Article contents
Mixing sets and relative entropies for higher-dimensional Markov shifts
Published online by Cambridge University Press: 19 September 2008
Abstract
We consider certain measurable isomorphism invariants for measure-preserving ℤd-actions on probability spaces, compute them for a class of d-dimensional Markov shifts, and use them to prove that some of these examples are non-isomorphic. The invariants under discussion are of three kinds: the first is associated with the higher-order mixing behaviour of the ℤd-action, and is related—in this class of examples—to an an arithmetical result by David Masser, the second arises from certain relative entropies associated with the ℤd-action, and the third is a collection of canonical invariant σ-algebras. The results of this paper are generalizations of earlier results by Kitchens and Schmidt, and we include a proof of David Masser's unpublished theorem.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1993
References
REFERENCES
- 15
- Cited by