Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T16:26:08.655Z Has data issue: false hasContentIssue false

Josephson's junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets

Published online by Cambridge University Press:  19 September 2008

Kevin Hockett
Affiliation:
Center for Applied Mathematics and Departments of Theoretical and Applied Mechanics and Mathematics, Cornell University, Ithaca NY 18453, USA
Philip Holmes
Affiliation:
Center for Applied Mathematics and Departments of Theoretical and Applied Mechanics and Mathematics, Cornell University, Ithaca NY 18453, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the implications of transverse homoclinic orbits to fixed points in dissipative diffeomorphisms of the annulus. We first recover a result due to Aronson et al. [3]: that certain such ‘rotary’ orbits imply the existence of an interval of rotation numbers in the rotation set of the diffeomorphism. Our proof differs from theirs in that we use embeddings of the Smale [61] horseshoe construction, rather than shadowing and pseudo orbits. The symbolic dynamics associated with the non-wandering Cantor set of the horseshoe is then used to prove the existence of uncountably many invariant Cantor sets (Cantori) of each irrational rotation number in the interval, some of which are shown to be ‘dissipative’ analogues of the order preserving Aubry-Mather Cantor sets found by variational methods in area preserving twist maps. We then apply our results to the Josephson junction equation, checking the necessary hypotheses via Melnikov's method, and give a partial characterization of the attracting set of the Poincaré map for this equation. This provides a concrete example of a ‘Birkhoff attractor’ [10].

