Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T22:58:44.695Z Has data issue: false hasContentIssue false

The links between large igneous provinces, continental break-up and environmental change: evidence reviewed from Antarctica

Published online by Cambridge University Press:  22 July 2013

Bryan C. Storey
Affiliation:
Gateway Antarctica, Private Bag 4800, University of Canterbury, Christchurch, New Zealand
Alan P. M. Vaughan
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, England
Teal R. Riley
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, England

Abstract

Earth history is punctuated by events during which large volumes of predominantly mafic magmas were generated and emplaced by processes that are generally accepted as being, unrelated to ‘normal’ sea-floor spreading and subduction processes. These events form large igneous provinces (LIPs) which are best preserved in the Mesozoic and Cenozoic where they occur as continental and ocean basin flood basalts, giant radiating dyke swarms, volcanic rifted margins, oceanic plateaus, submarine ridges, and seamount chains. The Mesozoic history of Antarctica is no exception in that a number of different igneous provinces were emplaced during the initial break-up and continued disintegration of Gondwana, leading to the isolation of Antarctica in a polar position. The link between the emplacement of the igneous rocks and continental break-up processes remains controversial. The environmental impact of large igneous province formation on the Earth System is equally debated. Large igneous province eruptions are coeval with, and may drive environmental and climatic effects including global warming, oceanic anoxia and/or increased oceanic fertilisation, calcification crises, mass extinction and release of gas hydrates.

This review explores the links between the emplacement of large igneous provinces in Antarctica, the isolation of Antarctica from other Gondwana continents, and possibly related environmental and climatic changes during the Mesozoic and Cenozoic.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Anderson, D. L. 1982. Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297, 391–93.Google Scholar
Anderson, D. L. 2000. The thermal state of the upper mantle: no role for mantle plumes. Geophysical Research Letters 27, 3623–26.Google Scholar
Anderson, D. L. 2005. Large igneous provinces, delamination, and fertile mantle. Elements 1, 271–75.Google Scholar
Antonini, P., Picciirillo, E. M., Petrini, R., Civetta, L., D'Antonio, M. & Orsi, G. 1999. Enriched mantle–Dupal signature in the genesis of the Jurassic Ferrar tholeiites from Prince Albert Mountains (Victoria Land, Antarctica). Contributions to Mineralogy and Petrology 136, 119.Google Scholar
Aragón, E., Rodriguez, A. M. I. & Benialgo, A. 1996. A caldera field at the Marifil Formation: new volcanogenic interpretation, North Patagonian massif, Argentina. Journal of South American Earth Sciences 9, 321–28.Google Scholar
Beerling, D. J., & Royer, D. L. 2002. Fossil plants as indicators of the Phanerozoic global carbon cycle. Annual Review of Earth & Planetary Sciences 30, 527–56.Google Scholar
Behrendt, J. C., LeMasurier, W. E., Cooper, A. K., Tessensohn, F., Tréhu, A. & Damaske, D. 1991. Geophysical studies of the West Antarctic rift system. Tectonics 10, 1257–73.Google Scholar
Behrendt, J. C., LeMasurier, W. & Cooper, A. K. 1992. The West Antarctic Rift System – a propagating rift captured by a mantle plume?In Yoshida, K., Kaminuma, K. & Shiraishi, K. (eds) Recent Progress in Antarctic Earth Science, 315–22, Tokyo: Terra Science.Google Scholar
Benton, M. J. 1996. Testing the roles of competition and expansion in tetrapod evolution. Proceedings of the Royal Society of London, Series B 263(1370), 641–46.Google Scholar
Bott, M. 1992. The styress regime associated with continental break-up. In Storey, B. C., Alabaster, T. & Pankhurst, R. J. (eds) Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publication 68, 125–36. Bath, UK: the Geological Society Publishing House.Google Scholar
Brewer, T. S., Hergt, J. M., Hawkesworth, C. J., Rex, D. & Storey, B. C. 1992. Coats Land dolerites and the generation of Antarctic continental flood basalts. In Storey, B. C., Alabaster, T. & Pankhurst, R. J. (eds) Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publication 68, 185208. Bath, UK: the Geological Society Publishing House.Google Scholar
Bryan, S. E., Riley, T. R., Jerram, D. A., Stephens, D. J. & Leat, P. T. 2002. Silicic volcanism: an undervalued component of large igneous provinces and volcanic rifted margins. Geological Society of America Special Paper 362, 97118.Google Scholar
Bryan, S. E., Peate, I. U., Peate, D. W., Self, S., Jerram, D. A., Mawby, M. R., Marsh, J. S. & Miller, J. A. 2010. The largest volcanic eruptions on Earth. Earth-Science Reviews 102(3–4), 207–29.Google Scholar
Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. 2008. Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the core–mantle boundary. Earth and Planetary Science Letters 265, 4960.Google Scholar
Coltice, N., Phillips, B. R., Bertrand, H., Ricard, Y. & Rey, P. 2007. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391–94.Google Scholar
Coltice, N., Bertrand, H., Rey, P., Jourdan, F., Phillips, B. R. & Ricard, Y. 2009. Global warming of the mantle beneath continents back to the Archaean. Gondwana Research 15, 254–66.Google Scholar
Cohen, A. S., Coe, A. L., Harding, S. M. & Schwark, L. 2004. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32(2), 157–60.Google Scholar
Condie, K. C. 2004. Supercontinents and superplume events: distinguishing signals in the geologic record. Physics of the Earth and Planetary Interiors 146(1–2), 319–32.Google Scholar
Condie, K. C., Marais, D. J. D. & Abbott, D. 2001. Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precambrian Research 106(3–4), 239–60.Google Scholar
Condie, K. C., Abbott, D. & Des Marais, D. J. 2002. Superplume events in Earth history: causes and effects – preface. Journal of Geodynamics 34(2), 159–62.Google Scholar
Conrad, C. P. & Gurnis, M. 2003. Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time. Geochemistry, Geophysics, Geosystems 4(3), 1031.Google Scholar
Courtillot, V. & Renne, P. R. 2003. On the ages of flood basalt events. Compte Rendus – Académie des Sciences 335, 113–40.Google Scholar
Cox, K. G. 1988. The Karoo province. In MacDougall, J. D. (ed.) Continental Flood Basalts, 239–71, Dordrecht: Kluwer Academic Publishers.Google Scholar
Cox, K. G. 1992. Karoo igneous activity, and the early stages of the break-up of Gondwanaland. In Storey, B. C., Alabaster, T. & Pankhurst, R. J. (eds) Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publication 68, 137–48. Bath, UK: Geological Society Publishing House.Google Scholar
Curtis, M. L., Riley, T. R., Owens, W. H., Leat, P. T. & Duncan, R. A. 2008. The form, distribution and anisotropy of magnetic susceptibility of Jurassic dykes in H. U. Sverdrupfjella, Dronning Maud Land, Antarctica. Implications for dyke swarm emplacement. Journal of Structural Geology 30, 1429–47.Google Scholar
Dalziel, I. W. D., De Wit, M. J. & Palmer, K. F. 1974. Fossil marginal basin in the southern Andes. Nature 250(5464), 291–94.Google Scholar
Dalziel, I. W. D., Lawver, L. A. & Murphy, J. B. 2000. Plumes, orogenesis, and supercontinental fragmentation. Earth and Planetary Science Letters 178(1–2), 111.Google Scholar
Dalziel, I. W. D. & Elliot, D. H. 1982. West Antarctica: Problem child of Antarctica. Tectonics 1, 319.Google Scholar
Davies, H. J. & Bunge, H. P. 2006. Are splash plumes the origin of minor hotspots? Geology 34, 349–52.Google Scholar
Davis, J. M., Elston, W. E. & Hawkesworth, C. J. 1993. Basic and intermediate volcanism of the Mogollon–Datil volcanic field: implications for mid-Tertiary tectonic transitions in southwestern New Mexico, USA. In Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R. (eds) Magmatic processes and plate tectonics. Geological Society, London, Special Publication 76, 469–88. Bath, UK: Geological Society Publishing House.Google Scholar
Eagles, G., Larter, R. D., Gohl, K. & Vaughan, A. P. M. 2009. West Antarctic Rift System in the Antarctic Peninsula. Geophysical Research Letters 36(21), DOI: 10.1029/2009gl040721.Google Scholar
Eagles, G. & Konig, M. 2008. A model of plate kinematics in Gondwana breakup. Geophysical Journal International 173(2), 703–17.Google Scholar
Eagles, G. & Vaughan, A. P. M. 2009. Gondwana breakup and plate kinematics: Business as usual. Geophysical Research Letters 36(10). DOI: 1029/2009gl037552.Google Scholar
Elkins-Tanton, L. T. 2005. Continental magmatism caused by lithospheric delamination. In Foulger, R., Natland, J. H., Presnall, D. C. & Anderson, D. L. (eds) Plates, Plumes and Paradigms. Geological Society of America, Special Publications 388, 449–61.Google Scholar
Ellam, R. M., Carlson, R. W. & Shirley, S. B. 1992. Evidence from Re–Os isotopes for plume–lithosphere mixing in Karoo flood basalt genesis. Nature 359, 718–21.Google Scholar
Elliot, D. H., Fleming, T. H., Kyle, P. R. & Foland, K. A. 1999. Long-distance transport of magmas in the Jurassic Ferrar large igneous province, Antarctica. Earth and Planetary Science Letters 167, 89104.Google Scholar
Elliot, D. H. & Fleming, T. H. 2000. Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28, 539–42.Google Scholar
Elliot, D. H. & Fleming, T. H. 2004. Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Research 7, 223–37.Google Scholar
Elliot, D. H. & Hanson, R. E. 2001. Origin of widespread, exceptionally thick basaltic phreatomagmatic tuff breccia in the Middle Jurassic Prebble and Mawson Formations, Antarctica. Journal of Volcanology and Geothermal Research 111(1–4), 183201.Google Scholar
Encarnación, J., Fleming, T. H., Elliot, D. H. & Eales, H. V. 1996. Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology 24, 535–38.Google Scholar
