Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T01:21:02.887Z Has data issue: false hasContentIssue false

Measure of minimal sets of polymodal maps

Published online by Cambridge University Press:  19 September 2008

E. Vargas
Affiliation:
Department of Mathematics, IME-USP, cidade universitaria ‘Armando de Salles Oliveira’ caixa postal 66281, 05389-970 São, Paulo-Brazil

Abstract

We consider a C2 non-renormalizable polymodal map with finitely many non-flat critical points of turning type and we prove that any minimal set of f has zero Lebesgue measure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BL1]Blokh, A. M. and Lyubich, M. Yu.. Measure of solenoidal attractors of unimodal maps of the interval. Math. Notes 48(5) (1990), 1520.CrossRefGoogle Scholar
[BL2]Blokh, A. M. and Lyubich, M. Yu.. Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems: 2. The smooth case. Ergod. Th. & Dynam. Sys. 9 (1989), 751758.CrossRefGoogle Scholar
[BL3]Bokh, A. M. and Lyubich, M. Yu.. Measure and dimension of solenoidal attractors of one dimensional dynamical systems. Commun. Math. Phys. 127 (1990), 573583.Google Scholar
[BL4]Blokh, A. M. and Lyubich, M. Yu.. Measurable dynamics of S-unimodal maps of the interval. Ann. Set E.N.S., serie 4e 24 (1991), 545573.Google Scholar
[BL5]Blokh, A. M. and Lyubich, M. Yu.. On decomposition of one-dimensional dynamical systems into ergodic components. The case of negative schwarzian. Leningrad Math. J. 1(1) (1990).Google Scholar
[BKNS]Bruin, H., Keller, G., Nowicki, T. and Strien, S. van. Absorbing Cantor sets in dynamical systems: Fibonacci maps. Preprint, Stony Brook (2/1994).Google Scholar
[G]Guckenheimer, J.. Limit sets of S-unimodal maps with zero entropy. Commun. Math. Phys. 110 (1987), 655659.CrossRefGoogle Scholar
[GJ]Guckenheimer, J. and Johnson, S.. Distortion of S-unimodal maps. Ann. Math. 132 (1990), 171–130.CrossRefGoogle Scholar
[HK]Hofbauer, F. and Keller, G.. Some remarks on recent results about S-unimodal maps. Ann. Inst. Henri Poincare 53(4) (1990), 413425.Google Scholar
[JS]Jacobson, M. and Swiatek, G.. Metric properties of non-renormalizable S-unimodal maps I: induced expansion and invariant measures. Ergod. Th. & Dynam. Sys. 14 (1994), 721755.CrossRefGoogle Scholar
[K]Keller, G.. Exponents, attractors and Hopf decomposition for interval maps. Ergod. Th. & Dynam. Sys. 10 (1990), 717744.Google Scholar
[L1]Lyubich, M. Yu.. Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems: 1. The case of negative schwarzian derivative. Ergod. Th. & Dynam. Sys. 9 (1989), 737749.CrossRefGoogle Scholar
[L2]Lyubich, M.. Ergodic theory for smooth one-dimensional dynamical systems. Preprint IMS Stony Brook 11 (1991).Google Scholar
[L3]Lyubich, M. Yu.. Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. Math. 140 (1994), 347404.Google Scholar
[LM]Lyubich, M. Yu. and Milnor, J.. The unimodal Fibonacci map. J. AMS 6 (1993), 425557.Google Scholar
[Ma]Mañé, R.. Hyperbolicity, sinks and measure in one dimensional dynamics. Commun. Math. Phys. 100 (1985), 495524.CrossRefGoogle Scholar
[Mt]Martens, M.. Distortion results and invariant Cantor sets of unimodal maps. Ergod. Th. & Dynam. Sys. 14 (1994), 331349.Google Scholar
[MMSS]Martens, M., Melo, W. de, Strien, S. J. van and Sullivan, D.. Bounded geometry and measure of attracting Cantor set of quadratic-like maps. Preprint (1988).Google Scholar
[Mi]Milnor, J.. On the concept of attractor. Commun. Math. Phys. 99 (1985), 177195; 102 (1985), 517–519.CrossRefGoogle Scholar
[MS1]Melo, W. de and Strien, S.J. van. A structure theorem in one-dimensional dynamics. Ann. Math. 129 (1989), 519546.Google Scholar
[MS2]Melo, W. de and Strien, S. J.. One-Dimensional Dynamics. Springer, New York, 1993.CrossRefGoogle Scholar
[S]Strien, S. J. van. Hyperbolicity and invariant measures for general C 2 interval maps satisfying the Misiurewicz condiction. Commun. Math. Phys. 128 (1990), 437495.CrossRefGoogle Scholar
[V1]Vargas, E.. Markov partition in non hyperbolic interval dynamics. Commun. Math. Phys. 138 (1991), 521535.Google Scholar
[V2]Vargas, E.. Bifurcation frequency for unimodal maps. Commun. Math. Phys. 41 (1991), 633650.Google Scholar