Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T17:57:49.960Z Has data issue: false hasContentIssue false

AN EQUIVALENCE RESULT FOR VC CLASSES OF SETS

Published online by Cambridge University Press:  24 September 2003

Scott Joslin
Affiliation:
Stanford University
Robert P. Sherman
Affiliation:
California Institute of Technology

Abstract

Let and Θ be infinite sets and let × Θ. We show that the class of projections of A onto is a Vapnik–Chervonenkis (VC) class of sets if and only if the class of projections of A onto Θ is a VC class. We illustrate the result in the context of semiparametric estimation of a transformation model. In this application, the VC property is hard to establish for the projection class of interest but easy to establish for the other projection class.

Type
MISCELLANEA
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrevaya, J. (1999) Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable. Journal of Econometrics 93, 203228.Google Scholar
Abrevaya, J. (2002) Pairwise-Difference Rank Estimation of the Transformation Model. Manuscript, University of Chicago Graduate School of Business.
Andrews, D.W. (1994) Empirical process methods in econometrics. In R.F. Engle & D.L. McFadden (eds.), Handbook of Econometrics, vol. 4, pp. 22472294. Amsterdam: North-Holland.
Asparouhova, E., T. Asparouhov, R. Golanski, K. Kasprzyk, & R.P. Sherman (2002) Rank estimators for a transformation model. Econometric Theory 18, 10991120.Google Scholar
Box, G.E.P. & D.R. Cox (1964) An analysis of transformations. Journal of the Royal Statistical Society, Series B 34, 187220.Google Scholar
Cavanagh, C.L. & R.P. Sherman (1998) Rank estimators for monotonic index models. Journal of Econometrics 84, 351381.Google Scholar
Chen, S. (2002) Rank estimation of transformation models. Econometrica 70, 16831697.Google Scholar
Han, A.K. (1987a) A nonparametric analysis of transformations. Journal of Econometrics 35, 191209.Google Scholar
Han, A.K. (1987b) Non-parametric analysis of a generalized regression model. Journal of Econometrics 35, 303316.Google Scholar
Khan, S. (2001) Two stage rank estimation of quantile index models. Journal of Econometrics 100, 319355.Google Scholar
Manski, C. (1975) Maximum score estimation of the stochastic utility model of choice. Journal of Econometrics 3, 205228.Google Scholar
Manski, C. (1985) Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator. Journal of Econometrics 27, 313334.Google Scholar
Pakes, A. & D. Pollard (1989) Simulation and the asymptotics of optimization estimators. Econometrica 57, 10271057.Google Scholar
Pollard, D. (1984) Convergence of Stochastic Processes. New York: Springer-Verlag.
Pollard, D. (1989) Asymptotics via empirical processes. Statistical Science 4, 341366.Google Scholar
Stengle, G. & J.E. Yukich (1989) Some new Vapnik–Chervonenkis classes. Annals of Statistics 17, 14411446.Google Scholar
van den Dries, L. (1998) Tame Topology and O-minimal Structures. Cambridge: Cambridge University Press.
Wenocur, R.S. & R.M. Dudley (1981) Some special Vapnik–Chervonenkis classes. Discrete Mathematics 33, 313318.Google Scholar