Erba, E. 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology 52(1–4), 85106.Google Scholar
Erlank, A. J. 1984. Petrogenesis of the Volcanic Rocks of the Karoo Province. Geological Society of South Africa, Special Publications 13. Johannesburg: Geological Society of South Africa.Google Scholar
Ernst, R. E. & Bell, K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology 98(1–4), 5576.Google Scholar
Faccenna, C., Becker, T. W., Lallemandc, S., Lagabriellec, Y.Funiciellod, F. & Piromallo, C. 2010. Subduction-triggered magmatic pulses: A new class of plumes? Earth and Planetary Science Letters 299, 5468.Google Scholar
Faccenna, C. & Becker, T. W. 2010. Shaping mobile belt from small scale convection. Nature 465, 602–05.Google Scholar
Féraud, G., Alric, V., Fornari, M., Bertrand, H. & Haller, M. 1999. 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism relating to Gondwana break-up and subduction. Earth and Planetary Science Letters 172, 8396.Google Scholar
Ferraccioli, F., Coren, F., Bozzo, E., Zanolla, C., Gandolfi, S., Tabacco, I. & Frezzotti, M. 2001. Rifted(?) crust at the East Antarctic Craton margin: gravity and magnetic interpretation along a traverse across the Wilkes Subglacial Basin region. Earth and Planetary Science Letters 192(3), 407–21.Google Scholar
Ferris, J., Johnson, A. & Storey, B. C. 1998. Form and extent of the Dufek intrusion, Antarctica, from newly compiled aeromagnetic data. Earth and Planetary Science Letters 154, 185202.Google Scholar
Ferris, J., Vaughan, A. P. M. & Storey, B. C. 2000. Relics of a complex triple junction in the Weddell Sea embayment, Antarctica. Earth and Planetary Science Letters 178, 215–30.Google Scholar
Ferris, J., Storey, B. C., Vaughan, A. P. M., Kyle, P. R. & Jones, P. C. 2003. The Dufek and Forrestal intrusions, Antarctica: A centre for Ferrar large igneaous province dyke emplacement. Geophysical Research letters 30(6), 81.181.4.Google Scholar
Finn, C. A., Muller, R. D. & Panter, K. S. 2005. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochemistry, Geophysics, Geosystems 6(2). DOI: 10.1029/2004GC000723.Google Scholar
Fitton, J. G., James, D., Kempton, P. D., Ormerod, D. S. & Leeman, W. P. 1988. Role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the western U.S. In Menzies, M. A. & Cox, K. G. (eds) Oceanic and continental lithosphere: Similarities and differences. Journal of Petrology Special Volume(1) 331–49.Google Scholar
Fleming, T. H., Elliot, D. H., Jones, J. M., Bowman, J. R. & Siders, M. A. 1992. Chemical and isotopic variations in an iron-rich flow from the Kirkpatrick Basalt, north Victoria Land, Antarctica: implication for low-temperature alteration. Contributions to Mineralogy and Petrology 73, 105–17.Google Scholar
Foulger, G. R. 2007. The “plate” model for the genesis of melting anomalies. In Foulger, G. R. & Jurdy, D. M. (eds) Plates, Plumes, and Planetary Processes. Geological Society of America, Special Paper 430, 128.Google Scholar
Foulger, G. R., Natland, J. H., Presnall, D. C. & Anderson, D. L. 2005. (eds) Plates, Plumes and Paradigms. Geological Society of America, Special Publication 388. 881 pp.Google Scholar
Ghosh, A. & Holt, W. E. 2012. Plate motions and stresses from global dynamic models. Science 335(6070), 838–43.Google Scholar
Gibson, S. A., Thompson, R. N. & Dickin, A. P. 2000. Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters 174, 355–74.Google Scholar
Grunow, A. M., Kent, D. V. & Dalziel, I. W. D. 1987. Evolution of the Weddell Sea basin: New palaeomagnetic constraints. Earth Planetary Science Letters 86, 1626.Google Scholar
Gurnis, M. 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332, 695–99.Google Scholar
Gutierrez-Alonso, G., Fernandez-Suarez, J., Weil, A. B., Murphy, J. B., Nance, R. D., Corfu, F. & Johnston, S. T. 2008. Self-subduction of the Pangaean global plate. Nature Geoscience 1(8), 549–53.Google Scholar
Haggerty, S. E. 1999. Earth and planetary sciences – A diamond trilogy: Superplumes, supercontinents and supernovae. Science 285(5429), 851–60.Google Scholar
Hallam, A. & Wignall, P. B. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48(4), 217–50.Google Scholar
Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. 1992. Mantle plumes and entrainment: Isotopic evidence. Science 256(5056), 517–20.Google Scholar
Hart, S. R., Blusztajn, J. & Craddock, C. 1995. Cenozoic volcanism in Antarctica: Jones Mountains and Peter I Island, Geochimica et Cosmochimica Acta 59(16), 3379–88.Google Scholar
Hart, S. R., Blusztajn, J., LeMasurier, W. E., Rex, W. C., Hawkesworth, C. E. & Arndt, N. T. E. 1997. Hobbs Coast Cenozoic volcanism: Implications for the West Antarctic rift system, Chemical Geology 139(1–4), 223–48.Google Scholar
Heimann, A., Fleming, T. H., Elliot, D. H. & Foland, K. A. 1994. A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by 40Ar/39Ar geochronology. Earth and Planetary Science Letters 121, 1941.Google Scholar
