Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T01:03:54.221Z Has data issue: false hasContentIssue false

From a differentiable to a real analytic perturbation theory, applications to the Kupka Smale theorems

Published online by Cambridge University Press:  19 September 2008

H. W. Broer
Affiliation:
Department of Mathematics, University of Groningen, G.P.O. 800, 9700 AV Groningen, The Netherlands
F. M. Tangerman
Affiliation:
Department of Mathematics, Boston University, 111 Cummingston Street, Boston, MA 02215, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Kupka-Smale like theorems are proven in the real analytic case, using existing perturbation schemes for the smooth case and the heat operator. As a consequence, a topological proof is obtained of Siegel's theorem on the generic divergence of normal form transformations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

[1]Abraham, R. & Marsden, J. E.. Foundations of Mechanics. Benjamin-Cummings, 1978.Google Scholar
[2]Berger, M., Gauduchon, P. & Mazet, E.. Le Spectre d'une Variété Riemannienne. Springer-Verlag, Lecture Notes in Maths 194, 1971.CrossRefGoogle Scholar
[3]Billingsley, P.. Probability and Measure. Wiley and Sons, 1979.Google Scholar
[4]Bochner, S.. Analytic mapping of compact Riemann spaces into Euclidean space. Duke Math. J. 3 (1937), 339354.CrossRefGoogle Scholar
[5]Broer, H. W. & Vegter, G.. Subordinate Sil'nikov bifurcations near some singularities of vector fields having low codimensions. Ergod. Th. & Dynam. Sys. 4 (1984), 509525.CrossRefGoogle Scholar
[6]Brunovksy, P.. On one parameter families of diffeomorphisms. Commentationes Mathematicae Universitatis Carolinae 11 (1970), 559582.Google Scholar
[7]Cheval, I.. Eigenvalues in Riemannian Geometry. Academic Press, 1984.Google Scholar
[8]Chow, S-N. & Hale, J. K.. Methods of Bifurcation Theory. Springer-Verlag, 1982.CrossRefGoogle Scholar
[9]Coddington, E. A. & Levinson, N.. Theory of Ordinary Differential Equations. McGraw-Hill, 1955.Google Scholar
[10]Grauert, H.. On Levi's problem and the imbedding or real analytic manifolds. Ann. Math. 68, (1958), 460472.CrossRefGoogle Scholar
[11]Hartman, P.. Ordinary Differential Equations. Wiley and Sons, 1964.Google Scholar
[12]Hirsch, M. W.. Differential Topology. Springer Verlag, Graduate Texts in Maths 33, 1976.CrossRefGoogle Scholar
[13]Kupka, I.. Contribution á la théorie des champs gécnériques. Contrib. Diffi Eqs. 2 (1963), 457484;Google Scholar
Contribution á la théorie des champs gécnériques. Contrib. Diffi Eqs. 3 (1964), 411420.Google Scholar
[14]Leslie, J.. On the group of real analytic diffeomorphisms of a compact real analytic manifold. Trans. Am. Math. Soc. 274, (1982), 651669.CrossRefGoogle Scholar
[15]Morrey, C. B.. The analytic embedding of abstract real-analytic manifolds. Ann. Math. 68 (1958), 159201.CrossRefGoogle Scholar
[16]Moser, J. K.. Non-existence of integrals for canonical systems of differential equations. Comm. Pure Appl. Math. 8 (1955), 409436.CrossRefGoogle Scholar
[17]Narasimhan, R.. Analysis of Real and Complex Manifolds. North-Holland, 1968.Google Scholar
[18]Palis, J. & de Melo, W.. Geometric Theory of Dynamical Systems. Springer-Verlag, 1982.CrossRefGoogle Scholar
[19]Peixoto, M. M.. On an approximation theorem of Kupka and Smale. J. Diff. Eq. 3 (1966), 214227.CrossRefGoogle Scholar
[20]Pugh, C. C.. The closing lemma. Amer. J. Math. 89 (1967), 9561009.CrossRefGoogle Scholar
[21]Pugh, C. C.. An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 10101021.CrossRefGoogle Scholar
[22]Robinson, R. C.. Generic properties of conservative systems I, II, Amer. J. Math. 92 (1970), 562603; 897–906.CrossRefGoogle Scholar
[23]Robinson, R. C.. Generic one parameter families of symplectic matrices. Amer. J. Math. 93 (1971), 116122.CrossRefGoogle Scholar
[24]Schwartz, L.. Séminaire Schwartz. 2éeme année, 1954–1955.Google Scholar
[25]Siegel, C. L.. Ueber die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Math. Ann. 128 (1954), 144170.CrossRefGoogle Scholar
[26]Smale, S.. Stable manifolds for differential equations and diffeomorphisms. Ann. Scuola Normale Superiore Pisa 18 (1963), 97116.Google Scholar
[27]Sotomayor, J.. Generic bifurcations of dynamical systems. In: Dynamical Systems (ed. Peixoto, M. M.), Academic Press 1973.Google Scholar
[28]Van Strien, S. J.. Center manifolds are not C∞. Math. Z. 116 (1979), 143145.CrossRefGoogle Scholar
[29]Takens, F.. Hamiltonian systems: generic properties of closed orbits and local perturbations. Math. Ann. 188 (1970), 304312.CrossRefGoogle Scholar
[30]Takens, F.. Singularities of vector fields. Publ. I.H.E.S. 43 (1974), 47100.Google Scholar
[31]Takens, F.. A non-stabilizable jet of a singularity of a vector field; the analytic case. In: Algebraic and Differential Topology-Global Differential Geometry (ed. Rassias, G. M.), Teubner Verlag, 1984.Google Scholar
[32]Takens, F.. Measure and category. Preprint, University of Groningen, 1985.Google Scholar
[33]Weierstrass, K.. Ueber die analytische Darstellbarkeit sogenannter willkürlicher Funktionen einer reellen Veränderlichen. Sitzungsberichte der Akademie zu Berlin (1885), 633639; 789–805.Google Scholar
[34]Whitney, H.. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36 (1934), 6389.CrossRefGoogle Scholar
[35]Zehnder, E.. Homoclinic points near elliptic fixed points. Comm. PureAppl. Math. 26 (1973), 131182.CrossRefGoogle Scholar