Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T09:53:54.682Z Has data issue: false hasContentIssue false

Morse and Lyapunov spectra and dynamics on flag bundles

Published online by Cambridge University Press:  23 June 2009

LUIZ A. B. SAN MARTIN
Affiliation:
Instituto de Matemática, Universidade Estadual de Campinas, Cx. Postal 6065, 13.081-970 Campinas-SP, Brasil (email: [email protected])
LUCAS SECO
Affiliation:
Instituto de Matemática, Universidade Estadual de Campinas, Cx. Postal 6065, 13.081-970 Campinas-SP, Brasil (email: [email protected])

Abstract

In this paper we study characteristic exponents of flows in relation with the dynamics of flows on flag bundles. The starting point is a flow on a principal bundle with semi-simple group G. Projection against the Iwasawa decomposition G=KAN defines an additive cocycle over the flow with values in 𝔞=log A. Its Lyapunov exponents (limits along trajectories) and Morse exponents (limits along chains) are studied. A symmetric property of these spectral sets is proved, namely invariance under the Weyl group. We also prove that these sets are located in certain Weyl chambers, defined from the dynamics on the associated flag bundles. As a special case linear flows on vector bundles are considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnold, L., Cong, N. D. and Oseledets, V. I.. Jordan normal form for linear coccycles. Random Oper. Stochastic Equations 7 (1999), 303358.CrossRefGoogle Scholar
[2]Ayala, V., Colonius, F. and Kliemann, W.. Dynamical characterization of the Lyapunov form of matrices. Linear Algebra Appl. 420 (2005), 272290.CrossRefGoogle Scholar
[3]Ayala, V., Colonius, F. and Kliemann, W.. On topological equivalence of linear flows with applications to bilinear control systems. J. Dyn. Control Syst. 13 (2007), 337362.CrossRefGoogle Scholar
[4]Braga Barros, C. J. and San Martin, L. A. B.. Chain transitive sets for flows on flag bundles. Forum Math. 19 (2007), 1960.Google Scholar
[5]Colonius, F. and Kliemann, W.. The Morse spectrum of linear flows on vector bundles. Trans. Amer. Math. Soc. 348 (1996), 43554388.CrossRefGoogle Scholar
[6]Colonius, F. and Kliemann, W.. The Dynamics of Control. Birkhäuser, Boston, MA, 2000.CrossRefGoogle Scholar
[7]Colonius, F., Fabbri, R. and Johnson, R. A.. Chain recurrence, growth rates and ergodic limits. Ergod. Th. & Dynam. Sys. 27 (2007), 15091524.CrossRefGoogle Scholar
[8]Colonius, F., Fabbri, R., Johnson, R. A. and Spadini, M.. Bifurcation phenomena in control flows, topological methods in nonlinear analysis. Topol. Methods Nonlinear Anal. 30 (2007), 87111.Google Scholar
[9]Conley, C.. Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics, 38). American Mathematical Society, Providence, RI, 1978.CrossRefGoogle Scholar
[10]Conley, C.. The gradient structure of a flow: I. Ergod. Th. & Dynam. Sys. 8 (1988), 1126.Google Scholar
[11]Duistermat, J. J., Kolk, J. A. C. and Varadarajan, V. S.. Functions, flows and oscilatory integral on flag manifolds. Compositio Math. 49 (1983), 309398.Google Scholar
[12]Ferraiol, T., Patrão, M. and Seco, L.. Jordan Decomposition and Dynamics on Flag Manifolds, to appear.Google Scholar
[13]Feres, R.. Dynamical systems and semisimple groups. An Introduction. Cambridge University Press, Cambridge, 1998.Google Scholar
[14]Guivarc’h, Y., Ji, L. and Taylor, J. C.. Compactifications of Symmetric Spaces. Springer, Berlin, 1998.Google Scholar
[15]Helgason, S.. Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York, 1978.Google Scholar
[16]Johnson, R. A., Palmer, K. J. and Sell, G. R.. Ergodic properties of linear dynamical systems. SIAM J. Math. Anal. 18 (1987), 133.CrossRefGoogle Scholar
[17]Kaimanovich, V. A.. Lyapunov exponents, symmetric spaces, and a multiplicative ergodic theorem for semisimple Lie groups. J. Soviet Math. 47 (1989), 23872398.CrossRefGoogle Scholar
[18]Knapp, A. W.. Lie Groups Beyond an Introduction. Birkhäuser, Basel, 2002.Google Scholar
[19]Kobayashi, S. and Nomizu, K.. Foundations of Differential Geometry. Vol. I. InterScience, New York, 1963.Google Scholar
[20]Link, G.. Limit sets of discrete groups acting on symmetric spaces. PhD Thesis, Fakultät für Mathematik der Universität Karlsruhe, 2002.Google Scholar
[21]Patrão, M. and San Martin, L. A. B.. Semiflows on topological spaces: chain transitivity and shadowing semigroups. J. Dynam. Differential Equations 19 (2007), 155180.CrossRefGoogle Scholar
[22]Patrão, M.. Morse decomposition of semiflows on topological spaces. J. Dynam. Differential Equations 19 (2007), 181198.CrossRefGoogle Scholar
[23]Patrão, M. and San Martin, L. A. B.. Chain recurrence of flows and semiflows on fiber bundles. Discrete Contin. Dynam. Systems A 17 (2007), 113139.Google Scholar
[24]Patrão, M., San Martin, L. A. B. and Seco, L.. Stable manifolds and conley index for flows in flag bundles. Dynam. Syst. to appear.Google Scholar
[25]Salamon, D. and Zehnder, E.. Flows on vector bundles and hyperbolic sets. Trans. Amer. Math. Soc. 306 (1988), 623659.CrossRefGoogle Scholar
[26]San Martin, L. A. B.. Invariant control sets on flag manifolds. Math. Control Signals Systems 6(1) (1993), 4161.CrossRefGoogle Scholar
[27]San Martin, L. A. B. and Tonelli, P. A.. Semigroup actions on homogeneous spaces. Semigroup Forum 50 (1995), 5988.CrossRefGoogle Scholar
[28]Seco, L.. Morse Exponents of Vector Valued Cocycles, to appear.Google Scholar
[29]Tam, T. Y. and Huang, H.. An extension of Yamamoto’s theorem on the eigenvalues and singular values of a matrix. J. Math. Soc. Japan 58 (2006), 11971202.Google Scholar
[30]Warner, G.. Harmonic Analysis on Semi-simple Lie Groups I. Springer, Berlin, 1972.Google Scholar
[31]Zimmer, R.. Ergodic theory and semisimple groups. Monographs in Mathematics. Birkhäuser, Basel, 1984.Google Scholar