Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T23:58:50.923Z Has data issue: false hasContentIssue false

The escaping set of the exponential

Published online by Cambridge University Press:  29 June 2009

LASSE REMPE*
Affiliation:
Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK (email: [email protected])

Abstract

We show that the set I(f) of points that converge to infinity under iteration of the exponential map f(z)=exp (z) is a connected subset of the complex plane.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Devaney, R. L.. Knaster-like continua and complex dynamics. Ergod. Th. & Dynam. Sys. 13(4) (1993), 627634.CrossRefGoogle Scholar
[2]Devaney, R. L. and Jarque, X.. Indecomposable continua in exponential dynamics. Conform. Geom. Dyn. 6 (2002), 112.CrossRefGoogle Scholar
[3]Devaney, R. L. and Krych, M.. Dynamics of exp(z). Ergod. Th. & Dynam. Sys. 4(1) (1984), 3552.CrossRefGoogle Scholar
[4]Eremenko, A. È.. On the iteration of entire functions. Dynamical systems and ergodic theory (Warsaw, 1986), Vol. 23. Banach Center Publ., PWN, Warsaw, 1989, pp. 339345.Google Scholar
[5]Eremenko, A. È. and Lyubich, M. Y.. Dynamical properties of some classes of entire functions. Ann. Inst. Fourier (Grenoble) 42(4) (1992), 9891020.CrossRefGoogle Scholar
[6]Förster, M., Rempe, L. and Schleicher, D.. Classification of escaping exponential maps. Proc. Amer. Math. Soc. 136(2) (2008), 651663.CrossRefGoogle Scholar
[7]Mihaljević-Brandt, H.. Semiconjugacies, pinched Cantor bouquets and hyperbolic orbifolds. Manuscript, 2008.Google Scholar
[8]Rempe, L.. On a question of Eremenko concerning escaping sets of entire functions. Bull. London Math. Soc. 39(4) (2007), 661666, arXiv:math.DS/0610453.CrossRefGoogle Scholar
[9]Rempe, L.. On nonlanding dynamic rays of exponential maps. Ann. Acad. Sci. Fenn. Math. 32 (2007), 353369, arXiv:math.DS/0511588.Google Scholar
[10]Rippon, P. J. and Stallard, G. M.. On questions of Fatou and Eremenko. Proc. Amer. Math. Soc. 133(4) (2005), 11191126.CrossRefGoogle Scholar
[11]Rippon, P. J. and Stallard, G. M.. Escaping points of entire functions of small growth. Math. Z. 261(3) (2008), 557570.CrossRefGoogle Scholar
[12]Rottenfußer, G., Rückert, J., Rempe, L. and Schleicher, D.. Dynamic rays of entire functions. Ann. of Math. (2) to appear, arXiv:0704.3213Google Scholar
[13]Schleicher, D. and Zimmer, J.. Escaping points of exponential maps. J. London Math. Soc. (2) 67(2) (2003), 380400.CrossRefGoogle Scholar