Hostname: page-component-f554764f5-nwwvg Total loading time: 0 Render date: 2025-04-16T10:29:12.079Z Has data issue: false hasContentIssue false

TIME-VARYING COMPLETE SUBSET AVERAGING IN A DATA-RICH ENVIRONMENT

Published online by Cambridge University Press:  21 March 2025

Haiqi Li
Affiliation:
Hunan University
Jing Zhang*
Affiliation:
University of Jinan
Xingyi Chen
Affiliation:
Xiamen University
Yongmiao Hong
Affiliation:
Chinese Academy of Sciences and University of Chinese Academy of Sciences
*
Address correspondence to Jing Zhang, Business School, University of Jinan, Jinan, China, e-mail: [email protected].

Abstract

This study proposes two novel time-varying model-averaging methods for time-varying parameter regression models. When the number of predictors is small, we propose a novel time-varying complete subset-averaging (TVCSA) procedure, where the optimal time-varying subset size is obtained by minimizing the local leave-h-out cross-validation criterion. The TVCSA method is asymptotically optimal for achieving the lowest possible local mean squared error. When the number of predictors is relatively large, we propose a factor TVCSA method to reduce the computational burden by first reducing the dimension of predictors by extracting a few factors using principal component analysis and then obtaining the TVCSA forecasts from time-varying models with the generated factors. We show that the TVCSA estimator remains asymptotically optimal in the presence of generated factors. Monte Carlo simulation studies have provided favorable evidence for the TVCSA methods relative to the popular model-averaging methods in the literature. Empirical applications to equity premiums and inflation forecasting highlight the practical merits of the proposed methods.

Type
ARTICLES
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

We thank Peter C. B. Phillips (Editor), Robert Taylor (Co-Editor), three referees for their comments and suggestions. Li thanks the support of the National Natural Science Foundation of China (NSFC) (Project No. 72171076). Zhang thanks the support of Shandong Provincial Natural Science Foundation of China for Young Scholars (Project No. ZR2024QG138) and the Higher Education Institution Youth Entrepreneurship Team Plan of Shandong Province (Project No. 2024KJB007). Hong thanks the support of the Basic Scientific Center Project entitled as “Econometric Modeling and Economic Policy Studies” of NSFC (Project No. 71988101).

