No CrossRef data available.
Article contents
On the flips for a synchronized system
Published online by Cambridge University Press: 28 June 2013
Abstract
It is shown that if an infinite synchronized system has a flip, then it has infinitely many non-conjugate flips, and that the result cannot be extended to the class of coded systems.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press, 2013
References
Coven, E. M.. Endomorphisms of substitution minimal sets. Z. Wahrsch. Verw. Gebiete 20 (1971), 129–133.Google Scholar
Fiebig, D. and Fiebig, U.-R.. The automorphism group of a coded system. Trans. Amer. Math. Soc. 348 (1996), 3173–3191.CrossRefGoogle Scholar
Gottschalk, W. H. and Hedlund, G. A.. A characterization of the Morse minimal set. Proc. Amer. Math. Soc. 15 (1964), 70–74.CrossRefGoogle Scholar
Kim, Y.-O., Lee, J. and Park, K. K.. A zeta function for flip systems. Pacific J. Math. 209 (2003), 289–301.Google Scholar
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.Google Scholar
Morse, M. and Hedlund, G. A.. Unending chess, symbolic dynamics and a problem in semigroups. Duke Math. J. 11 (1944), 1–7.CrossRefGoogle Scholar