Published online by Cambridge University Press: 08 March 2016
We consider for each $t$ the set $K(t)$ of points of the circle whose forward orbit for the doubling map does not intersect $(0,t)$, and look at the dimension function $\unicode[STIX]{x1D702}(t):=\text{H.dim}\,K(t)$. We prove that at every bifurcation parameter $t$, the local Hölder exponent of the dimension function equals the value of the function $\unicode[STIX]{x1D702}(t)$ itself. A similar statement holds for general expanding maps of the circle: namely, we consider the topological entropy of the map restricted to the survival set, and obtain bounds on its local Hölder exponent in terms of the value of the function.