Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T13:44:43.709Z Has data issue: false hasContentIssue false

Plastics in the Marine Environment

Published online by Cambridge University Press:  24 August 2009

Anthony M. Cundell
Affiliation:
Department of Plant Pathology-Entomology, University of Rhode Island, Kingston, Rhode Island 02881, U.S.A.

Extract

The pollution of the marine environment by plastics such as polyethylene, polyvinyl chloride, polystyrene, and polyurethane, is discussed. As plastic materials are relatively resistant to oxidative ageing and are generally not degraded by microorganisms, they will accumulate in coastal and oceanic waters. The origin of plastic pollutants, their distribution in the marine environment, and their persistence and ultimate fate, are largely unknown. The technology is available to manufacture plastic materials with a programmed service life which, if widely adopted, would reduce the accumulation of plastics in the sea. But their random distribution should be discouraged on behalf of the marine environment.

Type
Main Papers
Copyright
Copyright © Foundation for Environmental Conservation 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (1971 a). Trends in the plastics industry. Modern Plastics, 45, pp. 59.Google Scholar
Anon. (1971 b). Biodegradability: lofty goal for plastics. Chem. & Eng. News, 50, pp. 37–8.Google Scholar
Anon. (1973 a). Clearing the shelves for all-plastic soda and beer bottles. Modern Packaging, 10, pp. 22–5.Google Scholar
Anon. (1973 b). Plastic wastes are a burning issue. Chemical Week, 02 28, p. 51.Google Scholar
Arnold, L. K. (1968). Introduction to Plastics. Iowa State University Press, Ames: 287 pp.Google Scholar
Bellan-Santini, D., Arnaud, F., Arnaud, P., Bellan, G., Harmelin, J. G., Lecampion-Alsumard, T., Kit, L. T., Picard, J., Pouliquen, L. & Zibrowius, H. (1970). Etude qualitative et quantitative des salissures biologiques de plaques expérimentales immergées en pleine eau. 1. Conditions de I'expérience. Tethys, 1, pp. 709–14.Google Scholar
Carpenter, E. J. & Smith, K. L. (1972). Plastics on the Sargasso Sea surface. Science, 178, pp. 1240–1.CrossRefGoogle Scholar
Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. (1972). Polystyrene spherules in coastal waters. Science, 178, pp. 749–50.CrossRefGoogle ScholarPubMed
Coscarelli, W. (1964). Deterioration of organic materials by marine organisms. Pp. 113–47 in Principles and Application of Aquatic Microbiology (Ed. Heukelekian, H. & Dondero, N. C.). John Wiley, New York: xxxiii + 452 pp., illustr.Google Scholar
Cundell, A. M. & Mulcock, A. P. (1973). Measurement of the microbiological deterioration of vulcanized rubber. Material u. Organismen, 8, pp. 115.Google Scholar
Darby, R. J. & Kaplan, A. M. (1968). Fungal susceptibility of polyurethanes. Appl. Microbiol., 16, pp. 900–5.CrossRefGoogle ScholarPubMed
Darnay, A. & Franklin, W. E. (1969). The role of packaging in solid waste management, 1966 to 1976. Publ. SW-5c U.S. Dept of Health, Education and Welfare, Rockville, Maryland, p. 120.Google Scholar
Evans, D. M. & Levisohn, I. (1968). Biodeterioration of polyester-based polyurethane. Int. Biodetn Bull., 4, pp. 8992.Google Scholar
Heap, W. M. & Morrell, S. H. (1968). Microbiological deterioration of rubbers and plastics. J. Appl. Chem., 18, pp. 189–94.CrossRefGoogle Scholar
Heyerdahl, T. (1971). Atlantic Ocean pollution and biota observed by the ‘Ra’ Expeditions. Biological Conservation, 3(3), pp. 164–7, map.CrossRefGoogle Scholar
Jannasch, H. W., Eimhjellen, K., Wirsen, C. O. & Farmanfarmaian, A. (1971). Microbial degradation of organic matter in the deep sea. Science, 171, pp. 672–5.CrossRefGoogle ScholarPubMed
Jones, E. B. G. & Lecampion-Alsumard, T. (1970). The biodeterioration of polyurethane by marine Fungi. Int. Biodetn Bull., 6, pp. 119–24.Google Scholar
Joyner, R. S. (1971). Polyethylene. Modern Plastics, 48, pp. 72, 77, and 80.Google Scholar
Lecampion-Alsumard, T. (1970). Etude qualitative et quantitative des salissures biologiques de plaques expérimentales immergées en pleine eau. 2. Etude préliminaire de quelques pyrenomycetes marins récoltés sur des plaques de polyurethane. Tethys, 1, pp. 715–8.Google Scholar
Mills, J. & Eggins, H. O. W. (1970). Growth of thermophilic Fungi on oxidation products of polyethylene. Int. Biodetn Bull., 6, pp. 13–7.Google Scholar
Muraoka, J. S. (1969). Effect of deep-ocean environment on plastics. Pp. 519 in Materials Performance and the Deep Sea. American Society for Testing Materials, Philadelphia: 445 pp.CrossRefGoogle Scholar
Pratt, S. D., Saila, S. B., Gaines, A. G. & Krout, J. E. (1973). Biological effects of ocean disposal of solid waste. Marine Technical Report Series, University of Rhode Island, No. 9, 52 pp.Google Scholar
Scott, G. (1972). Plastics packaging and coastal pollution. Intern. J. Environ. Stud., 3, pp. 35–6.CrossRefGoogle Scholar
Scott, G. (1973). Improving the environment: Chemistry and plastic waste. New Scientist, pp. 267–72.Google Scholar
Smith, D. D. & Brown, R. P. (1971). Ocean disposal of barge-delivered liquid and solid wastes from U.S. coastal cities. Publ. SW-19c, Solid Waste Management Office, U.S. Environmental Protection Agency, pp. 33–4.Google Scholar
Sutherland, J. P. (1972). Quantitative analyses of seasonal progression in the fouling community at Beaufort, North Carolina. Pp. 176–7 in Abstracts, Third International Congress on Marine Corrosion and Fouling, National Bureau of Standards, Gaithersburg, Maryland, 2–6 10 1972.Google Scholar
Venrick, E. L., Backman, T. W., Bartram, W. C., Plah, C. J., Thornhill, M. S. & Yates, R. E. (1973). Manmade objects on the surface of the central North Pacific Ocean. Nature, London, 241, p. 271.Google Scholar
Wood, A. S. (1970). Plastics challenge in packaging: Disposability. Modern Plastics, 47, pp. 50–4Google Scholar