Nuclear fission reactors are widely regarded as the chief energy source of the future. This article holds that the hazards of such reactors, in comparison with other prospective energy sources, are unacceptably high. The biological effects of ionizing radiations, as analyzed in the recent BEIR Report (1972) of a committee of the U.S. National Academy of Sciences, are briefly reviewed; the effects include genetic mutations, induction of cancer, and developmental abnormalities. Hazards are encountered at many stages in the process of nuclear power production: in the mining and processing of uranium, in the design and operation of the reactors, and in the handling, shipping, and storage, of the huge quantities of radioactive wastes produced by the reactors. Grave questions have been raised concerning the safety of the emergency core-cooling systems of present reactors; and the planned breeder reactors, which will contain great quantities of plutonium-239, are likely to be even more hazardous. Storage of radioactive wastes, away from all risks of environmental contamination, in order to be acceptable must be secure for about half-a-million years. No place on Earth has yet been found for which such safety can be guaranteed. Hazards of theft, sabotage, and war, are formidable threats to the future of nuclear fission power.
Use of fission power is not compulsory; present supplies of coal are adequate for two or three centuries, though its mining and use will require drastic steps to protect the environment, thereby raising costs. Alternative, and far less dangerously polluting, sources of large-scale energy production exist or can be developed: notably solar energy and probably nuclear fusion, where intensive research gives high promise of adequate systems for large-scale energy production within 20–30 years. Geothermal energy, though more limited in amount, is also promising. Great savings can also be made by reducing the extravagant use of energy, especially in such countries as the United States; and various conservation measures are indicated.