Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T00:30:20.010Z Has data issue: false hasContentIssue false

On Denjoy's theorem for endomorphisms

Published online by Cambridge University Press:  19 September 2008

I. Malta
Affiliation:
Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, 22453—Rio de Janeiro—Brasil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give an extension to C2 endomorphisms of the circle of the well known Denjoy's theorem on C2 diffeomorphisms. We also give a simple proof of an extension of Block and Franke's theorem on the existence of periodic points for maps of the circle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

[1]Auslander, J. & Katznelson, Y.. Continuous maps of the circle without periodic points. Israel J. Math. 32, No. 4 (1974), 375381.CrossRefGoogle Scholar
[2]Block, L. & Franke, J.. Existence of periodic points for maps of S 1. Invent. Math. 22 (1973), 6973.CrossRefGoogle Scholar
[3]Denjoy, A.. Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 11 (1932), 333375.Google Scholar
[4]Hall, G. R.. A C Denjoy counter-example. Ergod. Th. & Dynam. Sys. 1 (1981), 261272.CrossRefGoogle Scholar
[5]Nitecki, Z.. Differentiable Dynamics: An Introduction to the Orbit Structure of Diffeomorphisms. M.I.T. Press, 1971.Google Scholar
[6]Poincaré, H.. Oeuvres Complètes. t.l.Gauthier-Villars, Paris, 1952, pp. 137158.Google Scholar
[7]Yoccoz, J. C.. Il n'y a pas de contre-exemple de Denjoy analytique. In C.R.A.S. 298 (1984).Google Scholar
[8]Young, L. S.. A closing lemma on the interval. Invent. Math. 54 (1970), 179187.CrossRefGoogle Scholar