Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T01:04:54.879Z Has data issue: false hasContentIssue false

Singular perturbations of the unicritical polynomials with two parameters

Published online by Cambridge University Press:  12 January 2016

YINGQING XIAO
Affiliation:
College of Mathematics and Economics, Hunan University, Changsha 410082, PR China email [email protected]
FEI YANG
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we study the dynamics of the family of rational maps with two parameters

$$\begin{eqnarray}f_{a,b}(z)=z^{n}+\frac{a^{2}}{z^{n}-b}+\frac{a^{2}}{b},\end{eqnarray}$$
where $n\geq 2$ and $a,b\in \mathbb{C}^{\ast }$. We give a characterization of the topological properties of the Julia set and the Fatou set of $f_{a,b}$ according to the dynamical behavior of the orbits of the free critical points.

Type
Research Article
Copyright
© Cambridge University Press, 2016 

References

Beardon, A. F.. Iteration of Rational Functions (Graduate Texts in Mathematics, 132) . Springer, New York, 1991.CrossRefGoogle Scholar
Blanchard, P., Devaney, R. L., Garijo, A., Marotta, S. M. and Russell, E. D.. The rabbit and other Julia sets wrapped in Sierpiński carpets. Complex Dynamics: Families and Friends. Ed. Schleicher, D.. A. K. Peters, Wellesley, MA, 2009, pp. 277295.Google Scholar
Blanchard, P., Devaney, R. L., Look, D. M., Seal, P. and Shapiro, Y.. Sierpinski-curve Julia sets and singular perturbations of complex polynomials. Ergod. Th. & Dynam. Sys. 25 (2005), 10471055.Google Scholar
Carleson, L. and Gamelin, T. W.. Complex Dynamics. Springer, New York, 1993.CrossRefGoogle Scholar
Devaney, R. L.. Singular perturbations of complex polynomials. Bull. Amer. Math. Soc. (N.S.) 50(3) (2013), 391429.Google Scholar
Devaney, R. L., Look, D. M. and Uminsky, D.. The escape trichotomy for singularly perturbed rational maps. Indiana Univ. Math. J. 54 (2005), 16211634.Google Scholar
Devaney, R. L. and Russell, E. D.. Connectivity of Julia sets for singularly perturbed rational maps. Chaos, CNN, Memristors and Beyond. World Scientific, Singapore, 2013, pp. 239245.Google Scholar
Douady, A. and Hubbard, J. H.. On the dynamics of polynomial-like mappings. Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 287314.CrossRefGoogle Scholar
Fu, J. and Yang, F.. On the dynamics of a family of singularly perturbed rational maps. J. Math. Anal. Appl. 424 (2015), 104121.Google Scholar
Garijo, A. and Godillon, S.. On McMullen-like mappings. J. Fractal Geom. 2 (2015), 249279. http://arxiv.org/abs/1403.2420.Google Scholar
Jang, H. G. and Steinmetz, N.. On the dynamics of the rational family f t (z) = -t (z 2 - 22)/(4z 2 - 4). Comput. Methods Funct. Theory 12 (2012), 117.Google Scholar
Kozma, R. T. and Devaney, R. L.. Julia sets converging to filled quadratic Julia sets. Ergod. Th. & Dynam. Sys. 34 (2014), 171184.Google Scholar
Milnor, J.. Dynamics in One Complex Variable (Annals of Mathematics Studies, 160) . 3rd edn. Princeton University Press, Princeton, NJ, 2006.Google Scholar
Morosawa, S.. Julia sets of subhyperbolic rational functions. Complex Variables Theory Appl. 41 (2000), 151162.Google Scholar
Peherstorfer, F. and Stroh, C.. Connectedness of Julia sets of rational functions. Comput. Methods Funct. Theory 1 (2001), 6179.CrossRefGoogle Scholar
Pilgrim, K.. Rational maps whose Fatou components are Jordan domains. Ergod. Th. & Dynam. Sys. 16 (1996), 13231343.Google Scholar
Pilgrim, K. and Tan, L.. Rational maps with disconnected Julia sets. Asterisque 261 (2000), 349383.Google Scholar
Qiu, W., Wang, X. and Yin, Y.. Dynamics of McMullen maps. Adv. Math. 229 (2012), 25252577.Google Scholar
Qiu, W., Yang, F. and Yin, Y.. Rational maps whose Julia sets are Cantor circles. Ergod. Th. & Dynam. Sys. 35 (2015), 499529.Google Scholar
Qiu, W. and Yin, Y.. Proof of the Branner–Hubbard conjecture on Cantor Julia sets. Sci. China Ser. A 52 (2009), 4565.Google Scholar
Steinmetz, N.. On the dynamics of the McMullen family R (z) = z m +𝜆 /z . Conform. Geom. Dyn. 10 (2006), 159183.Google Scholar
Steinmetz, N. Sierpiński and non-Sierpiński curve Julia sets in families of rational maps. J. Lond. Math. Soc. (2) 78 (2008), 290304.Google Scholar
Tan, L. and Yin, Y.. Local connectivity of the Julia set for geometrically finite rational maps. Sci. China Ser. A 39 (1996), 3947.Google Scholar
Xiao, Y. and Qiu, W.. The rational maps F 𝜆(z) = z m +𝜆 /z d have no Herman rings. Proc. Indian Acad. Math. Sci. 120 (2010), 403407.Google Scholar
Xiao, Y., Qiu, W. and Yin, Y.. On the dynamics of generalized McMullen maps. Ergod. Th. & Dynam. Sys. 34 (2014), 20932112.Google Scholar
Yang, F.. Rational maps without Herman rings. Preprint, 2013, http://arxiv.org/abs/1310.2802.Google Scholar