Q) is m-equivalent to a
transformation with the weak Pinsker property, but it is easy to see that such
hypotheses imply the hypotheses as stated.

Proof. We first note that for every finite partition R in (S, Q) and every e > 0 there
is a process (S, R) such that (S, R) has the weak Pinsker property and m((S, R),
(S, /?))<£. This follows easily from the hypotheses and Axiom (iv).

Now fix a partition R such that h(S,R)>0 and fix e >0. Choose 5 ^ 1 by
Lemma 3.13 of [2] so that if m(a,a)<8l, (Ta,P) = (S,R) and | P - P | < 5 , then
\h(Ts, P)- h(Ta, P)\/h(Tz, P) < e/S. Choose 5, additionally by Lemma 3.14 of
[2] with respect to e. Here (and subsequently) we use the fact that this choice of
St with respect to Lemma 3.13 depends only on the process (5, R) and on m and
on the degree of approximation desired, and not on the particular ordering a. Now
let (a, a, P, P) be a 8,/2~m-joining of (5, R) and a weak-Pinsker process (S, R).
We then have

h(T&, P)<h(Ta, P) + (e/i)h(Ts, P)
-A .A

so using Lemma A and the results of [4] we can choose partitions B and H in
(P)Ta such that h{T&, H)<e, (T&, B) is independent and independent of (Ts, H),
for some k, (Ta,Bv H)-k =>f/2 P, and h{T&, B v H)< h(Ta, P)-(e/i)h(T6i, P).

We can now argue exactly as in the proof of Lemma 1 that there is an ordering
a,, differing from a by a coboundary measurable with respect to (Ta, P), with
m(a,al)<e and partitions B, and // , satisfying conditions (2) through (5) of the
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conclusions of Lemma 1. We may of course view the coboundary change (a, a,) as
a coboundary change of S, measurable with respect to (S,Q).

Since e and R were arbitrarily chosen, and every transformation differing from
5 by a coboundary is isomorphic to S, we can fix an increasing sequence of partitions
{Q.li^i such that Vjli Qi = (Q)s ar>d a sequence {e^fLi with l im,^ e, = 0, and argue
exactly as in the proof of Theorem 1 to construct a sequence of coboundary changes
of S, all measurable with respect to (S, Q), and converging to an m-equivalence
between {S,Q) and a transformation with the weak-Pinsker property. D

With a little more care in the previous arguments, it is possible to obtain a more
general result which contains the previous two. We could have begun with this result
and deduced the first two theorems as corollaries, but we felt the arguments would
have been less clear with such a presentation.

THEOREM 3. Let (5, Q) be a process such that for all e>0 , there exists a process
(S, Q) such that m((S, Q), (S, Q)) < e, and such that there is a process (So, Bo v Ho v
Po) where h(S0, H0)<e, (So, Bo) is independent and independent of (So, Ho),
(So, Po) = (S, Q), and P o c (Bo v Ho)so- Then (S, Q) is m-equivalent to a transforma-
tion with the weak-Pinsker property.

Proof. As in the proof of Theorem 2, we note that for all partitions R in (S, Q) and
.A -A

for all e > 0 , there is a process (S, R) bearing the same relation to (S, R) as the
process (S, Q) of the hypotheses does to (S, Q).

Also as we have seen, it is sufficient to show that for every R in (S, Q) and every
e > 0, there is a transformation 5], differing from S by a coboundary of m-size less
than e and admitting partitions B, and Hi such that h(S,, Hi)<s, (Si,Bt) is
independent and independent of (S, , / / , ) , (S,, J5, v H,) =>c R, and /i(S,, B, v H,) <
ft(S,). Fix such an R and e, (and assume that 0<h(S, R)). Using Lemma 3.13 of
[2], choose 5] so that if

m(a,a)<S1,(Ta,P) = (S,R) and |P-P|<«,
then

|fc(7\i, P)-h(Ta, P)\/h(Ts, P)<e/8

and by Lemma 3.14 of [2] with respect to e. Let (S, R) be a process such that
m((S, R), (S, R))<St/2, and the m-distance is realized by a 5,/2-m-joining
(a, a, P, P) such that (S, R) is a factor of a process (So, Bov Hov Ro) as in the
hypotheses with

h(S0, H0)<min {(s/l6)h(S0, Ro), e}.

Let J?, be a partition in (/?o)so such that | f l , -R0 |<e/2 and /j(S0,i?i)<
(l~e/4)h(S0,R0). Then A(S0, /?, v Ho)< h(Ta, P)-(e/l6)h(S0, Ro). Since Rt is
Ho-relatively finitely determined, there is a partition B, in (i?, v HQ)^ such that
(So, B,) is independent and independent of (So, Ho) and (B, v //o)s;) = (#i v HQ)^.
We can now apply the coding technique used in the proof of Lemma 1 to the process
(So, B, v Ho v 7?0) (in the case where an m-equivalence is an isomorphism) to obtain
partitions B\ and H'o in (/?o)so such that h(S0, H'o)< e, (So, B',) is independent and
independent of (S0,H'0), (B[w H'0)Sit^i;/2R0, and h(S0, B\ v H'o)<
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h(S0,R0)-(e/16)h(S0,R0). Now let B and H be partitions in (P)T- such that
(Ts, B\i H v P) = {S0, BJ v H'ov Ro). We can therefore apply the arguments of j
Lemma 1 again, this time to the m-joining (a, P, a, P) and the processes (Ta, P) I
and ( r a - ,BvWvP) to get an ordering a,, differing from a by a coboundary t
measurable with respect to (Ta, P), and partitions B and H in (P)Ta such that i
m(a,al)<e, h(Tai,H)<e, (Tai,B) is independent and independent of (Ta],H), j
{Bs/H)Tax 3 fP , and h(Tai, Bv H)<h(Tai). Identifying (Ta, P) with (S, R), we
obtain the desired transformation S^ and partitions Bx and Hx and the proof is
complete. •
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