Heinonen, J. S., Carlson, R. W. & Luttinen, A. V. 2010. Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: A key to the origins of the Jurassic Karoo large igneous province? Chemical Geology 277(3–4), 227–44.Google Scholar
Heinonen, J. S. & Luttinen, A. V. 2008. Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite sources. Lithos 105, 347–64.Google Scholar
Heinonen, J. S. & Luttinen, A. V. 2010. Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province. Mineralogy and Petrology 99, 201–17.Google Scholar
Hergt, J. M. 2000. Comment on: “Enriched mantle – Dupal signature in the genesis of the Jurassic Ferrar tholeiites from Prince Albert Mountains (Victoria Land, Antarctica)” by Antonini et al. (Contributions to Mineralogy and Petrology 136, 1–19). Contributions to Mineralogy and Petrology 139, 240–44.Google Scholar
Hergt, J. M., Chappell, B. W., McCullagh, M. T., McDougall, I. & Chivas, T. R. 1989a. Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. Journal of Petrology 30, 841–83.Google Scholar
Hergt, J. M., Chappell, B. W., Faure, G. & Mensing, T. M. 1989b. The geochemistry of Jurassic dolerite from Portal Peak, Antarctica. Contributions to Mineralogy and Petrology 102, 298305.Google Scholar
Hergt, J. M., Peate, D. W. & Hawkesworth, C. J. 1991. The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth and Planetary Science Letters 105, 134–48.Google Scholar
Heron, P. J. & Lowman, J. P. 2010. Thermal response of the mantle following the formation of a “super-plate”. Geophysical Research Letters 37, L22302.Google Scholar
Heron, P. J. & Lowman, J. P. 2011. The effects of supercontinent size and thermal insulation on the formation of mantle plumes. Tectonophysics 510(1–2), 2838.Google Scholar
Hesselbo, S. P., Grocke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Bell, H. S. M. & Green, O. R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406(6794), 392–95.Google Scholar
Hesselbo, S. P., Morgans-Bell, H. S., McElwain, J. C., Rees, P. M., Robinson, S. A. & Ross, C. E. 2003. Carbon-cycle perturbation in the Middle Jurassic and accompanying changes in the terrestrial paleoenvironment. Journal of Geology 111(3), 259–76.Google Scholar
Hill, R. I. 1991. Starting plumes and continental break-up. Earth and Planetary Science Letters 104, 398416.Google Scholar
Hofmann, A. W. 1997. Mantle geochemistry: a message from oceanic volcanism. Nature 385, 219–29.Google Scholar
Hofmann, A. W. & White, W. M. 1982. Mantle plumes from ancient continental crust. Earth and Planetary Science Letters 57, 421–36.Google Scholar
Hole, M. J. & LeMasurier, W. E., 1994. Tectonic controls on the geochemical composition of Cenozoic mafic alkaline volcanic rocks from West Antarctica. Contributions to Mineralogy and Petrology 117, 187202.Google Scholar
Huppert, H. E. & Sparks, R. S. J. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29, 599624.Google Scholar
Jenkyns, H. C. 1999. Mesozoic anoxic events and palaeoclimate. Zentralblatt für Geologie und Palaontologie, Teil 1 : Allgemeine, Angewandte, Regionale und Historische Geologie, 79.Google Scholar
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society, London, Series A 361(1810), 1885–916.Google Scholar
Johnston, S. T. & Thorkelson, D. J. 2000. Continental flood basalts: episodic magmatism above long-lived hotspots. Earth and Planetary Science Letters 175, 247–56.Google Scholar
Kerr, A. C. 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? Journal of the Geological Society, London 155(2), 619–26.Google Scholar
Kerr, A. C. 2005. Oceanic LIPs: The kiss of death. Elements 1(5), 289–92.Google Scholar
Kerr, A. C., Saunders, A. D., Tarney, J., Berry, N. H. & Hards, V. L. 1995. Depleted mantle-plume geochemical signature: no paradox for plume theories. Geology 23, 843–46.Google Scholar
King, S. D. & Anderson, D. L. 1995. An alternative mechanism of flood basalt formation. Earth and Planetary Science Letters 136, 269–79.Google Scholar
King, S. D. & Ritsema, J. 2000. African hot spot volcanism: Small-scale convection in the upper mantle beneath cratons. Science 290, 1137–40.Google Scholar
Kyle, P. R. 1980. Development of heterogeneities in the subcontinental mantle: evidence from the Ferrar Group, Antarctica. Contributions to Mineralogy and Petrology 73, 89104.Google Scholar
Kyle, P. R., Elliot, D. H. & Sutter, J. F. 1981. Jurassic Ferrar Supergroup tholeiites from the Transantarctic Mountains, Antarctica, and their relation to the initial fragmentation of Gondwana. In Cresswall, M. M. & Vella, P. (eds) Gondwana Five: Proceedings of the Fifth Gondwana Symposium, Wellington, New Zealand, 283–87. Rotterdam: A. A. Balkema.Google Scholar
Kyle, P. R., Pankhurst, R., Mukasa, S., Panter, K., Smellie, J. & McIntosh, W. 1994. Sr, Nd and Pb isotopic variations in the Marie Byrd Plume, West Antarctica. U.S. Geological. Survey Circular 1107, 184.Google Scholar