References

REFERENCES

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B., & Csaki, F. (Eds.), Second international symposium on information theory (pp. 267281). Akademiai Kiado.Google Scholar
Ando, T., & Li, K. C. (2014). A model-averaging approach for high-dimensional regression. Journal of the American Statistical Association , 109, 254265.Google Scholar
Ang, A., & Bekaert, G. (2007). Stock return predictability: Is it there? The Review of Financial Studies , 20(3), 651707.CrossRefGoogle Scholar
Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica , 70(1), 191221.CrossRefGoogle Scholar
Bai, J., & Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica , 74(4), 11331150.CrossRefGoogle Scholar
Boyd, J. H., Hu, J., & Jagannathan, R. (2005). The stock market’s reaction to unemployment news: Why bad news is usually good for stocks. The Journal of Finance , 60(2), 649672.CrossRefGoogle Scholar
Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: An integral part of inference. Biometrics , 53(2), 603618.CrossRefGoogle Scholar
Cai, Z. (2007). Trending time-varying coefficient time series models with serially correlated errors. Journal of Econometrics , 136(1), 163188.CrossRefGoogle Scholar
Cai, Z., & Tiwari, R. C. (2000). Application of a local linear autoregressive model to BOD time series. Environmetrics , 11(3), 341350.3.0.CO;2-8>CrossRefGoogle Scholar
Campbell, J. Y., & Thompson, S. (2008). Predicting excess stock returns out of sample: Can anything beat the historical average? The Review of Financial Studies , 21(4), 15091531.CrossRefGoogle Scholar
Chan, J. C., Koop, G., Leon-Gonzalez, R., & Strachan, R. W. (2012). Time varying dimension models. Journal of Business & Economic Statistics , 30(3), 358367.CrossRefGoogle Scholar
Chava, S., Gallmeyer, M., & Park, H. (2015). Credit conditions and stock return predictability. Journal of Monetary Economics , 74, 117132.CrossRefGoogle Scholar
Chen, B., & Hong, Y. (2012). Testing for smooth structural changes in time series models via nonparametric regression. Econometrica , 80(3), 11571183.Google Scholar
Chen, B., & Hong, Y. (2016). Detecting for smooth structural changes in GARCH models. Econometric Theory , 32(3), 740791.CrossRefGoogle Scholar
Chen, B., & Maung, K. (2023). Time-varying forecast combination for high-dimensional data. Journal of Econometrics , 237(2), 105418.CrossRefGoogle Scholar
Chen, J., Li, D., Linton, O., & Lu, Z. (2018). Semiparametric ultra-high dimensional model averaging of nonlinear dynamic time series. Journal of the American Statistical Association , 113(522), 919932.CrossRefGoogle Scholar
Chen, Q., Hong, Y., & Li, H. (2024). Time-varying forecast combination for factor-augmented regressions with smooth structural changes. Journal of Econometrics , 240(1), 105693.CrossRefGoogle Scholar
Cheng, X., & Hansen, B. E. (2015). Forecasting with factor-augmented regression: A frequentist model averaging approach. Journal of Econometrics , 186(2), 280293.CrossRefGoogle Scholar
Claeskens, G., & Hjort, N. L. (2003). The focused information criterion. Journal of the American Statistical Association , 98(464), 900916.CrossRefGoogle Scholar
Claeskens, G., Magnus, J., Vasnev, A., & Wang, W. (2016). The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting , 32, 754762.CrossRefGoogle Scholar
Costa, A., Ferreira, P., Gaglianone, W., Guillén, O., Issler, J., & Lin, Y. (2021). Machine learning and oil price point and density forecasting. Energy Economics , 102, 105494.Google Scholar
Driesprong, G., Jacobsen, B., & Maat, B. (2008). Striking oil: Another puzzle? Journal of Financial Economics , 89(2), 307327.Google Scholar
Elliott, G., Gargano, A., & Timmermann, A. (2013). Complete subset regressions. Journal of Econometrics , 177(2), 357373.Google Scholar
Elliott, G., Gargano, A., & Timmermann, A. (2015). Complete subset regressions with large-dimensional sets of predictors. Journal of Economic Dynamics and Control , 54, 86110.CrossRefGoogle Scholar
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association , 96(456), 13481360.CrossRefGoogle Scholar
Gao, Y., Zhang, X., Wang, S., & Zou, G. (2016). Model averaging based on leave-subject-out cross-validation. Journal of Econometrics , 192(1), 139151.CrossRefGoogle Scholar
Garcia, M. G., Medeiros, M. C., & Vasconcelos, G. F. (2017). Real-time inflation forecasting with high-dimensional models: The case of Brazil. International Journal of Forecasting , 33(3), 679693.Google Scholar
Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica , 74(6), 15451578.CrossRefGoogle Scholar
Hall, P., & Wehrly, T. E. (1991). A geometrical method for removing edge effects from kernel-type nonparametric regression estimators. Journal of the American Statistical Association , 86(415), 665672.Google Scholar
Hansen, B. E. (2001). The new econometrics of structural change: Dating breaks in US labour productivity. Journal of Economic Perspectives , 15(4), 117128.CrossRefGoogle Scholar
Hansen, B. E. (2007). Least squares model averaging. Econometrica , 75(4), 11751189.CrossRefGoogle Scholar
Hansen, B. E. (2008a). Least-squares forecast averaging. Journal of Econometrics , 146(2), 342350.Google Scholar
Hansen, B. E. (2008b). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory , 24(3), 726748.CrossRefGoogle Scholar
Hansen, B. E., & Racine, J. S. (2012). Jackknife model averaging. Journal of Econometrics , 167(1), 3846.CrossRefGoogle Scholar
Hirshleifer, D., Hou, K., & Teoh, S. H. (2009). Accruals, cash flows, and aggregate stock returns. Journal of Financial Economics , 91(3), 389406.CrossRefGoogle Scholar
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science , 14(4), 382417.Google Scholar
Kabaila, P. (2002). On variable selection in linear regression. Econometric Theory , 18(4), 913925.CrossRefGoogle Scholar
Kelly, B., & Pruitt, S. (2015). The three-pass regression filter: A new approach to forecasting using many predictors. Journal of Econometrics , 186(2), 294316.Google Scholar
Lee, J. H., & Shin, Y. (2023). Complete subset averaging for quantile regressions. Econometric Theory , 39(1), 146188.CrossRefGoogle Scholar
