Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T04:33:56.533Z Has data issue: false hasContentIssue false

Global stability of families of vector fields

Published online by Cambridge University Press:  19 September 2008

R. Labarca
Affiliation:
Departamento de Matemática, Universidad de Santiago de Chile, Casilla 307-Correo 2, Santiago, Chile
S. Plaza
Affiliation:
Departamento de Matemática, Universidad de Santiago de Chile, Casilla 307-Correo 2, Santiago, Chile

Abstract

We consider one-parameter families with simple recurrent set. Among these families we characterize the (structurally) stables ones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[B]Blanchard, P.. Complex analytic dynamics on the Riemann sphere Bull. Amer. Math. Soc. 11 (1984), 85141.CrossRefGoogle Scholar
[Ca]Camacho, C.. On the local structure of conformal mappings and holomorphic vector fields in C 2. Société Mathématique de France, Astérisque 59–60 (1978), 8394.Google Scholar
[D-H-1]Douady, A. & Hubbard, J. H.. Étude Dynamique des Polynômes Complexes, Première Partie. Publications Mathématiques D'Orsay, 84–02.Google Scholar
[D-H-2]Douady, A. & Hubbard, J. H.. Étude Dynamique des Polynômes Complexes, Deuxième Partie. Publications Mathématiques D'Orsay, 85–04.Google Scholar
[D-H-3]Douady, A. & Hubbard, J. H.. On the dynamics of polynomial like mappings. Ann. Sci. École Norm. Sup. (4) 18 (1985), 287343.CrossRefGoogle Scholar
[E-L]Eremenko, A. & Levin, G. M.. On periodic points for polynomials. Ukrainian Math. J. 41 (1989).CrossRefGoogle Scholar
[G]Goluzin, G. M.. Geomefric Theory of Functions of a Complex Variable. Vol. 26. Translations of Mathematical Monographs. American Mathematical Society: New York, 1969.CrossRefGoogle Scholar
[G-M]Goldberg, L. R. & Milnor, J.. Fixed points of polynomial maps, II fixed point portraits. Points fixes d'applications Polynomiale. II Portraits des points fixes. Ann. Sci. École Norm. Sup. (4) 26 (1993), 5198.CrossRefGoogle Scholar
[Le]Levin, G. M.. On Pommerenke's inequality for the eigenvalues of fixed points. Coll. Mathematicum LXII (1991), 167177.CrossRefGoogle Scholar
[L-V]Lehto, O. & Virtanen, K. I.. Quasiconformal Mappings in the Plane. 2nd edn.Springer: New York, 1973.CrossRefGoogle Scholar
[Ly]Lyubich, M.. The dynamics of rational transforms: The topological picture. Russian Math. Surveys 41 (1986), 43117; English translation of Usp. Mat. Nauk. 41 (1986), 35–95.CrossRefGoogle Scholar
[M]Milnor, J.. Dynamics in one complex variable. Introductory lectures. Preprint. Stony Brook Institute for Mathematical Sciences. 1990/1995.Google Scholar
[Po]Pommerenke, Ch.. On conformal mapping and iteration of rational functions. Complex Variables Th. and Appl. 5 (1986), 117126.Google Scholar
[S]Sullivan, D.. Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou—Julia problem on wandering domains. Ann. Math. 122 (1985), 401418.CrossRefGoogle Scholar
[Y]Yoccoz, J. C.. Sur La taille des membres de L'Ensemble de Mandelbrot. (1987), (unpublished).Google Scholar