Lanyon, R., Varne, R. & Crawford, A. J. 1993. Tasmanian Tertiary basalts, the Balleny Plume, and opening of the Tasman Sea southwest Pacific Ocean. Geology 21, 555–58.Google Scholar
Larson, R. L. 1991a. Geological consequences of superplumes. Geology 19(10), 963–66.Google Scholar
Larson, R. L. 1991b. Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19(6), 547–50.Google Scholar
Larson, R. L. & Erba, E. 1999. Onset of the mid-Cretaceous greenhouse in the Barremian–Aptian: igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14(6), 663–78.Google Scholar
Larson, R. L. & Kincaid, C. 1996. Onset of mid-Cretaceous volcanism by elevation of the 670 km thermal boundary layer. Geology 24(6), 551–54.Google Scholar
Leahy, G. M. & Bercovici, D. 2007. On the dynamics of a hydrous melt layer above the transition zone. Journal of Geophysical Research 112, B07401.Google Scholar
Leat, P. T. 2008. On the long-distance transport of Ferrar magmas. Geological Society, London, Special Publication 302, 4561.Google Scholar
Leat, P. T., Riley, T. R., Storey, B. C., Kelley, S. P. & Millar, I. L. 2000. Middle Jurassic ultramafic lamprophyre dykes within the Ferrar magmatic province, Pensacola Mountains, Antarctica. Mineralogical Magazine 64, 95111.Google Scholar
Leckie, R. M., Bralower, T. J. & Cashman, R. 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17(3), 112.Google Scholar
LeMasurier, W. E. 1990. Late Cenozoic volcanism on the Antarctic Plate: an overview. In LeMasurier, W. E. & Thomson, J. W. (eds) Volcanoes of the Antarctic Plate and Southern Oceans. Antarctic Research Series 48, 118. Washington, DC: American Geophysical Union.Google Scholar
LeMasurier, W. E. & Landis, C. A. 1996. Mantle-plume activity recorded by low-relief erosion surfaces in West Antarctica and New Zealand Geological Society of America Bulletin 108(11), 1450–66.Google Scholar
LeMasurier, W. E. & Rex, D. C. 1989. Evolution of linear volcanic ranges in Marie Byrd Land, West Antarctica. Journal of Geophysical Research 94(6), 7223–36.Google Scholar
LeMasurier, W. E. & Thomson, J. W. (eds). 1990. Volcanoes of the Antarctic Plate and Southern Oceans. Antarctic Research Series 48. Washington, DC: American Geophysical Union. 487 pp.Google Scholar
Liu, L. J., Tan, Y., Sun, D. Y., Chen, M. & Helmberger, D. 2011. Trans-Pacific whole mantle structure. Journal of Geophysical Research: Solid Earth 116, B04306.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25(1), 128.Google Scholar
Luttinen, A. V. & Furnes, H. 2000. Flood basalts of Vestfjella: Jurassic magmatism across an Archaean–Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. Journal of Petrology 41, 1271–305.Google Scholar
Luyendyk, B. P. 1995. Hypothesis for Cretaceous rifting of East Gondwana caused by subducted slab capture. Geology 23(4), 373–76.Google Scholar
Marsh, J. S. & Eales, H. V. 1984. Chemistry and petrogenesis of the Karoo Central Area, southern Africa. In Erlank, A. J. (ed.) The petrogenesis of the volcanic rocks of the Karoo Province. Geological Society of South Africa, Special Publication 13, 2768. 395 pp.Google Scholar
Martin, A. K. 2007. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback. Tectonophysics 445(3–4), 245–72.Google Scholar
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G. & De Min, A. 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284, 616–18.Google Scholar
Mikhailov, V., Stephenson, R. & Diament, M. 2010. Modelling of compression and extension of the continental lithosphere: Towards rehabilitation of the necking-level model. Journal of Geodynamics 50(5), 368–80.Google Scholar
Mitchell, C., Taylor, G. K., Cox, K. G. & Shaw, J. 1986. Are the Falkland Islands a rotated microplate? Nature 319, 131–34.Google Scholar
Molzahn, M., Reisberg, L. & Wörner, G. 1996. Os, Sr, Nd, Pb and O isotope and trace element data from the Ferrar flood basalts, Antarctica: evidence for an enriched subcontinental lithospheric source. Earth and Planetary Science Letters 144, 529–46.Google Scholar
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. & Hung, S.-H. 2004. Finite frequency tomography reveals a variety of plumes in the mantle. Science 303(5656), 338–43.Google Scholar
Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. 2006. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems 7(11). DOI: 10.1029/2006GC001248.Google Scholar
Morgan, W. J. 1971. Convection plumes in lower mantle. Nature 230(5288), 4243.Google Scholar
Morgan, W. J. 1981. Hotspot tracks and the opening of the Indian and Atlantic Oceans. In Emiliani, C. (ed.) The Oceanic Lithosphere, 443–88. New York: Wiley.Google Scholar
Mortimer, N., Parkinson, D., Raine, J. I., Adams, C. J., Graham, I. J., Oliver, P. J. & Palmer, K. 1995. Ferrar magmatic province rocks discovered in New Zealand: implications for Mesozoic Gondwana geology. Geology 23, 185–88.Google Scholar
Murphy, J. B., Nance, R. D. & Cawood, P. A. 2009. Contrasting modes of supercontinent formation and the conundrum of Pangea. Gondwana Research 15(3–4), 408–20.Google Scholar