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

[1]Abidi, A. A. & Chua, L. O.. On the dynamics of Josephson junction circuits. Electronic Circuits and Systems 3 (1979), 186200.CrossRefGoogle Scholar
[2]Arnold, V. I.. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag: New York, Heidelberg, Berlin, 1982.Google Scholar
[3]Aronson, D. G., Chory, M. A., Hall, G. R. & McGeehee, R. P.. Bifurcations from an invariant circle for two parameter families of maps of the plane: a computer assisted study. Comm. Math Phys. 83 (1982), 303354.Google Scholar
[4]Aubry, S.. The twist map, the extended Frankel-Kontorova model, and the Devil's staircase. Physica 7D (1983), 240258.Google Scholar
[5]Aubry, S. & LeDaeron, P.. The discrete Frenkel-Kontorova model and its extensions. Physica 8D (1983), 381422.Google Scholar
[6]Belykh, V. N., Pedersen, N. F. & Soerensen, O. H.. Shunted Josephson Junction model, I—The autonomous case and II—the non-autonomous case. Phys. Rev. B. 16 (1977), 48534871.CrossRefGoogle Scholar
[7]Birkhoff, G. D.. Proof of Poincaré's geometric theorem. Trans. Amer. Math. Soc. 14 (1913), 1422.Google Scholar
[8]Birkhoff, G. D.. Dynamical Systems. Amer. Math. Soc. Colloq. Publ. 9, Providence, R.I., 1927 (reissued 1966, 1981).Google Scholar
[9]Birkhoff, G. D.. Sur l'existence de regions d'instabilité en Dynamique. Annales de l'inst. Henri Poincaré 2 (1932), 369386.Google Scholar
[10]Birkhoff, G. D.. Sur quelques courbes fermées remarquables. Bull de la Soc. Mathem. de France 60 (1932), 126.Google Scholar
[11]Bohr, T., Bak, P. and Jensen, M. H.. Transition to chaos by interaction of resonances in dissipative systems: II. Josephson junctions, charge density waves and standard maps. Preprint, Cornell University, 1984.Google Scholar
[12]Boyland, P.. Bifurcations of circle maps, Arnold tongues, bistability and rotation intervals. Preprint, Boston University, 1983.Google Scholar
[13]Boyland, P. L. & Hall, G. R.. Invariant circles and the order structure of periodic orbits in monotone twist maps. Preprint, Boston University.Google Scholar
[14]Byrd, P. F. & Friedman, M. D.. Handbook of Elliptic Integrals for Scientists and Engineers. Springer-Verlag: New York, Heidelberg, Berlin, 1971.CrossRefGoogle Scholar
[15]Cartwright, M. L. & Littlewood, F. E.. On nonlinear differential equations of the second order I: The equation ÿ + k (1 − y 2) Ẏ + y = bλk cos (λt + a), k large. J. Lond. Math. Soc. 20 (1945), 180189.CrossRefGoogle Scholar
[16]Casdagli, M.. Periodic orbits for Birkhoff attractors. Preprint, Univ. of Warwick, 1985.Google Scholar
[17]Chenciner, A.. Bifurcations de difféomorphismes de ℝ2 au voisiange d'un point fixe elliptique. Les Houches Summer School Proceedings, ed. Helleman, R., Iooss, G., North Holland, 1983.Google Scholar
[18]Chenciner, A.. Bifurcations de points fixes elliptiques, I-Courbes invariantes, et II Orbites périodiques et ensembles de Cantor. To appear in Publ Math. IHES.Google Scholar
[19]Chenciner, A., Gambaudo, J. M. & Tresser, C.. Une remarque sur la structure des endomorphismes de degre 1 du cercle. C.R.A.S. Paris, 299, Serie I, 5 (1984), 145148.Google Scholar
[20]Chenciner, A., Gambaudo, J. M. & Tresser, C.. Une remarque sur les families d'endomorphismes de degré un du cercle. C.R.A.S., Paris, 299, Serie I, 15, (1984), 771773.Google Scholar
[21]Chirikov, B. V.. A universal instability of many dimensional oscillator systems. Physics Reports 52, (1979), 263379.CrossRefGoogle Scholar
[22]Chow, S. N., Hale, J. K. & Mallet-Paret, J.. An example of bifurcation to homoclinic orbits. J. Dig. Eqns. 37 (1980), 351373.CrossRefGoogle Scholar
[23]Greenspan, B. D. & Holmes, P. J.. Homoclinic orbits, subharmonics, and global bifurcations in forced oscillations. Chapter 10, pp. 172214 in Nonlinear Dynamics and Turbulence, ed. Barenblatt, G., Iooss, G. and Joseph, D. D.. Pitman: London, 1983.Google Scholar
[24]Greenspan, B. D. & Holmes, P. J.. Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators. SIAM J. on Math. Analysis 15 (1984), 6997.CrossRefGoogle Scholar
[25]Guckenheimer, J. & Holmes, P. J.. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer Verlag: New York, 1983.Google Scholar
[26]Guckenheimer, J. & Williams, R. F.. Structural stability of Lorenz attractors. Publ. Math. IHES 50 (1979), 5972.CrossRefGoogle Scholar
[27]Hale, J. K.. Ordinary Differential Equations. Wiley: New York, 1969.Google Scholar
[28]Hall, G. R.. A topological version of a theorem of Mather on twist maps. Ergod. Th. & Dynam. Sys. 4 (1984), 585603.CrossRefGoogle Scholar
[29]Hedlund, G. A.. Sturmian minimal sets. Amer. J. Math. 66 (1944), 605620.Google Scholar
[30]Herman, M. R.. Sur les Courbes Invariantes par les Diffeomorphismes de l'Anneau, I. Astérisque 103104 (1983).Google Scholar
[31]Holmes, P. J.. Space- and time-periodic perturbations of the sine-Gordon equations. In Dynamical Systems and Turbulence, Rand, D. A. and Young, L.-S. (eds) pp. 164191, Springer Lecture Notes in Mathematics 898. Springer-Verlag: New York, Berlin, Heidelberg, 1981.Google Scholar
