Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T12:58:04.781Z Has data issue: false hasContentIssue false

Cuntz—Krieger algebras associated with Fuchsian groups

Published online by Cambridge University Press:  19 September 2008

J. S. Spielberg
Affiliation:
Department of Mathematics, Arizona State University, Tempe, AZ 85287, USA

Abstract

For Fuchsian groups of the first kind containing parabolic elements, it is shown that the action on a suitable disconnection of the limit circle generates a Cuntz—Krieger C*-algebra. This clarifies and generalizes the situation of the subalgebra within O2, and provides a new proof of the simplicity and nuclearity of certain Cuntz—Krieger algebras. The proof relies on the Markov partition obtained from a suitable fundamental polygon for the group. Counter examples are given if an unsuitable fundamental polygon is used.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ana]Anantharaman-Delaroche, C.. Systèmes dynamiques non commutatifs et moennabilité. Math. Ann. 279 (1987), 297315.CrossRefGoogle Scholar
[AS]Archbold, R. J. & Spielberg, J.. Topologically free actions and ideals in discrete C*-dynamical systems. Proc. Edinburgh Math. Soc., to appear.Google Scholar
[Bea]Beardon, A. F.. The Geometry of Discrete Groups. Springer: New York, 1983.CrossRefGoogle Scholar
[BS]Bowen, R. & Series, C.. Markov maps associated with Fuchsian groups. Publ. Math. IHES 50 (1979), 153179.CrossRefGoogle Scholar
[Cho]Choi, M.-D.. A simple C*-algebra generated by two finite order unitaries. Canad. J. Math. 31 (1979), 867880.CrossRefGoogle Scholar
[Cun]Cuntz, J.. Simple C*-algebras generated by isometries. Commun. Math. Phys. 57 (1977), 173185.CrossRefGoogle Scholar
[CK]Cuntz, J. & Krieger, W.. A class of C*-algebras and topological Markov chains. Invent. Math. 56 (1980), 251268.CrossRefGoogle Scholar
[Kee]Keen, L.. Canonical polygons for finitely generated Fuchsian groups. Acta Math. 115 (1966), 116.CrossRefGoogle Scholar
[Mas]Maskit, B.. On Poincaré's theorem for fundamental polygons. Adv. Math. 7 (1971), 219230.CrossRefGoogle Scholar
[QS]Quigg, J. C. & Spielberg, J.. Regularity and hyporegularity in C*-dynamical systems. Houston J. Math. 18 (1992), 139152.Google Scholar
[Ser1]Series, C.. The infinite word problem and limit sets in Fuchsian groups. Ergod. Th. & Dynam. Sys. 1 (1981), 337360.CrossRefGoogle Scholar
[Ser2]Series, C.. Non-Euclidean geometry, continued fractions, and ergodic theory. Math. Intelligencer 4 (1982), 2431.CrossRefGoogle Scholar
[Spi]Spielberg, J.. Free-product groups, Cuntz-Krieger algebras, and covariant maps. Int. J. Math. 2 (1991), 457476.CrossRefGoogle Scholar