Leung, G., & Barron, A. R. (2006). Information theory and mixing least-squares regressions. IEEE Transactions on Information Theory , 52(8), 33963410.CrossRefGoogle Scholar
Li, K.-C. (1987). Asymptotic optimality for ${C}_p$ , ${C}_L$ , cross-validation and generalized cross-validation: Discrete index set. The Annals of Statistics , 15(8), 958975.CrossRefGoogle Scholar
Liao, J., Zong, X., Zhang, X., & Zou, G. (2019). Model averaging based on leave-subject-out cross-validation for vector autoregressions. Journal of Econometrics , 209(1), 3560.CrossRefGoogle Scholar
Liao, J., Zou, G., Gao, Y., & Zhang, X. (2021). Model averaging prediction for time series models with a diverging number of parameters. Journal of Econometrics , 223(1), 190221.CrossRefGoogle Scholar
Lin, C.-F. J., & Teräsvirta, T. (1994). Testing the constancy of regression parameters against continuous structural change. Journal of Econometrics , 62(2), 211228.CrossRefGoogle Scholar
Liu, C.-A., & Kuo, B.-S. (2016). Model averaging in predictive regressions. The Econometrics Journal , 19(2), 203231.CrossRefGoogle Scholar
Lu, X., & Su, L. (2015). Jackknife model averaging for quantile regressions. Journal of Econometrics , 188(1), 4058.CrossRefGoogle Scholar
Mallows, C. L. (1973). Some comments on ${C}_p$ . Technometrics , 15(15), 661675.Google Scholar
McCracken, M. W., & Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics , 34(4), 574589.CrossRefGoogle Scholar
McCracken, M. W., & Ng, S. (2021). FRED-QD: A quarterly database for macroeconomic research. Review, Federal Reserve Bank of St. Louis , 103(1), 144.Google Scholar
Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., & Zilberman, E. (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. Journal of Business & Economic Statistics , 39(1), 98119.Google Scholar
Meligkotsidou, L., Panopoulou, E., Vrontos, I. D., & Vrontos, S. D. (2014). A quantile regression approach to equity premium prediction. Journal of Forecasting , 33(7), 558576.CrossRefGoogle Scholar
Meligkotsidou, L., Panopoulou, E., Vrontos, I. D., & Vrontos, S. D. (2021). Out-of-sample equity premium prediction: A complete subset quantile regression approach. The European Journal of Finance , 27(1-2), 110135.CrossRefGoogle Scholar
Ng, S. (2013). Variable selection in predictive regressions. In Elliott, G., & Timmermann, A. (Eds.), Handbook of economic forecasting (volume 2, pp. 752789). Elsevier.Google Scholar
Phan, D. H. B., Sharma, S. S., & Narayan, P. K. (2015). Stock return forecasting: Some new evidence. International Review of Financial Analysis , 40, 3851.CrossRefGoogle Scholar
Phillips, P. C. B. (2015). Pitfalls and possibilities in predictive regression. Journal of Financial Econometrics , 13(3), 521555.CrossRefGoogle Scholar
Rapach, D., & Zhou, G. (2013). Forecasting stock returns. In Elliott, G., & Timmermann, A. (Eds.), Handbook of economic forecasting (volume 2, pp. 328383). Elsevier.Google Scholar
Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-sample equity premium prediction: Combination forecasts and links to the real economy. The Review of Financial Studies , 23(2), 821862.CrossRefGoogle Scholar
Robinson, P. M. (1989). Nonparametric estimation of time-varying parameters. In Hackl, P. (Ed.), Statistical analysis and forecasting of economic structural change (volume 19, pp. 253264). Springer.Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics , 6, 461464.CrossRefGoogle Scholar
Smith, J., & Wallis, K. (2009). A simple explanation of the forecast combination puzzle. Oxford Bulletin of Economics and Statistics , 71(3), 331355.CrossRefGoogle Scholar
Steel, M. F. J. (2020). Model averaging and its use in economics. Journal of Economic Literature , 58(3), 644719.Google Scholar
Stock, J. H., & Watson, M. W. (1996). Evidence on structural instability in macroeconomic time series relations. Journal of Business & Economic Statistics , 14(1), 1130.Google Scholar
Stock, J. H., & Watson, M. W. (1999). A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series. In Engle, R., & White, H. (Eds.), Cointegraion, causality, and forecasting: A festschrift in honour of Clive W.J. Granger , pages 144. Oxford University Press.Google Scholar
Stock, J. H., & Watson, M. W. (2003). How did leading indicator forecasts perform during the 2001 recession? FRB Richmond Economic Quarterly , 89(3), 7190.Google Scholar
Stock, J. H., & Watson, M. W. (2004). Combination forecasts of output growth in a seven-country data set. Journal of Forecasting , 23(6), 405430.Google Scholar
Stock, J. H., & Watson, M. W. (2007). Why has US inflation become harder to forecast? Journal of Money, Credit and Banking , 39, 333.CrossRefGoogle Scholar
Sun, Y., Hong, Y., Lee, T.-H., Wang, S., & Zhang, X. (2021). Time-varying model averaging. Journal of Econometrics , 222(2), 974992.CrossRefGoogle Scholar
Sun, Y., Hong, Y., Wang, S., & Zhang, X. (2023). Penalized time-varying model averaging. Journal of Econometrics , 235(2), 13551377.CrossRefGoogle Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology , 58(1), 267288.CrossRefGoogle Scholar
Wan, A. T., Zhang, X., & Zou, G. (2010). Least squares model averaging by Mallows criterion. Journal of Econometrics , 156(2), 277283.CrossRefGoogle Scholar
Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies , 21(4), 14551508.CrossRefGoogle Scholar
Yousuf, K., & Ng, S. (2021). Boosting high dimensional predictive regressions with time varying parameters. Journal of Econometrics , 224(1), 6087.CrossRefGoogle Scholar
Yuan, Z., & Yang, Y. (2005). Combining linear regression models: When and how? Journal of the American Statistical Association , 100(472), 12021214.CrossRefGoogle Scholar
Zhang, X., Wan, A. T., & Zou, G. (2013). Model averaging by jackknife criterion in models with dependent data. Journal of Econometrics , 174(2), 8294.CrossRefGoogle Scholar
Zhang, X., Zou, G., Liang, H., & Carroll, R. J. (2020). Parsimonious model averaging with a diverging number of parameters. Journal of the American Statistical Association , 115(530), 972984.Google ScholarPubMed
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material
Download Li et al. supplementary material(File)
File 571.8 KB