Article contents
Geometrical Markov coding of geodesics on surfaces of constant negative curvature
Published online by Cambridge University Press: 19 September 2008
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A natural geometrical representation of the geodesic flow on a surface M of constant negative curvature is given in which the base transformation is the shift on a (finite type) space of shortest words relative to a fixed generating set for π1(M) and the height function is the hyperbolic distance across a fundamental region for π1(M). This representation is obtained by comparing cutting sequences on M with generalised continued fraction expansions of endpoints on ℝ
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1986
References
REFERENCES
[1]Adler, R. & Flatto, L.. Cross section maps for the geodesic flow on the modular surface. Contemp. Math. 26(1984), 9–24.CrossRefGoogle Scholar
[2]Artin, E.. Ein mechanisches System mit quasi ergodischen Bahnen. Collected Papers. Addison Wesley, 1965, 499‐501.CrossRefGoogle Scholar
[3]Birman, J. & Series, C., Dehn's algorithm revisited, with applications to simple curves on surfaces. Proc. Conf. on Combinatorial Group Theory, Utah, 1984, (Ed. Gersten, and Stallings, ).Google Scholar
[4]Bowen, R. & Ruelle, D.. The ergodic theory of Axiom A flows. Invent. Math. 29 (1975), 181–202.CrossRefGoogle Scholar
[5]Bowen, R. & Series, C.. Markov maps associated to Fuchsian groups. Publ. I.H.E.S. 50 (1979), 153–170.Google Scholar
[6]Hedlund, G. A.. A metrically transitive group defined by the modular group. Amer. J. Math. 57 (1935), 668–678.CrossRefGoogle Scholar
[7]Hedlund, G. A.. On the metrical transitivity of geodesies on closed surfaces of constant negative curvature. Ann. Math. 35 (1934), 787–808.CrossRefGoogle Scholar
[8]Koebe, P.. Riemannische Manigfaltigkeiten und nichteuklidische Raumformen, IV. Sitzungberichte der Preussichen Akad. der Wissenschaften (1929), 414–457.Google Scholar
[9]Moeckel, R.. Geodesies on modular surfaces and continued fractions. Ergod. Th. & Dynam. Sys. 2 (1982), 69–84.CrossRefGoogle Scholar
[10]Morse, M.. A one-to-one representation of geodesies on a surface of negative curvature. Amer. J. Math. XLIII (1921), 33–51.CrossRefGoogle Scholar
[11]Morse, M.. Recurrent geodesies on a surface of negative curvature. Trans. Amer. Math. Soc. XXII (1921), 84–100.CrossRefGoogle Scholar
[12]Morse, M.. Symbolic dynamics. Institute for Advanced Study Notes, Princeton (1966) (unpublished). (First written 1938.)Google Scholar
[14]Nielsen, J.. Untersuchungen zur Topologie der geschlossen zweiseitige Flächen. Act. Math. 50 (1927), 189–358.CrossRefGoogle Scholar
[15]Series, C.. Symbolic dynamics for geodesic flows. Acta Math., 146 (1981), 103–128.CrossRefGoogle Scholar
[16]Series, C.. On coding geodesies with continued fractions. Enseignement Mathématique 29, Univ. de Geneve (1980), 67–76.Google Scholar
[17]Series, C.. The infinite word problem and limit sets in Fuchsian groups. Ergod. Th. & Dynam. Sys. 1 (1981), 337–360.CrossRefGoogle Scholar
[18]Series, C.. The modular surface and continued fractions. J. London Math. Soc. (2), 31 (1985), 69–80.CrossRefGoogle Scholar
[19]Smith, H. J.. Mémoire sur les equations modulaires. Ac. de Lincei 1877. (Collected Papers, Chelsea 1965, 224–241.)Google Scholar
You have
Access
- 49
- Cited by