Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:05:05.840Z Has data issue: false hasContentIssue false

Regularity of the Anosov splitting and of horospheric foliations

Published online by Cambridge University Press:  19 September 2008

Boris Hasselblatt
Affiliation:
Department of Mathematics, Tufts University, Medford, MA 02155–5597, USA

Abstract

‘Bunching’ conditions on an Anosov system guarantee the regularity of the Anosov splitting up to C2−ε. Open dense sets of symplectic Anosov systems and geodesic flows do not have Anosov splitting exceeding the asserted regularity. This is the first local construction of low-regularity examples.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A]Anosov, Dmitri V.. Geodesic flows on Riemann manifolds with negative curvature. Proc. Steklov Inst. 90 (1967);Google Scholar
Tangent fields of transversal foliations in ‘U-systems’. Math. Notes Acad. of Sciences, USSR. 2:5 (1967), 818823.Google Scholar
[Ar]Arnol'd, Vladimir Igorevich. Mathematical Methods of Classical Mechanics. Springer: Berlin, 1980.Google Scholar
[AA]Arnol'd, Vladimir Igorevich and Avez, André. Ergodic Problems of Classical Mechanics. Addison-Wesley: New York, 1989.Google Scholar
[Av]Avez, André. Anosov diffeomorphisms. Topological Dynamics, An International Symposium, eds, Gottschalk, W. and Auslander, J.. W. A.Benjamin: New York, 1968. pp 1751.Google Scholar
[AM]Abraham, Ralph and Marsden, Jerrold. Foundations of Mechanics. Benjamin/Cummings: New York, 1978.Google Scholar
[BFL]Benoist, Yves, Foulon, Patrick and Labourie, François. Flots d'Anosov a distributions stable et instable différentiables. J. Amer. Math. Soc. 5:1 (1992), 3374.Google Scholar
[BL]Benoist, Yves and Labourie, François. Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables. Invent. Math. 111:2 (1993), 285308.CrossRefGoogle Scholar
[FJ]Farrell, F.Thomas and Jones, L. E.. Negatively curved manifolds with exotic smooth structures. J. Amer. Math. Soc. 2:4 (1989), 899908.CrossRefGoogle Scholar
[Fn]Fenichel, Neil. Persistence and smoothness of invariant manifolds for flows. Indiana University Math. J. 21 (1971), 193226;CrossRefGoogle Scholar
Asymptotic stability with rate conditions. Indiana University Math. J. 23 (1974), 11091137;CrossRefGoogle Scholar
Asymptotic stability with rate conditions, II. Indiana University Math. J. 26:1 (1977), 8193.CrossRefGoogle Scholar
[F]Feres, Renato. Geodesic flows on manifolds of negative curvature with smooth horospherical foliations. Ergod. Th. & Dynam. Sys. 11:4 (1991), 653686.CrossRefGoogle Scholar
[FK]Feres, Renato and Katok, Anatole. Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows. Ergod. Th. & Dynam. Sys. 9:3 (1989), 427432;CrossRefGoogle Scholar
Anosov flows with smooth foliations and rigidity of geodesic flows in three-dimensional manifolds of negative curvature. Ergod. Th. & Dynam. Sys. 10:4 (1990), 657670.CrossRefGoogle Scholar
[F1K]Flaminio, Livio and Katok, Anatole. Rigidity of symplectic Anosov diffeomorphisms on low-dimensional tori. Ergod. Th. & Dynam. Sys. 11:3 (1991), 427441.CrossRefGoogle Scholar
[FL]Foulon, Patrick and Labourie, François. Sur les variétés compactes asymptotiquement harmoniques. Invent. Math. 109:1 (1992), 97111.CrossRefGoogle Scholar
[G]Ghys, Etienne. Flots d'Anosov dont les feuilletages stables sont differentiables. Ann. Sci. de l'École Normale Superieure. 20:2 (1987), 251270.CrossRefGoogle Scholar
