Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T01:04:47.407Z Has data issue: false hasContentIssue false

Non-abelian free group actions: Markov processes, the Abramov–Rohlin formula and Yuzvinskii’s formula

Published online by Cambridge University Press:  13 October 2009

LEWIS BOWEN*
Affiliation:
Mailstop 3368, Texas A&M University, College Station, TX 77843-3368, USA (email: [email protected])

Abstract

This paper introduces Markov chains and processes over non-abelian free groups and semigroups. We prove a formula for the f-invariant of a Markov chain over a free group in terms of transition matrices that parallels the classical formula for the entropy a Markov chain. Applications include free group analogues of the Abramov–Rohlin formula for skew-product actions and Yuzvinskii’s addition formula for algebraic actions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abramov, L. M. and Rohlin, V. A.. Entropy of a skew product of mappings with invariant measure. Vestnik Leningrad. Univ. Math. 17(7) (1962), 513.Google Scholar
[2]Bogenschütz, T. and Crauel, H.. The Abramov–Rokhlin formula. Ergodic Theory and Related Topics, III (Güstrow, 1990) (Lecture Notes in Mathematics, 1514). Springer, Berlin, 1992, pp. 3235.CrossRefGoogle Scholar
[3]Björklund, M. and Miles, R.. Entropy range problems and actions of locally normal groups. Discrete Contin. Dyst. Syst. 25(3) (2009), 981989.Google Scholar
[4]Benjamini, I., Lyons, R., Peres, Y. and Schramm, O.. Uniform spanning forests. Ann. Probab. 29(1) (2001), 165.Google Scholar
[5]Bollobás, B. and McKay, B. D.. The number of matchings in random regular graphs and bipartite graphs. J. Combin. Theory Ser. B 41(1) (1986), 8091.CrossRefGoogle Scholar
[6]Bowen, L.. Periodicity and circle packings of the hyperbolic plane. Geom. Dedicata 102 (2003), 213236.CrossRefGoogle Scholar
[7]Bowen, L.. A measure-conjugacy invariant for actions of free groups. Ann. of Math. (2) to appear.Google Scholar
[8]Bowen, L.. Isomorphism invariants for actions of sofic groups. J. Amer. Math. Soc. to appear.Google Scholar
[9]Bowen, L.. The ergodic theory of free group actions: entropy and the f-invariant. Groups, Geometry and Dynamics to appear, arXiv:0902.0174.Google Scholar
[10]Danilenko, A. I.. Entropy theory from the orbital point of view. Monatsh. Math. 134(2) (2001), 121141.Google Scholar
[11]Deninger, C.. Fuglede–Kadison determinants and entropy for actions of discrete amenable groups. J. Amer. Math. Soc. 19(3) (2006), 737758 (electronic).Google Scholar
[12]Deninger, C. and Schmidt, K.. Expansive algebraic actions of discrete residually finite amenable groups and their entropy. Ergod. Th. & Dynam. Sys. 27(3) (2007), 769786.CrossRefGoogle Scholar
[13]Elek, G.. The Euler characteristic of discrete groups and Yuzvinskii’s entropy addition formula. Bull. Lond. Math. Soc. 31(6) (1999), 661664.Google Scholar
[14]Friedman, N. A. and Ornstein, D. S.. On isomorphism of weak Bernoulli transformations. Adv. Math. 5 (1970), 365394.CrossRefGoogle Scholar
[15]Glasner, E.. Ergodic Theory Via Joinings (Mathematical Surveys and Monographs, 101). American Mathematical Society, Providence, RI, 2003, p. xii+384.CrossRefGoogle Scholar
[16]Katok, A.. Fifty years of entropy in dynamics: 1958–2007. J. Mod. Dyn. 1(4) (2007), 545596.Google Scholar
[17]Kolmogorov, A. N.. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 861864 (in Russian).Google Scholar
[18]Kolmogorov, A. N.. Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124 (1959), 754755 (in Russian).Google Scholar
[19]Lind, D. and Schmidt, K.. Preprint.Google Scholar
[20]Lind, D., Schmidt, K. and Ward, T.. Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math. 101(3) (1990), 593629.CrossRefGoogle Scholar
[21]Lyons, R.. Asymptotic enumeration of spanning trees. Combin. Probab. Comput. 14(4) (2005), 491522.CrossRefGoogle Scholar
[22]McKay, B. D.. Spanning trees in regular graphs. European J. Combin. 4 (1983), 149160.Google Scholar
[23]Ornstein, D.. Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4 (1970), 337352.Google Scholar
[24]Ornstein, D.. Two Bernoulli shifts with infinite entropy are isomorphic. Adv. Math. 5 (1970), 339348.Google Scholar
[25]Ornstein, D. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48 (1987), 1141.Google Scholar
[26]Parry, W.. Entropy and Generators in Ergodic Theory. W. A. Benjamin, New York, 1969, p. xii+124.Google Scholar
[27]Pemantle, R.. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19(4) (1991), 15591574.Google Scholar
[28]Pemantle, R.. Tree-indexed processes. Statist. Sci. 10(2) (1995), 200213.Google Scholar
[29]Sinaĭ, Ya. G.. On the concept of entropy for a dynamic system. Dokl. Akad. Nauk SSSR 124 (1959), 768771 (in Russian).Google Scholar
[30]Thomas, R. K.. The addition theorem for the entropy of transformations of G-spaces. Trans. Amer. Math. Soc. 160 (1971), 119130.Google Scholar
[31]Ward, T. and Zhang, Q.. The Abramov–Rohlin entropy addition formula for amenable group actions. Monatsh. Math. 114(3–4) (1992), 317329.Google Scholar
[32]Wilson, D. B.. Generating random spanning trees more quickly than the cover time. Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996). ACM, New York, 1996, pp. 296303.Google Scholar
[33]Yuzvinskii, S. A.. Metric properties of the endomorphisms of compact groups. Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 12951328 (in Russian).Google Scholar