Murphy, J. B. & Nance, R. D. 2005. Do supercontinents turn inside-in or inside-out? International Geology Review 47(6), 591619.Google Scholar
Pálfy, J. & Smith, P. L. 2000. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism. Geology 28(8), 747–50.Google Scholar
Pankhurst, R. J., Leat, P. T., Sruoga, P., Rapela, C. W., Márquez, M., Storey, B. C. & Riley, T. R. 1998. The Chon-Aike silicic igneous province of Patagonia and related rocks in Antarctica: a silicic large igneous province. Journal of Volcanology and Geothermal Research 81, 113–36.Google Scholar
Pankhurst, R. J., Riley, T. R., Fanning, C. M. & Kelley, S. P. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with break-up of Gondwana. Journal of Petrology 41, 605–25.Google Scholar
Pankhurst, R. J. & Rapela, C. R. 1995. Production of Jurassic rhyolites by anatexis of the lower crust of Patagonia. Earth and Planetary Science Letters 134, 2336.Google Scholar
Pankhurst, R. J. & Vaughan, A. P. M. 2009. The tectonic context of the Early Palaeozoic southern margin of Gondwana. In Bassett, M. G. (ed.) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography. Geological Society, London, Special Publication 325, 169–74.Google Scholar
Panter, K. S., McIntosh, W. C. & Smellie, J. L. 1994. Volcanic history of Mount Sidley, a major alkaline volcano in Marie Byrd Land, Antarctica. Bulletin of Volcanology 56, 361–76.Google Scholar
Panter, K., Blusztajn, J., Hart, S. R. & Kyle, P. 1997. Late Cretaceous–Neogene basalts from Chatham Island: Implications for HIMU mantle beneath continental borderlands of the Southwest Pacific. In Seventh Annual V. M. Goldschmidt Conference, LPI Contribution 921, 156–57. Houston, Texas: Lunar and Planetary Institute.Google Scholar
Panter, K. S., Hart, S. R., Kyle, P., Blusztajn, J. & Wilch, T. 2000. Geochemistry of Late Cenozoic basalts from the Crary Mountains: Characterization of mantle sources in Marie Byrd Land, Antarctica. Chemical Geology 165, 215–41.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Peate, D. W. 1997. The Parana–Etendeka Province. In Mahoney, J. J. & Coffin, M. R. (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism. AGU Geophysical Monograph 100, 217–44. Washington, DC: American Geophysical Union.Google Scholar
Rey, P. F. & Mueller, R. D. 2010. Fragmentation of active continental plate margins owing to the buoyancy of the mantle wedge. Nature Geoscience 3(4), 257–61.Google Scholar
Richards, M. A., Duncan, R. A. & Courtillot, V. E. 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science 246(4926), 103–07.Google Scholar
Riley, T. R., Leat, P. T., Pankhurst, R. J. & Harris, C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology 42, 1043–65.Google Scholar
Riley, T. R., Leat, P. T., Kelley, S. P., Millar, I. L & Thirlwall, M. F. 2003a. Thinning of the Antarctic Peninsula lithosphere through the Mesozoic: evidence from Middle Jurassic basaltic lavas. Lithos 67, 163–79.Google Scholar
Riley, T. R., Leat, P. T., Storey, B. C., Parkinson, I. J. & Millar, I. L. 2003b. Ultramafic lamprophyres of the Ferrar large igneous province: evidence for a HIMU mantle component. Lithos 66(1–2), 6376.Google Scholar
Riley, T. R., Leat, P. T., Curtis, M. L., Millar, I. L. & Fazel, A. 2005. Early–Middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo large igneous province. Journal of Petrology 46, 1489–524.Google Scholar
Riley, T. R., Curtis, M. L., Leat, P. T., Watkeys, M. K., Duncan, R. A., Millar, L. L. & Owens, W. H. 2006. Overlap of Karoo and Ferrar magma types in KwaZulu–Natal, South Africa. Journal of Petrology 47, 541–56.Google Scholar
Riley, T. R., Flowerdew, M. J., Hunter, M. A. & Whitehouse, M. J. 2010. Middle Jurassic rhyolite volcanism of eastern Graham Land, Antarctic Peninsula: age correlations and stratigraphic relationships. Geological Magazine 147(4), 581–95.Google Scholar
Riley, T. R. & Knight, K. B. 2001. Age of pre-break-up Gondwana magmatism: a review. Antarctic Science 13, 99110.Google Scholar
Riley, T. R. & Leat, P. T. 1999. Large volume silicic volcanism along the proto-Pacific margin of Gondwana: lithological and stratigraphcial investigations from the Antarctic Peninsula. Geological Magazine 136, 116.Google Scholar
Rocchi, S., Armienti, P., D'Orazio, M., Tonarini, S., Wijbrans, J. R. & Di Vincenzo, G. 2002. Cenozoic magmatism in the western Ross Embayment: Role of mantle plume versus plate dynamics in the development of the West Antarctic Rift System. Journal of Geophysical Research 107(B9), 2195.Google Scholar
Rocchi, S., Storti, F., Di Vincenzo, G. & Rossetti, F. 2003, Intraplate strike-slip tectonics as an alternative to mantle plume activity for the Cenozoic rift magmatism in the Ross Sea region, Antarctica, in Intraplate Strike-Slip Deformation Belts. In Storti, F., Holdsworth, R. E. & Salvini, F. (eds) Geological Society, London, Special Publication 210, 145–58.Google Scholar