[Ha1]Hamenstädt, Ursula. Compact manifolds with ¼-pinched negative curvature. Global Differential Geometry and Global Analysis, Proc. Conf. (Berlin, 15–20 June, 1990). Springer Lecture Notes in Mathematics: 1481 eds, Ferus, Dirk, Pinkall, Ulrich, Simon, Udo and Wegner, B.. Springer: Berlin, 1991. pp 7378.Google Scholar
[Ha2]Hamenstädt, Ursula. Anosov flows which are uniformly expanding at periodic points. Ergod. Th. & Dynam. Sys. 14 (1994), 299304.CrossRefGoogle Scholar
[H1]Hasselblatt, Boris. Bootstrapping regularity of the Anosov splitting. Proc. Amer. Math. Soc. 115:3 (1992), 817819.CrossRefGoogle Scholar
[H2]Hasselblatt, Boris. Anosov obstructions in higher dimension. Int. J. Math. 4:3 (1993), 395407.CrossRefGoogle Scholar
[H3]Hasselblatt, Boris. Regularity of the Anosov Splitting and a New Description of the Margulis Measure. University Microfilms International: Ann Arbor, MI, 1989.Google Scholar
[H4]Hasselblatt, Boris. Horospheric foliations and relative pinching. J. Diff. Geom. 39:1 (1994), 5763.Google Scholar
[H5]Hasselblatt, Boris. Periodic bunching and invariant foliations. Math. Research Lett.Google Scholar
[H6]Hasselblatt, Boris. Regularity of the Anosov splitting II. Preprint.Google Scholar
[H-IH]Heintze, Ernst and Hof, Hans Christoph Im. Geometry of horospheres. J. Diff. Geom. 12 (1977), 481491.Google Scholar
[HP1]Hirsch, Morris and Pugh, Charles. Stable manifolds and hyperbolic sets. Global Analysis, Proc. Symp. Pure Math. 14 (1970), 133163.CrossRefGoogle Scholar
[HP2]Hirsch, Morris and Pugh, Charles. Smoothness of horocycle foliations. J. Diff. Geom. 10 (1975), 225238.Google Scholar
[HPS]Hirsch, Morris, Pugh, Charles and Shub, Michael. Invariant manifolds. Springer Lecture Notes 583. Springer: Berlin, 1977.Google Scholar
[Ho]Hopf, Eberhard. Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. d. Sächs. Akad. d. Wiss. Leipzig. 91 (1939), 261304;Google Scholar
Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II. Math. Ann. 117 (1940), 590608.CrossRefGoogle Scholar
[Hu]Hurder, Stephen. Rigidity for Anosov actions of higher rank lattices. Ann. Math. 135 (1992), 361410.CrossRefGoogle Scholar
[HK]Hurder, Stephen and Katok, Anatole. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows. Publications IHES 72 (1990), 561.Google Scholar
[J]Journé, Jean-Lin. A regularity lemma for functions of several variables. Revista Mat. Iberoamericana 4:2 (1988), 187193.CrossRefGoogle Scholar
[K]Klingenberg, Wilhelm. Riemannian Geometry. Walter de Gruyter: 1982.Google Scholar
[KT]Klingenberg, Wilhelm and Takens, Floris. Generic properties of geodesic flows. Math. Ann. 197 (1972), 323334.CrossRefGoogle Scholar
[Kn]Kanai, Masahiko. Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations. Ergod. Th. & Dynam. Sys. 8:2 (1988), 215240.CrossRefGoogle Scholar
[M]Magnus, Wilhelm. Residually finite groups. Bull. Amer. Math. Soc. 75 (1969), 305316.CrossRefGoogle Scholar
[P]Pugh, Charles. Invariant manifolds. Actes. Vol. 2. Congrès International de Mathématiques: 1970. pp 925928.Google Scholar
[SS]Schmeling, Jörg and Siegmund-Schultze, Rainer. Hölder continuity of the holonomy maps for hyperbolic basic sets I. Ergodic Theory and Related Topics III: Proc. Int. Conf. (Güstrow, Germany, October 22–27, 1990) Springer Lecture Notes in Mathematics 1514. eds, Krengel, Ulrich, Richter, K. and Warstat, V.. Springer: Berlin, 1992. pp 174191.Google Scholar
[S]Schmeling, Jörg. Hölder continuity of the holonomy maps for hyperbolic basic sets II. Mathematische Nachrichten. To appear.Google Scholar
[Sh]Shub, Michael. Global Stability of Dynamical Systems. Springer: Berlin, 1986.Google Scholar