[32]Holmes, P. J.. The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vibration 84 (1982), 173189.CrossRefGoogle Scholar
[33]Holmes, P. J. & Marsden, J. E.. Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Comm. Math. Phys. 82 (1982), 523544.Google Scholar
[34]Holmes, P. J. & Whitley, D. C.. On the attracting set for Duffing's equation I: Analytical methods for small force and damping. In Partial Differential Equations and Dynamical Systems, Fitzgibbon, W. III (ed.) pp. 211240, (1984).Google Scholar
[35]Huberman, B. A., Crutchfield, J. P. & Packard, N. H.. Noise phenomena in Josephson junctions. Appl. Phys. Lett. 37 (1980), 750752.Google Scholar
[36]Ito, R.. Rotation sets are closed. Math. Proc. Camb. Phil. Soc. 89 (1981), 107111.Google Scholar
[37]Jensen, M. H., Bak, P. & Bohr, T.. Transition to chaos by interaction of resonances in dissipative systems: I. Circle Maps. Preprint, Cornell University, 1984.Google Scholar
[38]Katok, A.. Some remarks on Birkhoff and Mather twist map theorems. Ergod. Th. & Dynam. Sys. 2 (1982), 185194.Google Scholar
[39]Katok, A.. Periodic and Quasi-periodic orbits for twist maps. In Proceedings, Sitges 1982, Garrido, L. (ed.). Springer-Verlag: Berlin, 1983.Google Scholar
[40]LeCalvez, P.. Existence d'orbites quasi-périodiques dans les attracteurs de Birkhoff. Preprint, Orsay, 1985.Google Scholar
[41]Levi, M.. Qualitative analysis of the periodically forced relaxation oscillations. Mem. Amer. Math. Soc. 244, (1981).Google Scholar
[42]Levi, M.. Beating modes in the Josephson Junction. Preprint, Boston University, 1984.Google Scholar
[43]Levi, M., Hoppensteadt, F. & Miranker, W.. Dynamics of the Josephson junction. Quart. Appl. Math. 35 (1978), 167198.CrossRefGoogle Scholar
[44]Levinson, N.. A second order differential equation with singular solutions. Annals of Math. 50 (1949), 127153.Google Scholar
[45]Mather, J. N.. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus. Topology 21 (1982), 457467.Google Scholar
[46]Mather, J. N.. Non-uniqueness of solutions of Percival's Euler-Lagrange Equation. Comm. Math. Phys. 86 (1982), 465476.Google Scholar
[47]Mather, J. N.. More Denjoy minimal sets for area preserving diffeomorphisms. Preprint, Princeton University, 1984.Google Scholar
[48]Matisoo, J.. Josephson-type superconductive tunnel junctions and applications. IEEE Transactions on Magnetics 5 (1969), 848873.CrossRefGoogle Scholar
[49]Melnikov, V. K.. On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc. 12 (1963), 157.Google Scholar
[50]Moser, J.. Stable and Random Motions in Dynamical Systems. Princeton University Press: Princeton, NJ, 1973.Google Scholar
[51]Newhouse, S. E.. Lectures on dynamical systems. In ‘Dynamical Systems’ ed. Moser, J. K.. Birkhauser: Boston, 1980.Google Scholar
[52]Newhouse, S., Palis, J. & Takens, F.. Bifurcations and stability of families of diffeomorphisms. Publ Math. I.H.E.S. 57 (1983), 572.CrossRefGoogle Scholar
[53]Odyniec, M. & Chua, L. O.. Josephson junction circuit analysis via integral manifolds. IEEE Transactions on Circuits and Systems CAS-30 (1983).Google Scholar
[54]Palis, J.. On Morse Smale dynamical systems. Topology 8 (1969), 385405.CrossRefGoogle Scholar
[55]Percival, I. C.. Variational principles for invariant tori and cantori. In Symp. on Nonlinear Dynamics and Beam-Beam Interactions, Month, M. and Herrara, J. C. (eds.). Amer. Inst. Phys. Conf. Proc. 57, 310320, 1980.Google Scholar
[56]Poincaré, H.. Mémoire sur les courbes définies par les équations différentielles I-IV, (Oeuvre I). Gauthier Villars: Paris, 18801890.Google Scholar
[57]Poincaré, H.. Sur les équations de la dynamique et le problème de trois corps. Ada. Math. 13 (1890), 1270.Google Scholar
[58]Poincaré, H.. Les Methodes Nouvelles de la Mécanique Celeste (3 Vols.) Gauthier-Villars: Paris, 1899.Google Scholar
[59]Salam, F. M. A. & Sastry, S. S.. Dynamics of the forced Josephson junction circuit: the regions of chaos. To appear in IEEE Transactions on Circuits and Systems.Google Scholar
[60]Sanders, J. A. & Cushman, R.. Limit cycles in the Josephson Equation. Rapport No. 264, (1984). Subfaculteit Wiskunde et Informatica, Vrije Universiteit, Amsterdam.Google Scholar
[61]Smale, S.. Diffeomorphisms with many periodic points. In Differential and Combinatorial Topology, ed. Cairns, S. S., pp. 6380. Princeton University Press: Princeton, N.J., 1963.Google Scholar
[62]Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817.Google Scholar
[63]Smale, S.. The Mathematics of Time: Essays on Dynamical Systems, Economic Processes and Related Topics. Springer-Verlag: New York, Heidelberg, Berlin, 1980.Google Scholar
[64]Sparrow, C. T.. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer-Verlag: New York, Heidelberg, Berlin, 1982.Google Scholar
[65]Veerman, P.. Symbolic dynamics and rotation numbers. To appear in Physica A (1986).Google Scholar
[66]York, J. A. & Alligood, K. T.. Cascades of period-doubling bifurcations: a prerequisite for horseshoes. Bull. Amer. Math. Soc. 9 (1983), 319322.Google Scholar
[67]Zehnder, E.. Homoclinic points near elliptic fixed points. Comm. Pure. Appl. Math. 26 (1973), 141182.Google Scholar