Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T10:48:30.220Z Has data issue: false hasContentIssue false

An Anosov action on the bundle of Weyl chambers

Published online by Cambridge University Press:  19 September 2008

Hans-Christoph Im Hof
Affiliation:
Mathematisches Institut der Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce an Anosov action on the bundle of Weyl chambers of a riemannian symmetric space of non-compact type, which for rank one spaces coincides with the geodesic flow.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

[1]Eberlein, P. & O'Neill, B.. Visibility manifolds. Pacific J. Math. 46 (1973), 45109.Google Scholar
[2]Gel'fand, I. M. & Fomin, S. V.. Geodesic flows on manifolds of constant negative curvature. Uspehi Mat. Nauk (N.S.) 7 (1952), 118137;Google Scholar
Amer. Math. Soc. Translations (2) 1 (1955), 4965.CrossRefGoogle Scholar
[3]Helgason, S.. Differential Geometry and Symmetric Spaces. Academic Press: New York 1962.Google Scholar
[4]Helgason, S.. Duality and Radon transform for symmetric spaces. Amer. J. Math. 85 (1963), 667692.CrossRefGoogle Scholar
[5]Hirsch, M. W.. Foliations and non-compact transformation groups. Bull. Amer. Math. Soc. 76 (1970), 10201023.CrossRefGoogle Scholar
[6]Hof, H. C. Im. Die Geometne der Weylkammem in symmetrischen Räumen vom nichtkompakten Typ. Habilitationsschrift, Bonn, 1979.Google Scholar
[7]Mostow, G. D.. Strong Rigidity of Locally Symmetric Spaces. Princeton University Press: Princeton, 1973.Google Scholar
[8]Pugh, C. & Shub, M.. Ergodicity of Ansov actions. Invent. Math. 15 (1972), 123.Google Scholar