Published online by Cambridge University Press: 21 July 2009
We study the distribution on ℝ2 of the orbit of a vector under the linear action of SL(2,ℤ). Let Ω⊂ℝ2 be a compact set and x∈ℝ2. Let N(k,x) be the number of matrices γ∈SL(2,ℤ) such that γ(x)∈Ω and ‖γ‖≤k, k=1,2,…. If Ω is a square, we prove the existence of an absolute error term for N(k,x), as k→∞, for almost every x, which depends on the Diophantine property of the ratio of the coordinates of x. Our approach translates the question into a Diophantine approximation counting problem which provides the absolute error term. The asymptotical behaviour of N(k,x) is also obtained using ergodic theory.