Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T01:14:21.748Z Has data issue: false hasContentIssue false

Iteration of certain meromorphic functions with unbounded singular values

Published online by Cambridge University Press:  21 July 2009

TARAKANTA NAYAK
Affiliation:
Department of Mathematics, National Institute of Technology Rourkela, Rourkela 769008, India (email: [email protected])
M. GURU PREM PRASAD
Affiliation:
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039, India (email: [email protected])

Abstract

Let ℳ={f(z)=(zm/sinh m z) for z∈ℂ∣ either m or m/2 is an odd natural number}. For each f∈ℳ, the set of singularities of the inverse function of f is an unbounded subset of the real line ℝ. In this paper, the iteration of functions in one-parameter family 𝒮={fλ(z)=λf(z)∣λ∈ℝ∖{0}} is investigated for each f∈ℳ. It is shown that, for each f∈ℳ, there is a critical parameter λ*>0 depending on f such that a period-doubling bifurcation occurs in the dynamics of functions fλ in 𝒮 when the parameter |λ| passes through λ*. The non-existence of Baker domains and wandering domains in the Fatou set of fλ is proved. Further, it is shown that the Fatou set of fλ is infinitely connected for 0<∣λ∣≤λ* whereas for ∣λ∣≥λ*, the Fatou set of fλ consists of infinitely many components and each component is simply connected.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baker, I. N., Kotus, J. and Yinian, L.. Iterates of meromorphic functions II: examples of wandering domains. J. London Math. Soc. (2) 2(42) (1990), 267278.CrossRefGoogle Scholar
[2]Baker, I. N., Kotus, J. and Yinian, L.. Iterates of meromorphic functions III: preperiodic domains. Ergod. Th. & Dynam. Sys. 11 (1991), 603618.CrossRefGoogle Scholar
[3]Baker, I. N., Kotus, J. and Yinian, L.. Iterates of meromorphic functions IV: critically finite functions. Results Math. 22 (1992), 651656.CrossRefGoogle Scholar
[4]Bergweiler, W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29(2) (1993), 151188.CrossRefGoogle Scholar
[5]Bergweiler, W.. Newton’s method and a class of meromorphic functions without wandering domains. Ergod. Th. & Dynam. Sys. 13 (1993), 231247.CrossRefGoogle Scholar
[6]Bergweiler, W.. Singularities in Baker domains. Comput. Methods Funct. Theory 1(1) (2001), 4149.CrossRefGoogle Scholar
[7]Bergweiler, W. and Eremenko, A. E.. On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoam. 11 (1995), 355373.CrossRefGoogle Scholar
[8]Bergweiler, W., Haruta, M., Kriete, H., Meier, H. and Terglane, N.. On the limit functions of iterates in wandering domains. Ann. Acad. Sci. Fenn. Math. Ser. A. I. Math. 18 (1993), 369375.Google Scholar
[9]Devaney, R. L. and Keen, L.. Dynamics of tangent. Dynamical Systems (Lecture Notes in Mathematics, 1342). Springer, Berlin, 1988, pp. 105111.CrossRefGoogle Scholar
[10]Domínguez, P.. Dynamics of transcendental meromorphic functions. Ann. Acad. Sci. Fenn. Math. 23 (1998), 225250.Google Scholar
[11]Prasad, M. G. P. and Nayak, T.. Dynamics of λtanh (e z). Discrete Contin. Dyn. Syst. 19(1) (2007), 121138.Google Scholar
[12]Herring, M. E.. Mapping properties of Fatou components. Ann. Acad. Sci. Fenn. Math. 23 (1998), 263274.Google Scholar
[13]Jiang, W. H.. Dynamics of λtan z. PhD Thesis, Graduate Center of the City University of New York, CUNY, 1991.Google Scholar
[14]Keen, L. and Kotus, J.. Dynamics of the family λtan z. Conform. Geom. Dyn. 1 (1997), 2857.CrossRefGoogle Scholar
[15]König, H.. Conformal conjugacies in Baker domains. J. London Math. Soc. (2) 59(2) (1999), 153170.CrossRefGoogle Scholar
[16]Morosowa, S.. An example of cyclic Baker domains. Mem. Fac. Sci. Kochi. Univ. Ser. A Math. 20 (1999), 123126.Google Scholar
[17]Nevanlinna, R.. Analytic Functions. Springer, Berlin, 1970.CrossRefGoogle Scholar
[18]Rippon, P. J. and Stallard, G. M.. Singularities of meromorphic functions with Baker domains. Math. Proc. Cambridge Philos. Soc. 141 (2006), 371382.CrossRefGoogle Scholar
[19]Rippon, P. J. and Stallard, G. M.. Iteration of a class of hyperbolic meromorphic functions. Proc. Amer. Math. Soc. 127(11) (1999), 32513258.CrossRefGoogle Scholar
[20]Stallard, G. M.. A class of meromorphic functions with no wandering domains. Ann. Acad. Sci. Fenn. Ser. Math. 16 (1991), 211226.CrossRefGoogle Scholar
[21]Zheng, J. H.. On transcendental meromorphic functions which are geometrically finite. J. Aust. Math. Soc. 72 (2002), 93107.CrossRefGoogle Scholar
[22]Zheng, J. H.. Singularities and limit functions in iteration of meromorphic functions. J. London Math. Soc. (2) 67(1) (2003), 195207.CrossRefGoogle Scholar
[23]Zheng, J. H.. Singularities and wandering domains in iteration of meromorphic functions. Illinois J. Math. 44(3) (2000), 520530.CrossRefGoogle Scholar