Rocchi, S., Di Vincenzo, G. & Armienti, P. 2005. No plume, no rift magmatism in the West Antarctic rift. In Foulger, G. R., Anderson, D. L., Natland, J. H. & Presnall, D. C. (eds) Plates, Plumes & Paradigms. Geological Society of America Special Paper 388, 435–47.Google Scholar
Rocholl, A., Stein, M., Molzahn, M., Hart, S. R. & Worner, G. 1995. Geochemical evolution of rift magmas by progressive tapping of a stratified mantle source beneath the Ross Sea Rift, northern Victoria Land, Antarctica. Earth and Planetary Science Letters 131(3–4), 207–24.Google Scholar
Rosenbaum, G., Weinberg, R. F. & Regenauer-Lieb, K. 2008. The geodynamics of lithospheric extension. Tectonophysics 458(1–4), 18.Google Scholar
Ross, P. S., Peate, I. U., McClintock, M. K., Xu, Y. G., Skilling, I. P., White, J. D. L. & Houghton, B. F. 2005. Mafic volcaniclastic deposits in flood basalt provinces: A review. Journal of Volcanology and Geothermal Research 145(3–4), 281314.Google Scholar
Rowley, P. D., Schmidt, D. L. & Williams, P. L. 1982. The Mount Poster Formation, southernm Antarctic Peninsula. Antarctic Journal of the United States 17(5), 3839.Google Scholar
Salvini, F., Brancolini, G., Busetti, M., Storti, G., Mazzarini, F. & Coren, F. 1997. Cenozoic geodynamics of the Ross Sea region, Antarctica: crustal extension, intraplate strike-slip faulting, and tectonic inheritance. Journal of Geophysical Research 102(B11), 24,669–96.Google Scholar
Schaller, M. F., Wright, J. D. & Kent, D. V. 2011. Atmospheric P-CO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331(6023), 1404–09.Google Scholar
Schmerr, N., Garnero, E. & McNamara, A. 2010. Deep mantle plumes and convective upwelling beneath the Pacific Ocean. Earth and Planetary Science Letters 294(1–2), 143–51.Google Scholar
Schopf, J. M. 1969. Ellsworth Mountains: position in West Antarctica due to sea floor spreading. Science 164, 6366.Google Scholar
Siddoway, C. 2010. Tectonics: Microplate motion. Nature Geoscience 3(4), 225–26.Google Scholar
Sigloch, K., McQuarrie, N. & Nolet, G. 2008. Two-stage subduction history under North America inferred from multiple-frequency tomography. Nature Geoscience 1, 458–62.Google Scholar
Sinton, C. W. & Duncan, R. A. 1997. Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian–Turonian boundary. Economic Geology 92, 836–42.Google Scholar
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A. and Vasiliev, Y. R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–16.Google Scholar
Spasojevic, S., Gurnis, M. & Sutherland, R. 2010. Inferring mantle properties with an evolving dynamic model of the Antarctica–New Zealand region from the Late Cretaceous. Journal of Geophysical Research-Solid Earth 115, B05402, 10.1029/2009jb006612.Google Scholar
Steinberger, B. & Torsvik, T. H. 2012. A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces. Geochemistry, Geophysics, Geosystems 13(1). DOI: 10.1029/2011GC003808.Google Scholar
Storey, B. C. 1995. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377(6547), 301–08.Google Scholar
Storey, B. C., Hole, M. J., Pankhurst, R. J., Millar, I. L. & Vennum, W. R. 1988. Middle Jurassic within-plate granites in West Antarctica and their bearing on the break-up of Gondwanaland. Journal of the Geological Society, London 145, 9991007.Google Scholar
Storey, B. C., Leat, P. T., Weaver, S. D., Pankhurst, R. J., Bradshaw, J. D. & Kelley, S. 1999. Mantle plumes and Antarctica–New Zealand rifting: Evidence from Mid-Cretaceous mafic dykes. Journal of the Geological Society, London 156(4), 659–71.Google Scholar
Storey, B. C., Leat, P. T. & Ferris, J. K. 2001. The location of mantle-plume centers during the initial stages of Gondwana break-up. In Ernst, R. E. & Buchan, K. L. (eds) Mantle Plumes: Their identification through time. Geological Society of America Special Papers 352, 7180.Google Scholar
Storey, B. C. & Kyle, P. R. 1997. An active mantle mechanism for Gondwana breakup. South African Journal of Geology 100(4), 283–90.Google Scholar
Stump, E. 1995. The Ross Orogen of the Transantarctic Mountains. Cambridge, UK: Cambridge University Press.Google Scholar
Sutherland, R., Spasojevic, S. & Gurnis, M. 2010. Mantle upwelling after Gondwana subduction death explains anomalous topography and subsidence histories of eastern New Zealand and West Antarctica. Geology 38(2), 155–58.Google Scholar
Sweeney, R. J., Duncan, A. R. & Erlank, A. J. 1994. Geochemistry and petrogenesis of central Lebombo basalts of the Karoo igneous province. Journal of Petrology 35, 95125.Google Scholar
Tan, E., Leng, W., Zhong, S. J. & Gurnis, M. 2011. On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle. Geochemistry, Geophysics, Geosystems 12(7). DOI: 10.1029/2011GC003665.Google Scholar
ten Brink, U. S., Bannister, S., Beaudoin, B. C. & Stern, T. A. 1993. Geophysical investigations of the tectonic boundary between East and West Antarctica. Science 261(5117), 4550.Google Scholar
