Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T00:25:06.029Z Has data issue: false hasContentIssue false

Crossed products of totally disconnected spaces by

Published online by Cambridge University Press:  19 September 2008

Ola Bratteli
Affiliation:
Institute of Mathematics, University of Trondheim, N-7034 Trondheim-NTH, Norway
David E. Evans
Affiliation:
Department of Mathematics and Computer Science, University College of Swansea, Swansea SA2 8PP, Wales, UK
Akitaka Kishimoto
Affiliation:
Department of Mathematics, Hokkaido University, Sapporo, 060, Japan

Abstract

Let Ω be a totally disconnected compact metrizable space, and let α be a minimal homeomorphism of Ω. Let σ be a homeomorphism of order 2 on Ω such that ασ = σα−1, and assume that σ or ασ has a fixed point. We prove (Theorem 3.5) that the crossed product is an AF-algebra.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BBEK]Blackadar, B., Bratteli, O., Elliott, G. A. & Kumjian, A.. Reduction of real rank in inductive limits of C*-algebras. Math. Ann. 292 (1992), 111126.CrossRefGoogle Scholar
[BDR]Blackadar, B., Dadarlat, M. & Rørdara, M.. The real rank of inductive limit C*-algebras. Math. Scand. 69 (1991), 211216.CrossRefGoogle Scholar
[BE1]Bratteli, O. & Elliott, G. A.. An introduction to fractal C*-algebras. To appear in: Proc. OATE 2, Craiova, Romania, 28/8–8/9, 1989.Google Scholar
[BE2]Bratteli, O. & Elliott, G. A.. Small eigenvalue variation and real rank zero. In preparation.Google Scholar
[BEEK1]Bratteli, O., Elliott, G. A., Evans, D. E. & Kishimoto, A.. Finite group actions on AF algebras obtained by folding the interval, K-theory. To appear.Google Scholar
[BEEK2]Bratteli, O., Elliott, G. A., Evans, D. E. & Kishimoto, A.. Non-commutative spheres I. Int. J. Math. 2 (1991), 139166.CrossRefGoogle Scholar
[BEEK3]Bratteli, O., Elliott, G. A., Evans, D. E. & Kishimoto, A.. Non-commutative spheres II: Rational rotations. J. Operator Theory, in press.Google Scholar
[Bla]Blackadar, B.. K-theory for Operator Algebras. Springer, New York—Heidelberg*mdash;Berlin—Tokyo, 1986.CrossRefGoogle Scholar
[Bra]Bratteli, O.. Inductive limits of finite dimensional C*-algebras. Trans. Amer. Math. Soc. 171 (1972), 195234.Google Scholar
[BK]Bratteli, O. & Kishimoto, A.. Non-commutative spheres III: irrational rotations. Commun. Math. Phys. 147 (1992), 606624.CrossRefGoogle Scholar
[CE]Choi, M. D. & Elliottt, G. A.. Density of the self-adjoint elements with finite spectrum in an irrational rotation C*-algebra. Math. Scand. 67 (1990), 7386.CrossRefGoogle Scholar
[DNNP]Dadarlat, M., Nagy, G., Nemethi, A. & Pasnicu, C.. Reduction of topological stable rank in inductive limits of C*-algebras. Preprint INCREST 1990.Google Scholar
[Ell]Elliott, G. A.. On the classification of C*-algebras of real rank zero. J. Reine Angew. Math. (1993), in press.Google Scholar
[Gll]Glimm, J. G.. On a certain class of operator algebras. Trans. Amer. Math. Soc. 95 (1960), 318340.CrossRefGoogle Scholar
[Kum1]Kumjian, A.. An involutive automorphism of the Bunce—Deddens algebra. C.R. Math. Rep. Acad. Sci. Canada 10 (1988), 217218.Google Scholar
[Kum2]Kumjian, A.. Non-commutative spherical orbifolds. C.R. Math. Rep. Acad. Sci. Canada 12 (1990), 8789.Google Scholar
[Nat]Natsume, T.. On K*,(C*(SL 2())). J. Operator Theory 13 (1985), 103118.Google Scholar
[Put1]Putnam, I. F.. The C*-algebras associated with minimal homeomorphisms of the Cantor set. Pacific J. Math. 136 (1989), 329353.CrossRefGoogle Scholar
[Put2]Putnam, I. F.. On the topological stable rank of certain transformation group C*-algebras. Ergod. Th. & Dynam. Sys. 10 (1990), 197207.CrossRefGoogle Scholar
[Put3]Putnam, I. F.. The invertible elements are dense in the irrational rotation C*-algebras. J. Reine Angew. Math. 410 (1990), 160166.Google Scholar
[PV]Pimsner, M. & Voiculescu, D.. Exact sequences for K-groups and ext-groups of certain crossed product C*-algebras. j. Operator Theory 4 (1980) 93118Google Scholar
[Rie]Rieffel, M. A.. C*-algebras associated with irrational rotations. Pacific J. Math. 93 (1981), 415429.CrossRefGoogle Scholar
[Tho]Thomsen, K.. Homomorphisms between finite direct sums of circle algebras. Linear and Multilinear Algebra 32 (1992), 3550.CrossRefGoogle Scholar
[Ver1]Versik, A. M.. Uniform algebraic approximation of shift and multiplication operators. Sov. Math. Dokl. 24 (1981), 97100.Google Scholar
[Ver2]Versik, A. M.. A theorem on periodic Markov approximation in ergodic theory. Ergodic Theory and Related Topics (Vitte, 1981). pp 195206. Math. Res. 12. Akademie-Verlag, Berlin, 1982.Google Scholar