Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T00:27:03.441Z Has data issue: false hasContentIssue false

Spectral sequences in Conley’s theory

Published online by Cambridge University Press:  13 October 2009

O. CORNEA
Affiliation:
Département de mathématiques et de statistique, Université de Montréal, Montréal, Québec, Canada (email: [email protected])
K. A. DE REZENDE
Affiliation:
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas-UNICAMP, 13083-970, Campinas, SP, Brazil (email: [email protected], [email protected])
M. R. DA SILVEIRA
Affiliation:
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas-UNICAMP, 13083-970, Campinas, SP, Brazil (email: [email protected], [email protected])

Abstract

In this paper, we analyse the dynamics encoded in the spectral sequence (Er,dr) associated with certain Conley theory connection maps in the presence of an ‘action’ type filtration. More specifically, we present an algorithm for finding a chain complex C and its differential; the method uses a connection matrix Δ to provide a system that spans Er in terms of the original basis of C and to identify all of the differentials drp:ErpErpr. In exploring the dynamical implications of a non-zero differential, we prove the existence of a path that joins the singularities generating E0p and E0pr in the case where a direct connection by a flow line does not exist. This path is made up of juxtaposed orbits of the flow and of the reverse flow, and proves to be important in some applications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barraud, J. F. and Cornea, O.. Lagrangian intersections and the Serre spectral sequence. Ann. of Math. (2) 166 (2007), 657722.CrossRefGoogle Scholar
[2]Bredon, G. E.. Topology and Geometry (Graduate Texts in Mathematics, 139). Springer, New York, 1993.CrossRefGoogle Scholar
[3]Conley, C.. Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics, 38). American Mathematical Society, Providence, RI, 1978.CrossRefGoogle Scholar
[4]Cornea, O.. Homotopical dynamics: suspension and duality. Ergod. Th. & Dynam. Sys. 20 (2000), 379391.CrossRefGoogle Scholar
[5]Cornea, O.. Homotopical dynamics II: Hopf invariants, smoothing and the Morse complex. Ann. Sci. École. Norm. Sup. (4) 35 (2002), 549573.CrossRefGoogle Scholar
[6]Cornea, O.. Homotopical dynamics IV: Hopf invariants and Hamiltonian flows. Comm. Pure Appl. Math. 55 (2002), 10331088.CrossRefGoogle Scholar
[7]Cruz, R. N., de Rezende, K. A. and Mello, M.. Realizability of the Morse polytope. Qual. Theory Dyn. Syst. 6 (2007), 5986.CrossRefGoogle Scholar
[8]Davis, J. F. and Kirk, P.. Lecture Notes in Algebraic Topology (Graduate Studies in Mathematics, 35). American Mathematical Society, Providence, RI, 2001.CrossRefGoogle Scholar
[9]Franks, J.. Morse–Smale flows and homotopy theory. Topology 18 (1979), 199215.CrossRefGoogle Scholar
[10]Franks, J.. Homology and Dynamical Systems (CBMS Regional Conference Series in Mathematics, 49). American Mathematical Society, Providence, RI, 1982.CrossRefGoogle Scholar
[11]Franzosa, R.. Index filtrations and the homology index braid for partially ordered Morse decompositions. Trans. Amer. Math. Soc. 298 (1986), 193213.CrossRefGoogle Scholar
[12]Franzosa, R.. The continuation theory for Morse decompositions and connection matrices. Trans. Amer. Math. Soc. 310 (1988), 781803.CrossRefGoogle Scholar
[13]Franzosa, R.. The connection matrix theory for Morse decompositions. Trans. Amer. Math. Soc. 311 (1989), 561592.CrossRefGoogle Scholar
[14]Franzosa, R. and Mischaikow, K.. Algebraic transition matrices in the Conley index theory. Trans. Amer. Math. Soc. 350 (1998), 889912.CrossRefGoogle Scholar
[15]Kurland, H. L.. Homotopy invariants of repeller–attractor pairs I: The Puppe sequence of an R–A pair. J. Differential Equations 46 (1982), 131.CrossRefGoogle Scholar
[16]Leclercq, R.. Spectral invariants in Lagrangian Floer theory. Preprint, 2006. Available at arXiv:math/0612325.Google Scholar
[17]McCord, C.. The connection map for attractor–repeller pairs. Trans. Amer. Math. Soc. 307 (1988), 195203.CrossRefGoogle Scholar
[18]McCord, C. and Reineck, J. F.. Connection matrices and transition matrices. Conley Index Theory (Banach Center Publications, 47). Polish Academy of Sciences, Warsaw, 1999, pp. 4155.Google Scholar
[19]Milnor, J. W.. Topology from the Differentiable Viewpoint. University Press of Virginia, Charlottesville, VA, 1965.Google Scholar
[20]Milnor, J. W.. Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton, NJ, 1965.CrossRefGoogle Scholar
[21]Moeckel, R.. Morse decompositions and connection matrices. Ergod. Th. & Dynam. Sys. 8 (1988), 227249.Google Scholar
[22]Reineck, J. F.. The connection matrix in Morse–Smale flows. Trans. Amer. Math. Soc. 322 (1990), 523545.CrossRefGoogle Scholar
[23]Reineck, J. F.. The connection matrix in Morse–Smale flows II. Trans. Amer. Math. Soc. 347 (1995), 20972110.Google Scholar
[24]Reineck, J. F.. Continuation to the minimal number of critical points in gradient flows. Duke Math. J. 68 (1992), 185194.CrossRefGoogle Scholar
[25]Salamon, D.. Connected simple systems and the Conley index of invariant sets. Trans. Amer. Math. Soc. 291 (1985), 141.CrossRefGoogle Scholar
[26]Salamon, D.. Morse theory, Conley index and Floer homology. Bull. London Math. Soc. 22 (1990), 113140.CrossRefGoogle Scholar
[27]Smale, S.. The generalized Poincaré conjecture in higher dimensions. Bull. Amer. Math. Soc. 66 (1960), 373375.CrossRefGoogle Scholar
[28]Smale, S.. On the structure of manifolds. Amer. J. Math. 84 (1962), 387399.CrossRefGoogle Scholar
[29]Spanier, E.. Algebraic Topology. McGraw-Hill, New York, 1966.Google Scholar