Tessensohn, F. & Wörner, G. 1991. The Ross Sea Rift System, Antarctica: Structure, evolution and analogues. In Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological evolution of Antarctica, 273–78. New York: Cambridge University Press.Google Scholar
Thompson, R. N. & Gibson, S. A. 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407, 502–06.Google Scholar
Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. 2008. Long term stability in deep mantle structure: Evidence from the similar to 300 Ma Skagerrak–Centered Large Igneous Province (the SCLIP). Earth and Planetary Science Letters 267(3–4), 444–52.Google Scholar
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwall, L. D. 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature 466(7304), 352–55.Google Scholar
Tronnes, R. G. 2010. Structure, mineralogy and dynamics of the lowermost mantle. Mineralogy and Petrology 99, 243–61.Google Scholar
Trubitsyn, V. P., Mooney, W. D. & Abbott, D. H. 2003. Cold cratonic roots and thermal blankets: how continents affect mantle convection. International Geology Review 45(6), 479–96.Google Scholar
van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. 1997. Evidence for deep mantle circulation from global tomography. Nature 386(6625), 578–84.Google Scholar
Vaughan, A. P. M. 1995. Circum-Pacific mid-Cretaceous deformation and uplift: a superplume-related event? Geology 23(6), 491–94.Google Scholar
Vaughan, A. P. M. & Livermore, R. A. 2005. Episodicity of Mesozoic terrane accretion along the Pacific margin of Gondwana: implications for superplume-plate interactions. In Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J. (eds) Terrane Processes at the Margins of Gondwana. Geological Society, London, Special Publication 246, 143–78.Google Scholar
Vaughan, A. P. M. & Storey, B. C. 2007. A new supercontinent self-destruct mechanism: evidence from the Late Triassic–Early Jurassic. Journal of the Geological Society, London 164, 383–92.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3, 245–48.Google Scholar
Wang, Y. & Wen, L. X. 2004. Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth's mantle. Journal of Geophysical Research-Solid Earth 109(B10), B10305.Google Scholar
West, J. D., Fouch, M. J., Roth, J. B. & Elkins-Tanton, L. T. 2009. Vertical mantle flow associated with a lithospheric drip beneath the Great Basin, Nature Geoscience 2, 439–44.Google Scholar
Weaver, S. D., Storey, B. C., Pankhurst, R. J., Mukasa, S. B., DiVenere, V. J. & Bradshaw, J. D. 1994. Antarctica–New Zealand rifting and Marie Byrd Land lithospheric magmatism linked to ridge subduction and mantle plume activity. Geology 22, 811–14.Google Scholar
Wever, H. E. & Storey, B. C. 1992. Bimodal magmatism in northest Palmer Land, Antarctic Peninslua: geochemical evidence for a Jurassic ensialic back-arc basin. Tectonophysics 205, 239–59.Google Scholar
White, R. S. 1992. Magmatism during and after continental break-up. In Storey, B. C., Alabaster, T. & Pankhurst, R. J. (eds) Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publications 68, 116.Google Scholar
White, R. S. & McKenzie, D. P. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research-Solid Earth 94(B6), 7685–729.Google Scholar
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews 53(1–2), 133.Google Scholar
Wignall, P. B. 2005. The link between large igneous province eruptions and mass extinctions. In Saunders, A. D. (ed.) Large Igneous Provinces: Origin and Environmental Consequences. Elements 1(5), 293–97. Chantilly, Virginia: the Mineralogical Society of America.Google Scholar
Wignall, P. B., Newton, R. J. & Little, C. T. S. 2005. The timing of paleoenvironmental change and cause-and-effect relationships during the early Jurassic mass extinction in Europe. American Journal of Science 305(10), 1014–32.Google Scholar
Wignall, P. B. & Bond, D. P. G. 2008. The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proceedings of the Geologists' Association 119, 7384.Google Scholar
Wilson, M. & Downes, H. 2006. Tertiary–Quaternary intra-plate magmatism in Europe and its relationships to mantle dynamics. In Gee, D. & Stephenson, R. (eds) European Lithosphere Dynamics. Geological Society, London, Memoir 32, 147–66.Google Scholar
Wilson, T. J. 1963. A possible origin of the Hawaiian Islands. Canadian Journal of Physics 41, 863–70.Google Scholar
Wooden, J. L.Czamanske, G. K., Federenko, V. A., Arndt, N. T., Chauvel, C., Bouse, R. M., King, B. W., Knight, R. J. & Siems, D. F. 1993. Isotopic and trace element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. Geochimica et Cosmochimica Acta 57, 3677–704.Google Scholar
Yoshida, M. & Santosh, M. 2011. Supercontinents, mantle dynamics and plate tectonics: A perspective based on conceptual vs. numerical models. Earth-Science Reviews 105(1–2), 124.Google Scholar
Zhu, D. C., Chung, S. L., Mo, X. X., Zhao, Z. D., Niu, Y. L., Song, B. & Yang, Y. H. 2009. The 132 Ma Comei–Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology 37(7), 583–86.Google Scholar