Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T03:28:01.610Z Has data issue: false hasContentIssue false

Majorization of invariant measures for orientation-reversing maps

Published online by Cambridge University Press:  04 November 2009

OLIVER JENKINSON
Affiliation:
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK (email: [email protected], [email protected])
JACOB STEEL
Affiliation:
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK (email: [email protected], [email protected])

Abstract

Let the invariant probability measures for an orientation-reversing weakly expanding map of the interval [0,1] be partially ordered by majorization. The minimal elements of the resulting poset are shown to be convex combinations of Dirac measures supported on two adjacent fixed points. A consequence is that if f:[0,1]→ℝ is strictly convex, then either its minimizing measure is unique and is a Dirac measure on a fixed point, or f has precisely two ergodic minimizing measures, namely Dirac measures on two adjacent fixed points. In the case where {0,1} is a period-two orbit, with corresponding invariant measure μ01, the maximal elements of the poset are shown to be convex combinations of μ01 with the Dirac measure on either the leftmost, or the rightmost, fixed point. This facilitates the identification of f-maximizing measures when f:[0,1]→ℝ is convex.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anagnostopoulou, V., Díaz-Ordaz, K., Jenkinson, O. and Richard, C.. Sturmian maximizing measures for the piecewise-linear cosine family. Preprint.Google Scholar
[2]Anagnostopoulou, V. and Jenkinson, O.. Which beta-shifts have a largest invariant measure? J. London Math. Soc. 79 (2009), 445464.CrossRefGoogle Scholar
[3]Blackwell, D.. Equivalent comparisons of experiments. Ann. Math. Statist. 24 (1953), 265272.CrossRefGoogle Scholar
[4]Bousch, T.. Le poisson n’a pas d’arêtes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), 489508.CrossRefGoogle Scholar
[5]Cartier, P., Fell, J. M. G. and Meyer, P.-A.. Comparaison des mesures portées par un ensemble convexe compact. Bull. Soc. Math. France 92 (1964), 435445.CrossRefGoogle Scholar
[6]Choquet, G.. Le théorème de représentation intégrale dans les ensembles convexes compacts. Ann. Inst. Fourier (Grenoble) 10 (1960), 333344.CrossRefGoogle Scholar
[7]Contreras, G., Lopes, A. and Thieullen, P.. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. & Dynam. Sys. 21 (2001), 13791409.CrossRefGoogle Scholar
[8]Conze, J.-P. and Guivarc’h, Y.. Croissance des sommes ergodiques et principe variationnel. Manuscript, 1993.Google Scholar
[9]Hardy, G. H., Littlewood, J. E. and Pólya, G.. Some simple inequalities satisfied by convex functions. Messenger Math. 58 (1929), 145152.Google Scholar
[10]Hardy, G. H., Littlewood, J. E. and Pólya, G.. Inequalities. Cambridge University Press, Cambridge (1st edn, 1934; 2nd edn, 1952).Google Scholar
[11]Iommi, G.. Ergodic optimization for renewal type shifts. Monatsh. Math. 150 (2007), 9195.CrossRefGoogle Scholar
[12]Jenkinson, O.. Frequency locking on the boundary of the barycentre set. Experiment. Math. 9 (2000), 309317.CrossRefGoogle Scholar
[13]Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. 15 (2006), 197224.CrossRefGoogle Scholar
[14]Jenkinson, O.. Optimization and majorization of invariant measures. Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 112.CrossRefGoogle Scholar
[15]Jenkinson, O.. A partial order on ×2-invariant measures. Math. Res. Lett. 15 (2008), 893900.CrossRefGoogle Scholar
[16]Jenkinson, O.. Balanced words and majorization. Preprint.Google Scholar
[17]Jenkinson, O., Mauldin, R. D. and Urbański, M.. Ergodic optimization for countable alphabet subshifts of finite type. Ergod. Th. & Dynam. Sys. 26 (2006), 17911803.CrossRefGoogle Scholar
[18]Jenkinson, O., Mauldin, R. D. and Urbański, M.. Ergodic optimization for non-compact dynamical systems. Dyn. Syst. 22 (2007), 379388.CrossRefGoogle Scholar
[19]Karamata, J.. Sur une inégalité rélative aux fonctions convexes. Publ. Math. Univ. Belgrade 1 (1932), 145148.Google Scholar
[20]Karlin, S. and Novikoff, A.. Generalized convex inequalities. Pacific J. Math. 13 (1963), 12511279.CrossRefGoogle Scholar
[21]Marshall, A. W. and Olkin, I.. Inequalities: Theory of Majorization and Its Applications (Mathematics in Science and Engineering, 143). Academic Press, New York, 1979.Google Scholar
[22]Rothschild, M. and Stiglitz, J.. Increasing risk I: a definition. J. Econom. Theory 2 (1970), 225243.CrossRefGoogle Scholar
[23]Royden, H. L.. Real Analysis, 3rd edn. MacMillan, New York, 1988.Google Scholar
[24]Steel, J.. PhD Thesis, Queen Mary, University of London, in preparation.Google Scholar