Published online by Cambridge University Press: 13 October 2009
In this paper, we are interested in the limit theorem question for sums of indicator functions. We show that in every invertible ergodic dynamical system, for every increasing sequence (an)n∈ℕ⊂ℝ+ such that an↗∞ and an/n→0 as n→∞, there exists a dense Gδ of measurable sets A such that the sequence of the distributions of the partial sums is dense in the set of the probability measures on ℝ.